
A Walk Through 
Combinatorics

An Introduction to Enumeration and Graph Theory

8027 tp.indd   1 3/3/11   4:28 PM



This page is intentionally left blank 



N E W  J E R S E Y   •  L O N D O N   •  S I N G A P O R E   •  B E I J I N G   •  S H A N G H A I   •  H O N G  K O N G   •  TA I P E I   •  C H E N N A I  

World Scientific

A Walk Through 
Combinatorics

An Introduction to Enumeration and Graph Theory

Third Edition

Miklós Bóna
University of Florida, USA

8027 tp.indd   2 3/3/11   4:28 PM



Library of Congress Cataloging-in-Publication Data
Bóna, Miklós.

A walk through combinatorics : an introduction to enumeration and graph theory / by Miklós
Bóna. -- 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-981-4335-23-2 (hardcover : alk. paper)
ISBN-10: 981-4335-23-1 (hardcover : alk. paper)

1. Combinatorial analysis.   I. Title.
QA164.B66 2011
511'.6--dc22

     2011001455

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

EH - A Walk thru Combinatorics (3rd Ed).pmd 2/22/2011, 4:07 PM1



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

To Linda

To Mikike, Benny and Vinnie



This page is intentionally left blank 



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Foreword

The subject of combinatorics is so vast that the author of a textbook faces

a difficult decision as to what topics to include. There is no more-or-less

canonical corpus as in such other subjects as number theory and com-

plex variable theory. Miklós Bóna has succeeded admirably in blending

classic results that would be on anyone’s list for inclusion in a textbook,

a sprinkling of more advanced topics that are essential for further study

of combinatorics, and a taste of recent work bringing the reader to the

frontiers of current research. All three items are conveyed in an engag-

ing style, with many interesting examples and exercises. A worthy fea-

ture of the book is the many exercises that come with complete solutions.

There are also numerous exercises without solutions that can be assigned for

homework.

Some relatively advanced topics covered by Bóna include permutations

with restricted cycle structure, the Matrix-Tree theorem, Ramsey theory

(going well beyond the classical Ramsey’s theorem for graphs), the prob-

abilistic method, and the Möbius function of a partially ordered set. Any

of these topics could be a springboard for a subsequent course or read-

ing project which will further convince the student of the extraordinary

richness, variety, depth, and applicability of combinatorics. The most un-

usual topic covered by Bóna is pattern avoidance in permutations and

the connection with stack sortable permutations. This is a relatively re-

cent research area in which most of the work has been entirely elemen-

tary. An undergraduate student eager to do some original research has a

good chance of making a worthwhile contribution in the area of pattern

avoidance.

vii
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I only wish that when I was a student beginning to learn combinatorics

there was a textbook available as attractive as Bóna’s. Students today are

fortunate to be able to sample the treasures available herein.

Richard Stanley

Cambridge, Massachusetts

February 6, 2002
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Preface

The best way to get to know Yosemite National Park is to walk through it,

on many different paths. In the optimal case, the gorgeous sights provide

ample compensation for our sore muscles. In this book, we intend to explain

the basics of Combinatorics while walking through its beautiful results.

Starting from our very first chapter, we will show numerous examples of

what may be the most attractive feature of this field: that very simple tools

can be very powerful at the same time. We will also show the other side of

the coin, that is, that sometimes totally elementary-looking problems turn

out to be unexpectedly deep, or even unknown.

This book is meant to be a textbook for an introductory combinatorics

course that can take one or two semesters. We included a very extensive list

of exercises, ranging in difficulty from “routine” to “worthy of independent

publication”. In each section, we included exercises that contain material

not explicitly discussed in the text before. We chose to do this to provide

instructors with some extra choices if they want to shift the emphasis of

their course.

It goes without saying that we covered the classics, that is, combinato-

rial choice problems, and graph theory. We included some more elaborate

concepts, such as Ramsey theory, the Probabilistic Method, and Pattern

Avoidance (the latter is probably a first of its kind). While we realize that

we can only skim the surface of these areas, we believe they are interesting

enough to catch the attention of some students, even at first sight. Most

undergraduate students enroll in at most one Combinatorics course during

their studies, therefore it is important that they see as many captivating

examples as possible. It is in this spirit that we included two new chapters

in the second edition, on Algorithms, and on Computational Complexity.

We believe that the best undergraduate students, those who will get to the

ix
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end of the book, should be acquainted with the extremely intriguing ques-

tions that abound in these two areas. The third edition has two challenging

new chapters, one on Block Designs and codes obtained from designs, and

the other one on counting unlabeled structures.

We wrote this book as we believe that combinatorics, researching it,

teaching it, learning it, is always fun. We hope that at the end of the walk,

readers will agree.

****

Exercises that are thought to be significantly harder than average are

marked by one or more + signs. An exercise with a single + sign is prob-

ably at the level of a harder homework problem. The difficulty level of

an exercise with more than one + sign may be comparable to an indepen-

dent publication. An exercise that is thought to be significantly easier than

average is marked by a - sign.

We provide Supplementary Exercises without solutions at the end of

each chapter. These typically include, but are not limited to, the easi-

est exercises in that chapter. A solution manual for the Supplementary

Exercises is available for Instructors.
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Chapter 1

Seven Is More Than Six. The

Pigeon-Hole Principle

1.1 The Basic Pigeon-Hole Principle

Seven is more than six. Four is more than three. Two is more than one.

These statements do not seem to be too interesting, exciting, or deep. We

will see, however, that the famous Pigeon-hole Principle makes excellent use

of them. We choose to start our walk through combinatorics by discussing

the Pigeon-hole Principle because it epitomizes one of the most attractive

treats of this field: the possibility of obtaining very strong results by very

simple means.

Theorem 1.1. [Pigeon-hole Principle] Let n and k be positive integers,

and let n > k. Suppose we have to place n identical balls into k identical

boxes. Then there will be at least one box in which we place at least two

balls.

Proof. While the statement seems intuitively obvious, we are going to

give a formal proof because proofs of this nature will be used throughout

this book.

We prove our statement in an indirect way, that is, we assume its con-

trary is true, and deduce a contradiction from that assumption. This is a

very common strategy in mathematics; in fact, if we have no idea how to

prove something, we can always try an indirect proof.

Let us assume there is no box with at least two balls. Then each of

the k boxes has either 0 or 1 ball in it. Denote by m the number of boxes

that have zero balls in them; then certainly m ≥ 0. Then, of course, there

are k −m boxes that have one. However, that would mean that the total

number of balls placed into the k boxes is k −m which is a contradiction

because we had to place n balls into the boxes, and k − m ≤ k < n.

1



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

2 A Walk Through Combinatorics

Therefore, our assumption that there is no box with at least two balls must

have been false. �

In what follows, we will present several applications that show that this

innocuous statement is in fact a very powerful tool.

Example 1.2. There is an element in the sequence 7, 77, 777, 7777, · · · ,
that is divisible by 2003.

Solution. We prove that an even stronger statement is true, in fact, one of

the first 2003 elements of the sequence is divisible by 2003. Let us assume

that the contrary is true. Then take the first 2003 elements of the sequence

and divide each of them by 2003. As none of them is divisible by 2003,

they will all have a remainder that is at least 1 and at most 2002. As

there are 2003 remainders (one for each of the first 2003 elements of the

sequence), and only 2002 possible values for these remainders, it follows by

the Pigeon-hole Principle that there are two elements out of the first 2003

that have the same remainder. Let us say that the ith and the jth elements

of the sequence, ai and aj , have this property, and let i < j.

7777777777777777777777777
777777777777777777

7777777000000000000000000

j digits

i digits

i digits equal to 0
j-i digits equal to 7,

_

Fig. 1.1 The difference of aj and ai.

As ai and aj have the same remainder when divided by 2003, there exist

non-negative integers ki, kj , and r so that r ≤ 2002, and ai = 2003ki + r,

and aj = 2003kj + r. This shows that aj − ai = 2003(kj − ki), so in

particular, aj − ai is divisible by 2003.

This is nice, but we need to show that there is an element in our sequence

that is divisible by 2003, and aj − ai is not an element in our sequence.

Figure 1.1 helps understand why the information that aj − ai is divisible

by 2003 is nevertheless very useful.

Indeed, aj − ai consists of j − i digits equal to 7, then i digits equal to

0. In other words,

aj − ai = aj−i · 10i,
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and the proof follows as 10i is relatively prime to 2003, so aj−i must be

divisible by 2003.

In this example, the possible values of the remainders were the boxes,

all 2002 of them, while the first 2003 elements of the sequence played the

role of the balls. There were more balls than boxes, so the Pigeon-hole

Principle applied.

Example 1.3. A chess tournament has n participants, and any two players

play one game against each other. Then it is true that in any given point of

time, there are two players who have finished the same number of games.

Solution. First we could think that the Pigeon-hole Principle will not be

applicable here as the number of players (“balls”) is n, and the number of

possibilities for the number of games finished by any one of them (“boxes”)

is also n. Indeed, a player could finish either no games, or one game, or

two games, and so on, up to and including n− 1 games.

The fact, however, that two players play their games against each other,

provides the missing piece of our proof. If there is a player A who has com-

pleted all his n− 1 games, then there cannot be any player who completed

zero games because at the very least, everyone has played with A. There-

fore, the values 0 and n−1 cannot both occur among the numbers of games

finished by the players at any one time. So the number of possibilities for

these numbers (“boxes”) is at most n − 1 at any given point of time, and

the proof follows.

1.2 The Generalized Pigeon-Hole Principle

It is easy to generalize the Pigeon-hole Principle in the following way.

Theorem 1.4. [Pigeon-hole Principle, general version] Let n,m and r be

positive integers so that n > rm. Let us distribute n identical balls into m

identical boxes. Then there will be at least one box into which we place at

least r + 1 balls.

Proof. Just as in the proof of Theorem 1.1, we assume the contrary

statement. Then each of the m boxes can hold at most r balls, so all the

boxes can hold at most rm < n balls, which contradicts the requirement

that we distribute n balls. �
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It is certainly not only in number theory that the Pigeon-hole Princi-

ple proves to be very useful. The following example provides a geometric

application.

Example 1.5. Ten points are given within a square of unit size. Then

there are two of them that are closer to each other than 0.48, and there are

three of them that can be covered by a disk of radius 0.5.

Solution. Let us split our unit square into nine equal squares by straight

lines as shown in Figure 1.2. As there are ten points given inside the nine

small squares, Theorem 1.1 implies that there will be at least one small

square containing two of our ten points. The longest distance within a

square of side length 1/3 is that of two opposite endpoints of a diagonal.

By the Pythagorean theorem, that distance is
√
2
3 < 0.48, so the first part

of the statement follows.

Fig. 1.2 Nine small squares for ten points.

To prove the second statement, divide our square into four equal parts

by its two diagonals as shown in Figure 1.3. Theorem 1.4 then implies that

at least one of these triangles will contain three of our points. The proof

again follows as the radius of the circumcircle of these triangles is shorter

than 0.5.

We finish our discussion of the Pigeon-hole Principle by two highly sur-

prising applications. What is striking in our first example is that it is valid

for everybody, not just say, the majority of people. So we might as well

discuss our example choosing the reader herself for its subject.

Example 1.6. During the last 1000 years, the reader had an ancestor A

such that there was a person P who was an ancestor of both the father and
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Fig. 1.3 Four triangles for ten points.

the mother of A.

Solution. Again, we prove our statement in an indirect way: we assume

its contrary, and deduce a contradiction. We will use some rough estimates

for the sake of shortness, but they will not make our argument any less

valid.

Take the family tree of the reader. This tree is shown in Figure 1.4.

Parents

The reader

Grandparents

Fig. 1.4 The first few levels of the family tree of the reader.

The root of this tree is the reader herself. On the first level of the tree,

we see the two parents of the reader, on the second level we find her four

grandparents, and so on. Assume (for shortness) that one generation takes

25 years to produce offspring. That means that 1000 years was sufficient

time for 40 generations to grow up, yielding 1+ 2+22+ · · ·+240 = 241− 1
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nodes in the family tree. If any two nodes of this tree are associated to the

same person B, then we are done as B can play the role of P .

Now assume that no two nodes of the first 40 levels of the family tree

coincide. Then all the 241 − 1 nodes of the family tree must be distinct.

That would mean 241 − 1 distinct people, and that is a lot more than the

number of all people who have lived in our planet during the last 1000 years.

Indeed, the current population of our planet is less than 1010, and was much

less at any earlier point of time. Therefore, the cumulative population of

the last 1000 years, or 40 generations, was less than 40 ·1010 < 241− 1, and

the proof follows by contradiction.

Our assumption that every generation takes 25 years to produce off-

spring was a realistic one. Given that by all available data, the average

life expectancy of humans is longer today than ever before, 25 seems to

be a high-end estimate. The reader should spend a little time thinking

about how (and if) the argument would have to be modified if 25 were to

be replaced by a smaller or larger number.

Our last example comes from the theory of graphs, an extensive and

important area of combinatorics to which we will devote several chapters

later.

Example 1.7. Mr. and Mrs. Smith invited four couples to their home.

Some guests were friends of Mr. Smith, and some others were friends of Mrs.

Smith. When the guests arrived, people who knew each other beforehand

shook hands, those who did not know each other just greeted each other.

After all this took place, the observant Mr. Smith said “How interesting.

If you disregard me, there are no two people present who shook hands the

same number of times”.

How many times did Mrs. Smith shake hands?

Solution. The reader may well think that this question cannot be an-

swered from the given information any better than say, a question about

the age of the second cousin of Mr. Smith. However, using the Pigeon-

hole Principle and a very handy model called a graph, this question can be

answered.

To start, let us represent each person by a node, and let us write the

number of handshakes carried out by each person except Mr. Smith next to

the corresponding vertex. This way we must write down nine different non-

negative integers. All these integers must be smaller than nine as nobody

shook hands with himself/herself or his/her spouse. So the numbers we



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Seven Is More Than Six. The Pigeon-Hole Principle 7

wrote down are between 0 and 8, and since there are nine of them, we must

have written down each of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8 exactly once.

The diagram we have constructed so far can be seen in Figure 1.5.

8

7

6

5

4

3

2

1

0

Mr. Smith

Fig. 1.5 The participants of the party.

Now let us join two nodes by a line if the corresponding two people

shook each other’s hands. Such a diagram is called a graph, the nodes are

called the vertices of the graph, and the lines are called the edges of the

graph. So our diagram will be a graph with ten vertices.

Let us denote the person with i handshakes by Yi. (Mr. Smith is not

assigned any additional notation.) Who can be the spouse of the person

Y8? We know that Y8 did not shake the hand of only one other person,

so that person must have been his or her spouse. On the other hand, Y8

certainly did not shake the hand Y0 as nobody did that. Therefore, Y8 and

Y0 are married, and Y8 shook everyone’s hand except for Y0. We represent

this by joining his vertex to all vertices other than Y0. We also encircle Y8

and Y0 together, to express that they are married.

Now try to find the spouse of Y7, the person with seven handshakes. This

person did not shake the hands of two people, one of whom was his/her

spouse. Looking at Figure 1.6, we can tell who these two people are. One

of them is Y0 as he or she did not shake anyone’s hand, and the other one is

Y1 as he or she had only one handshake, and that was with Y8. As spouses

do not shake hands, this implies that the spouse of Y7 is either Y0 or Y1.

However, Y0 is married to Y8, so Y1 must be married to Y7.
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Mr. Smith
8

7

6

5

4

3

2

1

0

Fig. 1.6 Y8 and Y0 are married.

8

7

6

5

4

3

2

1

0

Mr. Smith

Fig. 1.7 Y1 and Y7 are married.

By a similar argument that the reader should be able to complete, Y6

and Y2 must be married, and also, Y5 and Y3 must be married. That implies

that by exclusion, Y4 is Mrs. Smith, therefore Mrs. Smith shook hands four

times.

How did we obtain such a strong result from “almost no data”? The

truth is that the data we had, that is, that all people except Mr. Smith
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Mr.Smith
8

7

6

5

4

3

2

1

0

Fig. 1.8 Mrs. Smith shook hands four times.

shook hands a different number of times, is quite restrictive. Indeed, con-

sider Example 1.3 again. An obvious reformulation of that Example shows

that it is simply impossible to have a party at which no two people shake

hands the same number of times (as long as no two people shake hands

more than once). Example 1.7 relaxes the “all-different-numbers” require-

ment a little bit, by waiving it for Mr. Smith. Our argument then shows

that with that extra level of freedom, we can indeed have a party satisfying

the new, weaker conditions, but only in one way. That way is described by

the graph shown in Figure 1.8.

Exercises

(1) A busy airport sees 1500 takeoffs per day. Prove that there are two

planes that must take off within a minute of each other.

(2) Find all triples of positive integers a < b < c for which

1

a
+

1

b
+

1

c
= 1

holds.
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(3) One hundred points are given inside a cube of side length one. Prove

that there are four of them that span a tetrahedron whose volume is at

most 1/99.

(4) (+) We have distributed two hundred balls into one hundred boxes with

the restrictions that no box got more than one hundred balls, and each

box got at least one. Prove that it is possible to find some boxes that

together contain exactly one hundred balls.

(5) (+) Last year, the Division One basketball teams played against an

average of eighteen different opponents. Is it possible to find a group

of teams so that each of them played against at least ten other teams

of the group?

(6)(a) The set M consists of nine positive integers, none of which has a

prime divisor larger than six. Prove that M has two elements whose

product is the square of an integer.

(b) (+) (Some knowledge of linear algebra and abstract algebra re-

quired.) The set A consists of n+1 positive integers, none of which

has a prime divisor that is larger than the nth smallest prime num-

ber. Prove that there exists a non-empty subset B ⊆ A so that the

product of the elements of B is a perfect square.

(7) (++) The set L consists of 2003 integers, none of which has a prime

divisor larger than 24. Prove that L has four elements, the product of

which is equal to the fourth power of an integer.

(8) (+) The sum of one hundred given real numbers is zero. Prove that

at least 99 of the pairwise sums of these hundred numbers are non-

negative. Is this result the best possible one?

(9) (+) We colored all points of R2 with integer coordinates by one of six

colors. Prove that there is a rectangle whose vertices are monochro-

matic. Can we make the statement stronger by limiting the size of the

purported monochromatic rectangle?

(10) Prove that among 502 positive integers, there are always two integers

so that either their sum or their difference is divisible by 1000.

(11) (+) We chose n+2 numbers from the set 1, 2, · · · , 3n. Prove that there
are always two among the chosen numbers whose difference is more

than n but less than 2n.

(12) There are four heaps of stones in our backyard. We rearrange them

into five heaps. Prove that at least two stones are placed into a smaller

heap.

(13) There are infinitely many pieces of paper in a basket, and there is a

positive integer written on each of them. We know that no matter how
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we choose infinitely many pieces, there will always be two of them so

that the difference of the numbers written on them is at most ten mil-

lion. Prove that there is an integer that has been written on infinitely

many pieces of paper.

(14) (+)

(a) A soccer team played 30 games this year, and scored a total of 53

goals, scoring at least one goal in each game. Prove that there was

a sequence of consecutive games in which the team scored exactly

six goals.

(b) Prove that the claim of part (a) does not hold for a team that scored

60 goals, with the other parameters unchanged.

(c) Prove that the claim of part (a) does hold for a team that scored 59

goals, with the other parameters unchanged.

(15) (+) The set of all positive integers is partitioned into several arithmetic

progressions. Show that there is at least one among these arithmetic

progressions whose initial term is divisible by its difference.

Supplementary Exercises

(16) (-) Prove that every year contains at least four and at most five months

that contain five Sundays.

(17) (-) A soccer league features 17 games for today. Let us assume that no

team will score more than three goals. Prove that there will be a result

that will occur more than once. (A result consists of the number of

goals scored by the home team, followed by the number of goals scored

by the visiting team. So 3-2 and 2-3 are considered different scores.)

(18) (-) A group of seven co-workers are trying to predict the total number

of points scored in a given basketball game. The first six people al-

ready took their guesses, and, curiously, they all picked distinct even

numbers. Mr. Slow is the last person to guess, and he knows all pre-

vious guesses. Is there a strategy for him that assures that his guess

will be better than the guesses of half of his colleagues?

(19) (-) A soccer team scored a total of 40 goals this season. Nine players

scored at least one of those goals. Prove that there are two players

among those nine who scored the same number of goals.

(20) (-)

(a) In April, Ms. Consistent went to the swimming pool 26 times. Is
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it true that there were six consecutive days when she went to the

swimming pool?

(b) Same as (a), but for the month of May instead of April.

(21)(a) We select 11 positive integers that are less than 29 at random.

Prove that there will always be two integers selected that have a

common divisor larger than 1.

(b) Is the statement of part (a) true if we only select ten integers that

are less than 29?

(22) Prove that there exists a positive integer n so that 44n− 1 is divisible

by 7.

(23) The sum of five positive real numbers is 100. Prove that there are two

numbers among them whose difference is at most 10.

(24) Find all 4-tuples (a, b, c, d) of distinct positive integers so that a < b <

c < d and
1

a
+

1

b
+

1

c
+

1

d
= 1.

(25) Complete the following sentence, that is a generalization of the Pigeon-

hole Principle to real numbers. “If the sum of k real numbers is n,

then there must be one of them which is...”. Prove your claim.

(26) We are given 17 points inside a regular triangle of side length one.

Prove that there are two points among them whose distance is not

more than 1/4.

(27) Prove that the sequence 1967, 19671967, 196719671967, · · · , contains
an element that is divisible by 1969.

(28) A teacher receives a paycheck every two weeks, always the same day

of the week. Is it true that in any six consecutive calendar months she

receives exactly 13 paychecks?

(29) (+) Let T be a triangle with angles of 30, 60 and 90 degrees whose

hypotenuse is of length 1. We choose ten points inside T at random.

Prove that there will be four points among them that can be covered

by a half-circle of radius 0.42.

(30) We select n + 1 different integers from the set {1, 2, · · · , 2n}. Prove

that there will always be two among the selected integers whose largest

common divisor is 1.

(31)(a) Let n ≥ 2. We select n + 1 different integers from the set

{1, 2, · · · , 2n}. Is it true that there will always be two among the

selected integers so that one of them is equal to twice the other?

(b) Is it true that there will always be two among the selected integers

so that one is a multiple of the other?
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(32) One afternoon, a mathematics library had several visitors. A librarian

noticed that it was impossible to find three visitors so that no two of

them met in the library that afternoon. Prove that then it was possible

to find two moments of time that afternoon so that each visitor was

in the library at one of those two moments.

(33) (+) Let r be any irrational real number. Prove that there exists a

positive integer n so that the distance of nr from the closest integer

is less than 10−10.

(34) Let p and q be two positive integers so that the largest common divisor

of p and q is 1. Prove then for any non-negative integers s ≤ p − 1

and t ≤ q − 1, there exists a non-negative integer m ≤ pq so that if

we divide m by p, the remainder is s, and if we divide m by q, the

remainder is t.

Solutions to Exercises

(1) There are 1440 minutes per day. If our 1440 minutes are the boxes,

and our 1500 planes are the balls, the Pigeon-hole Principle says that

there are two balls in the same box, that is, there are two planes that

take off within a minute of each other.

(2) It is clear that a = 2. Indeed, a = 1 is impossible because then the

left-hand side would be larger than 1, and a ≥ 3 is impossible as

a < b < c implies 1
a > 1

b > 1
c , so a = 3 would imply that the left-hand

side is smaller than 1. Thus we only have to solve

1

b
+

1

c
=

1

2
,

with 3 ≤ b < c. We claim that b must take its smallest possible value,

3. Indeed, if b ≥ 4, then c ≥ 5, and so 1
b +

1
c ≤ 1

4 +
1
5 < 1

2 . Thus b = 3,

and therefore, c = 6.

(3) Split the cube into 33 prisms by planes that are parallel to its base

and are at distance 1/33 from each other. By Pigeon-hole Principle,

one of these prisms must contain four of our points. The volume of

the tetrahedron spanned by these four points is at most one third of

that of the prism, and the statement follows.

(4) Arrange our boxes in a line so that the first two boxes do not have

the same number of balls in them. We can always do this unless all

boxes have two balls, in which case the statement is certainly true.
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Let ai denote the number of balls in box i, for all positive integers

1 ≤ i ≤ 100. Now look at the following sums: a1, a1+a2, a1+a2+a3,

· · · , a1+a2+ · · ·+a100. If two of them yield the same remainder when

divided by 100, then take the difference of those two sums. That will

yield a sum of type ai+ai+1+· · ·+aj that is divisible by 100, is smaller

than 200, and is positive. In other words, ai + ai+1 + · · ·+ aj = 100,

so the total content of boxes i, i+ 1, · · · , j is exactly 100 balls.

Now assume this does not happen, that is, all sums a1 + a2 + · · · +
ak yield different remainders when divided by 100. Attach the one-

element sum a2 to our list of sums. Now we have 101 sums, so by

Theorem 1.1, two of them must have the same remainder when divided

by 100. Since we assumed this did not happen before a2 joined the list,

we know that there is a sum S on our list that has the same remainder

as a2. As we know that a1 6= a2, we also know that S 6= a1, and we are

done as in the previous paragraph, since S− a2 = a1 + a3 + · · ·+ at =

100.

We note that this argument works in general with 2n boxes and 4n

balls. We also note that we in fact proved a stronger statement as our

chosen boxes are almost consecutive.

(5) Yes. Take a team T that played against at most nine opponents. If

there is no such team, then the group of all Division One teams has the

required property, and we are done. Omit T ; we claim that this will

not decrease the average number of opponents. Indeed, as we are only

interested in the number of opponents played (and not games), we

can assume that any two teams played each other at most once. The

18-game-average means that all the m Division One teams together

played 9m games as a game involves two teams. Omitting T , we are

left with m − 1 teams, who played a grand total of at least 9m − 9

games. This means that the remaining teams still played at least 18

games on average against other remaining teams.

Now iterate this procedure- look for a team from the remaining group

that has only played nine games and omit it. As the number of teams

is finite, this elimination procedure has to come to an end. The only

way that can happen is that there will be a group of which we cannot

eliminate any team, that is, in which every team has played at least

ten games against the other teams of the group.

(6)(a) Each element of M can be written as 2i3j5k for some non-negative

integers i, j, k. Therefore, we can divide the elements of M into

eight classes according to the parity of their exponents i, j, k. By
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the Pigeon-hole Principle, there will be two elements of M , say x

and y, that are in the same class. As the sum of two integers of

the same parity is even, this implies that x · y = 22a32b52c for some

non-negative integers a, b, c, therefore, xy = (2a3b5c)2.

(b) The n + 1 elements of A can be considered as elements of an n-

dimensional vector space over the binary field. Let B be a linearly

dependent subset of A, then the product of all elements of B is a

perfect square since all prime factors must occur in that product

an even number of times in that product.

(7) If we try to copy the exact method of the previous problem, we may

run into difficulties. Indeed, the elements of L can have nine different

prime divisors, 2, 3, 5, 7, 11, 13, 17, 19, 23. If we classify them according

to the remainder of the exponents of these prime divisors modulo four,

we get a classification into 49 > 2003 classes. So it seems that is not

even sure that there will be a class containing two elements of L, let

alone four.

The reason for which this attempt did not work is that it tried to prove

too much. For the product of four integers to be a fourth power, it is

not necessary that the exponents of each prime divisor have the same

remainder modulo four in each of the four integers. For example,

1,1,2,8 do not have that property, but their product is 16 = 24.

A more gradual approach is more successful. Let us classify the ele-

ments of L again just by the parity of the exponents of the nine pos-

sible prime divisors in them. This classification creates just 29 = 512

classes. Now pick two elements of L that are in the same class, and

remove them from L. Put their product into a new set L′. This pro-

cedure clearly decreased the size of L by 2. Then repeat this same

procedure, that is, pick two elements of L that are in the same class,

remove them, and put their product into L′. Note that all elements

of L′ will be squares as they will contain all their prime divisors with

even exponents. Do this until you can, that is, until there are no two

elements of L in the same class. Stop when that happens. Then L

has at most 511 elements left, so we have removed at least 1492 ele-

ments from L. Therefore L′ has at least 746 elements, all of which are

squares of integers.

Now classify the elements of L′ according to the remainders of the

exponents of their prime divisors modulo four. As the elements of

L′ are all squares, all these exponents are even numbers, so their

remainders modulo four are either 0 or 2. So again, this classification
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creates only 512 classes, and therefore, there will be two elements of

L′ in the same class, say u and v. Then uv is the fourth power of an

integer, and since both u and v are products of two integers in L, our

claim is proved.

(8) First Solution: Let a1 ≤ a2 ≤ · · · ≤ a100 denote our one hundred

numbers. We will show 99 non-negative sums. We have to distinguish

two cases, according to the sign of a50 + a99. Assume first that a50 +

a99 ≥ 0. Then we have

0 ≤ a50 + a99 ≤ a51 + a99 ≤ a52 + a99 ≤ · · · ≤ a100 + a99,

providing 51 non-negative sums. On the other hand, for any i so that

50 ≤ i ≤ 100, we now have

0 ≤ ai + a99 ≤ ai + a100,

providing the new non-negative sums a50 + a100, a51 + a100, · · · , a98 +
a100, which is 49 new sums, so we have found 100 non-negative sums.

Now assume that a50 + a99 < 0. Then necessarily

a1 + a2 + · · ·+ a49 + a51 + · · ·+ a98 + a100 > 0. (1.1)

In this case we claim that all sums ai + a100 are non-negative. To

see this, it suffices to show that the smallest of them, a1 + a100 is

non-negative. And that is true as

0 > a50 + a99 ≥ a49 + a98 ≥ a48 + a97 ≥ · · · ≥ a2 + a51,

and therefore the left-hand side of (1.1) can be decomposed as the

sum of a1 + a100, and 48 negative numbers. So a1 + a100 is positive,

and the proof follows.

Second Solution: It is well known from everyday life that one can

organize a round robin tournament for 2n teams in 2n − 1 rounds,

so that each round consists of n games, and that each team plays a

different team each round. A rigorous proof of this fact can be found

in Chapter 2, Exercise 4. Now take such a round robin tournament,

and replace the teams with the numbers a1, a2, · · · , a100. So the fifty

games of each round are replaced by fifty pairs of type ai+aj . As each

team plays in each round, the sum of the 100 numbers, or 50 pairs,

in any given round is zero. Therefore, at least one pair must have a

non-negative sum in any given row, otherwise that row would have a

negative sum.

This result is the best possible one: if a100 = 99, and ai = −1 if

1 ≤ i ≤ 99, then there will be exactly 99 non-negative two-element

sums.
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(9) There is only a finite number of choices for the color of each point, so

there is only a finite number F of choices to color the integer points

of a 7× 7 square. Now take a column built up from F + 1 squares of

size 7 × 7 that have the same x coordinates. (They are “above one

another”.) By the Pigeon-hole Principle, two of them must have the

very same coloring. This means that if the first one has two points of

the same color in the ith and jth positions, then so does the second,

and a monochromatic rectangle is formed. The Pigeon-hole Principle

ensures that such i and j always exist, and the proof follows. In fact,

we also proved that there will always be a monochromatic rectangle

whose shorter side contains at most 7 points with integer coordinates.

(10) Consider the remainders of each of the given integers modulo 1000,

and the opposites of these remainders modulo 1000. Note that if an

integer is not congruent to 0 or 500 modulo 1000, then its remainder

and opposite remainder modulo 1000 are two different integers.

We distinguish two cases. First, if at least two of our integers are

divisible by 1000, or if at least two of our integers have remainder 500

modulo 1000, then the difference and sum of these two integers are

both divisible by 1000, and we are done.

If there is at most one among our integers that is divisible by 1000,

and there is at most one among our integers that has remainder 500

modulo 1000, then we have at least 500 integers that do not fall into

either category. Consider their remainders and opposite remainders

modulo 1000, altogether 1000 numbers. They cannot be equal to 0

or 500, so there are only 998 possibilities for them. Therefore, the

Pigeon-hole Principle implies that there must be two equal among

them, and the proof follows.

(11) Denote 3n − a the largest chosen number (it could be that a = 0).

Let us add a to all our chosen numbers; this clearly does not change

their pairwise differences. So now 3n is the largest chosen number.

Therefore, if any number from the interval [n + 1, 2n − 1] is chosen,

we are done. Otherwise, we had to choose a total of n + 1 numbers

from the intervals [1, n] and [2n, 3n− 1]. Consider the n pairs

(1, 2n); (2, 2n+ 1); · · · ; (i, i+ 2n− 1), · · · ; (n, 3n− 1).

As there are n such pairs, and we chose n + 1 integers, there is one

pair with two chosen elements. The difference of those two chosen

elements is 2n− 1, and our claim is proved.

(12) Let the numbers of stones in the original four heaps be a1 ≥ a2 ≥
a3 ≥ a4, and let the numbers of stones in the five new heaps be
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b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5. Then a1 + a2 + a3 + a4 > b1 + b2 + b3 + b4.

Let k be the smallest index so that a1 + · · ·+ ak > b1 + · · ·+ bk. (It

follows from the previous sentence that there is such an index.) This

implies that ak > bk. Then the stones from the k largest old heaps

could not all go to the k largest new heaps. (Indeed, there are too

many of them.) In fact, note that a1 + · · ·+ ak > b1 + · · ·+ bk−1 + 1.

So at least two of these stones had to go to a heap with bk stones or

less, and we are done as a1 ≥ · · · ≥ ak > bk ≥ bk+1 ≥ · · · ≥ b5.

(13) Assume the contrary, that is, that each positive integer appears on a

finite number of pieces only. As we have an infinite number of pieces,

this means that there is an infinite sequence of different positive inte-

gers a1 < a2 < a3 < · · · so that each ai appears on at least one piece

of paper. Then the subsequence a1, a107+1, a2·107+1, a3·107+1, · · · , is
an infinite set in which any two elements differ by at least ten million.

As all elements of this subsequence appear on some pieces of paper,

we have reached a contradiction.

(14)(a) Let ai denote the number of goals the team scored in the ith game.

Consider the 30 numbers bi = a1 + a2 + · · ·+ ai for all i satisfying

1 ≤ i ≤ 30, and the 30 numbers bi + 6 for 1 ≤ i ≤ 30. This is a

collection of 60 numbers, each of which is a positive integer, and

none of which is larger than 53 + 6 = 59. So by the Pigeon-hole

Principle, two of these numbers are equal. One of them must be

bi and the other must be bj + 6 for some j < i, since all the bi are

different. Then the team scored exactly six goals total in games

j + 1, j + 2, · · · , i.
(b) A counterexample is given by the sequence 2, 1, 2, 2, 3, 2, repeated

four more times, for the numbers a1, a2, · · · as defined in the solu-

tion of part (a). Another counterexample is given by the sequence

1, 1, 1, 1, 1, 7 repeated four more times.

(c) Let the numbers ai and bi be defined as in the solution of part

(a). Let us assume that our claim does not hold. Consider the

sequence of the ten integers F = {1, 7, 13, · · · , 55}. Let B denote

the sequence b1, b2, · · · , b30.
At most five elements of F can be elements ofB since no two consec-

utive elements of F can be part B. Similarly, at most five elements

of the sequence 2, 8, · · · , 56 can be part of B. The same goes for the

sequence 3, 9, · · · , 57, the seqeunce 4, 10, · · · , 58, and the sequence

5, 11, · · · , 59. Therefore, since B consists of 30 positive integers,

the largest of which is 59, the sequence of the remaining positive
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integers not larger than 60, that is, the sequence 6, 12, · · · , 54 must

contain at least five elements of B. If our claim does not hold, then

6 /∈ B, so the eight-element sequence S = {12, 18, · · · , 54} contains
at least five numbers bi. That means that the there are two con-

secutive elements of S that are part of B, which is a contradiction.

(15) Let a1, a2, · · · , ak be the initial terms of our k progressions, and let

d1, d2, · · · , dk be their differences. The number d1d2 · · · dk is an ele-

ment of one of these progressions, say, the ith one. Therefore, there

is a positive integer m so that

d1d2 · · · dk = ai +mdi,

d1d2 · · · dk −mdi = ai.

So ai is divisible by di. This problem had nothing to do with the

Pigeon-hole Principle. We included it to warn the reader that not all

that glitters is gold. Just because we have to prove that one of many

objects has a given property, we cannot necessarily use the Pigeon-hole

Principle.
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Chapter 2

One Step at a Time. The Method of

Mathematical Induction

2.1 Weak Induction

Let us assume it is almost midnight, and it has not rained all day today. If,

from the fact that it does not rain on a given day, it followed that it will not

rain the following day, it would then also follow that it would never rain

again. Indeed, from the fact that it does not rain today, it would follow

that it will not rain tomorrow, from which it would follow that it will not

rain the day after tomorrow, and so on.

This simple logic leads to another very powerful tool in mathematics:

the method of mathematical induction. We can try to apply this method

any time we need to prove a statement for all natural numbers m. Our

method then has two steps.

(1) The Initial Step. Prove that the statement is true for the smallest

value of m for which it is defined, usually 0 or 1.

(2) The Induction Step. Prove that from the fact that the statement is

true for n (“the induction hypothesis”), it follows that the statement

is also true for n+ 1.

If we can complete both of these steps, then we will have proved our

statement for all natural values of m. Indeed, suppose not, that is, that

we have completed the two steps described above, but still there are some

positive integers for which our statement is not true. Let m + 1 be the

smallest such integer. Then m+1 is not the smallest integer for which our

statement is defined, for that would contradict the fact that we completed

the Initial Step. So our statement is defined, and therefore, true, for m as

m + 1 was the smallest integer for which it was false. So our statement is

true for m, but false for m+1, which contradicts the fact that we completed

21
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the Induction Step. Indeed, choosing m = n in the Induction Step yields

this contradiction.

Having seen that the method of mathematical induction is a valid one,

let us survey some of its applications.

Example 2.1. For all positive integers n,

12 + 22 + · · ·+m2 =
m(m+ 1)(2m+ 1)

6
. (2.1)

Without the method of mathematical induction, we could be in trouble

here. The left-hand side is a sum that is not an arithmetic series or a

geometric series, so we could not use the known formulae for those series.

Moreover, the right-hand side looks slightly counter-intuitive; for example,

it is not clear how the number 6 will show up in the denominator. The

method of mathematical induction, however, solves this problem effortlessly

as we will see below.

Solution. (1) The Initial Step. If m = 1, then the left-hand side is 1, and

so is the right-hand side, so the statement is true.

(2) The Induction Step. Now assume equation (2.1) is true for n, and prove

it for n + 1. The statement for n + 1 can be obtained from (2.1) by

replacing n by n+ 1 and is as follows.

12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
. (2.2)

To prove (2.2) from (2.1), note that these two equations look pretty

much alike; in fact, their difference is a rather simple equation. We

are going to prove that this difference is an equation that is in fact

an identity. This is true as the difference of the two left-hand sides is

clearly (n+ 1)2, while that of the two right-hand sides is

(n+ 1)[(n+ 2)(2n+ 3)− n(2n+ 1)]

6
= (n+ 1)2.

Therefore, adding the true statements

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
and

(n+ 1)2 =
(n+ 1)[(n+ 2)(2n+ 3)− n(2n+ 1)]

6
we get that

12 + 22 + · · ·+ n2 + (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

Therefore, the statement holds for all positive integers m.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

One Step at a Time. The Method of Mathematical Induction 23

The previous example shows the one serious advantage and one serious

disadvantage of the method of mathematical induction. The advantage

is that instead of having to prove a general statement, we only have to

prove two specific statements. That is, first, we have to complete the initial

step, which is usually easy as the substitution m = 0 or m = 1 usually

simplifies the expressions at hand significantly. Then we have to complete

the induction step which only involves proving the statement for n + 1

assuming that it is true for n, which is again usually easier than proving

the statement for n+ 1 without the induction hypothesis.

The drawback will become more apparent after the next example.

Example 2.2. Let f(m) be the maximum number of domains into which

m straight lines can divide the plane. Then f(m) = m(m+1)
2 + 1.

It is clear that one straight line always divides the plane into two do-

mains, so f(1) = 2, and the initial step is complete. The reader can easily

verify that the constructions below are optimal for m = 2 and m = 3, and

therefore f(2) = 4, and f(3) = 7. This step is not a necessary part of our

induction proof, but it helps the reader visualize the problem.

Fig. 2.1 Optimal constructions for m = 2 and m = 3.

Now let us assume the statement is true for an integer n, and let us

prove that it is true for n+ 1. Let s be one of our n+ 1 straight lines; we

may think of s as the straight line we added to our picture last. Then s

intersects at most n other straight lines, since there are only n other lines

in the picture. Denote by t1, t2, · · · , tk the straight lines that s crosses, in

the order it crosses them, in some order. As we said, k ≤ n since there are
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n + 1 lines altogether. This means that s passes through k + 1 different

domains formed by the other n lines, and cuts each of them into two new

domains. Indeed, s cuts through a domain before crossing each ti, and

after crossing tk. In other words, s increases the number of domains by

k+1 ≤ n+1. Therefore, we have just proved that f(n+1) ≤ f(n)+n+1,

and equality occurs if and only if s does intersect all the other n lines. Thus

f(n + 1) = f(n) + n + 1. However, the induction hypothesis claims that

f(n) = n(n+1)
2 + 1. Therefore,

f(n+ 1) = f(n) + n+ 1 =
n(n+ 1)

2
+ 1 + n+ 1 =

(n+ 1)(n+ 2)

2
+ 1,

completing the proof.

This proof was possible because we were given a formula for f(m) to

prove, just as we were given a formula to prove for the sum of squares in

the previous example. Had we been not given these formulae beforehand,

first we would have had to guess them, then we could have proved them

by the method of mathematical induction. This is the disadvantage of the

inductive method we were referring to. However, this guessing is not always

hard to do, as the following example shows.

Example 2.3. Let a0 = 1, and let an+1 = 3an +1, for all positive integers

n ≥ 1. Find an explicit formula for am.

We will learn techniques that enable us to solve problems like this with-

out any guessing. For now, however, let us compute the first few values of

the sequence. We get that they are 1,4,13,40,121. It is easy to conjecture

that am = (3m − 1)/2. Now we are going to prove our statement by in-

duction. For m = 1, the statement is trivially true. Now assume that the

statement holds for n. Then

an+1 = 3an + 1 =
3 · (3n − 1)

2
+ 1 =

3n+1 − 1

2
,

so the statement also holds for n+ 1, and the proof follows.

Remark. Readers should have a basic understanding of the method of

mathematical induction by now, and probably noticed that at the end of

the induction proofs, we always choose m = n. Therefore, we will no longer

use different variables for m and n.

For our purposes, a finite set is a finite unordered collection of different

objects. That is, {1, 3, 2} and {2, 1, 3} are the same as sets, because they

only differ in the order of their elements, and as we said, sets are unordered

structures. If an element is allowed to appear more than one time in a
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collection, such as the element 1 in the collection (1, 1, 2, 3), then that

collection is called a multiset. We say that the set B is a subset of the set

A, denoted B ⊆ A, if each element of B is also an element of A. In this

case it is clear that B has at most as many elements as A.

In combinatorial enumeration, the most important property of a set is

the number of its elements. Usually, if a statement of enumerative combi-

natorial nature is true for one set of size n, then it is true for all sets of

size n. Therefore, it is permissible, and certainly convenient, to use one

example of n-element sets for most of our discussion: that of the first n

positive integers, that is, the set {1, 2, 3, · · · , n}. As this set will be our

canonical example, we introduce the notation [n] = {1, 2, 3, · · · , n} for this
set.

Theorem 2.4. For all positive integers n, the number of all subsets of [n]

is 2n.

Proof. For n = 1, the statement is true as [1] has two subsets, the empty

set, and {1}.
Now assume we know the statement for n, and prove it for n + 1. We

divide the subsets of [n + 1] into two classes: there will be those subsets

that do not contain the element n + 1, and there will be those that do.

Those that do not contain n+1 are also subsets of [n], so by the induction

hypothesis, their number is 2n. Those that contain n+1 consist of n+1 and

a subset of [n], however, that subset of [n] can be any of the 2n subsets of

[n], so the number of these subsets of [n+1] is once more 2n. So altogether,

[n+ 1] has 2n + 2n = 2n+1 subsets, and the theorem is proved. �

With all its strength, the method of induction can also be dangerous

if not applied carefully. One common pitfall is to omit a careful proof of

the Initial Step, then “prove” a faulty statement by a correct Induction

Step. For example, we could “prove” the faulty statement that all positive

integers of the form 2n+1 are divisible by 2, if we could start the induction

somewhere, that is, if we could find just one positive integer n for which

this property holds. The Induction Step would be easy to complete as

2(n+ 1) + 1− (2n+ 1) = (2n+ 1) + 2− (2n+ 1) = 2 is certainly divisible

by 2, the Initial Step, however, cannot be completed.

The following provides an example of a much more subtle fallacy.

We claim that all horses have the same color. As the number of all

horses in the world is certainly finite, we can restate our claim as follows.

For any positive integer n, any n horses always have the same color. And
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here is our “proof” by induction. For n = 1, the statement is obviously

true: any one horse has the same color as itself. Now suppose that the

statement is true for n, and prove it for n+ 1. Take n+ 1 horses, and line

them up. Then the first n horses must have the same color, say black, by

the induction hypothesis, but the last n horses also must have the same

color, by the same induction hypothesis, so they too must be black as we

already have seen that all the first n horses were black, and that included

the second, third, fourth,· · · , nth horses, which are also included among

the last n horses. Therefore, all n+ 1 horses are black.

It is not so easy to catch the faulty step in this argument because this

argument would indeed work for all values of n, except for n = 1. When,

however, we want to apply this argument to prove that the statement holds

for two horses using the fact that it holds for one horse, we encounter

insurmountable difficulties. The reason for this is simple: in this case the

“first n horses” simply means the first horse, while the “last n horses”

means the last horse. These two sets have no intersection, so nothing forces

the color of the horse in the first set to be the same as that of the horse in

the second one!

This fallacy shows that we must be careful that our Induction Step is

correct for all values of n greater than or equal to the value used in the

Initial Step.

Of course, our argument shows that if any two horses did have the same

color, then all horses would have the same color, but that result would be

a horse of a different color.

2.2 Strong Induction

Example 2.5. Let the sequence {an} be defined by the relations a0 = 0,

and an+1 = a0 + a1 + a2 + · · · + an + n + 1 if n ≥ 0. Prove that for all

positive integers n, the equality an = 2n − 1 holds.

Here we certainly could not hope to prove our statement by our usual

way of induction. Indeed, an+1 depends not only on an, but also on

an−1, an−2, · · · , a1, so simply using the fact that an−1 = 2n−1 − 1 cannot

be sufficient.

Solution. (of Example 2.5) As a0 = 0, the initial case is true. Now let us

assume that we know that the statement is true for all positive integers less
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than or equal to n. Then, by our recurrence relation,

an+1 = a0 + · · ·+ an + n+ 1 = (20 − 1) + · · ·+ (2n − 1) + n+ 1

1 + 2 + 4 + · · ·+ 2n = 2n+1 − 1.

This shows that our explicit formula is correct for n + 1, and the proof is

complete.

Note that if we remove a0 from our sequence {an}, we get a geometric

series.

Let us review the steps of this strong induction algorithm.

(1) The Initial Step. Prove that the statement is true for the smallest value

of n for which it is defined, usually 0 or 1.

(2) The Induction Step. Prove that from the fact that the statement is true

for all integers less than n+ 1 (“the induction hypothesis”), it follows

that the statement is also true for n+ 1.

Just as in the case of weak induction, if we can complete both of these

steps, then we will have proved our statement for all natural numbers n.

Indeed, suppose not, that is, that we have completed the two steps described

above, but still there are some positive integers for which our statement

is not true. Let n + 1 be the smallest such integer. Then n + 1 is not

the smallest integer for which our statement is defined, for that would

contradict the fact that we completed the Initial Step. So our statement is

defined, and therefore, true, for all integers less than or equal to n, because

n + 1 was the smallest integer for which it was false. So our statement

is true for all integers less than or equal to n, but false for n + 1, which

contradicts the fact that we completed the Induction Step.

Let us see one more application of the strong induction algorithm. For

the rest of this book, denote N the set of natural numbers, that is, the set

of non-negative integers.

Example 2.6. Let f(0) = 1, let f(1) = 2, and let f(n+ 1) = f(n − 1) +

2f(n) if n ≥ 1. Prove that then f(n) ≤ 3n for all n ∈ N .

Solution. It follows from the conditions that the statement is true for

n = 0 and n = 1. Now let us assume that the statement is true for all non-

negative integers that are less than or equal to n, and prove it for n + 1.
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For n ≥ 1, we have

f(n+ 1) = f(n− 1) + 2f(n)

≤ 3n−1 + 2 · 3n

= 7 · 3n−1

< 3n+1,

and our induction proof is complete. Note that we have used the induction

hypothesis when passing from the first line to the second. Also note that

we did need the strong induction hypothesis in that we needed the both

inequalities f(n− 1) ≤ 3n−1 and f(n) ≤ 3n in order to complete that step.

Notes

It is sometimes convenient to shift the parameters in an induction proof.

This means that the Induction Step involves assuming the statement for

n − 1, and proving it for n (in the weak case), or assuming the statement

for all integers less than n, and proving it for n. It can also happen that

we want to prove some property of even integers, or odd integers, in which

case we would have to adjust our Induction Step accordingly. There will

be many examples for these phenomena later in this book.

Exercises

(1) + Let p(k) be a polynomial of degree d. Prove that q(n) =
∑n

k=1 p(k)

is a polynomial of degree d + 1. Prove that this polynomial q satisfies

q(0) = 0.

(2) At a tennis tournament, every two players played against each other ex-

actly one time. After all games were over, each player listed the names

of those he defeated, and the names of those defeated by someone he

defeated. Prove that at least one player listed the names of everybody

else.

(3) At a tennis tournament, there were 2n participants, and any two of

them played against each other exactly one time. Prove that we can

find n+1 players that can form a line in which everybody has defeated

all the players who are behind him in the line.
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(4) Prove that for all positive integers n, it is possible to organize a round

robin tournament of n football teams in

a. n− 1 rounds if n is even,

b. n rounds if n is odd.

A round is a set of games in which each team plays one opponent if

n is even, and there is only one idle team if n is odd. A round-robin

tournament is a tournament in which any pair of teams meet exactly

once.

(5) Let a0 = 1, and let an+1 = 3an + 2, for all non-negative integers n.

Prove that an = 2 · 3n − 1.

(6) Let a0 = 1, and let an+1 = 4an − 1, for all non-negative integers n.

Prove that an = 2·4n+1
3 .

(7) Let a0 = 1, and let an+1 = 2
∑n

i=0 ai for all non-negative integers n.

Find an explicit formula for an.

(8) There are n patients waiting in a doctor’s office. Each of them took a

number, from 1 to n. The patients are told that they will not necessarily

be called in the order their numbers would indicate, but nobody will

be preceded by more patients than he would be if the order of their

numbers were strictly respected. That is, the patient holding number

i will be preceded by at most i− 1 patients.

When Mr. Jones heard this, he said, “This is just the same as respecting

the order of the numbers.” Was he right?

(9) Prove that for all natural numbers n, the number a(n) = n3 + 11n is

divisible by 6.

(10) Prove that 3n > n4 if n ≥ 8.

(11) Prove that if n is a positive integer, then 8n − 14n+ 27 is divisible by

7.

(12) We cut a square into four smaller squares, then we cut some of the

obtained small squares into four smaller squares, and so on. Prove that

at any given point of time during this operation, the number of all

squares we have is of the form 3m+ 1.

(13) (Some calculus required.) Recall that n! = 1 · 2 · · · · · n. Prove that for
all positive integers n, the inequality n! > nn

3n holds.

(14) Prove that there exists a positive integer N so that if n > N , then the

inequality

n! <
nn

(2.5)n

holds.
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(15) + Give an induction proof for the inequality between the geometric

and the arithmetic mean, that is, prove that if a1, a2, · · · , an are non-

negative numbers, then

n
√
a1a2 · · · an ≤

a1 + a2 + · · ·+ an
n

. (2.3)

(16) + Give an induction proof for the inequality between the harmonic

mean and the geometric mean, that is, prove that if a1, a2, · · · , an are

positive real numbers, then
n

1
a1

+ 1
a2

+ · · ·+ 1
an

≤ n
√
a1a2 · · · an.

Supplementary Exercises

(17) (-) Prove that for all positive integers n, we have

1 + 3 + · · ·+ (2n− 1) = n2.

(18) (-) Let n be a positive integer. Prove that it is possible to cut up a

cube into 7n+ 1 smaller cubes.

(19) (-) Let a1 = 3, and let an = a1 · a2 · · · · · an−1 + 2 for n ≥ 2. Prove

that an = 2n + 1.

(20) (-) Prove that

1 · 2 + 2 · 3 + · · ·+ (n− 1)n =
(n− 1)n(n+ 1)

3
.

(21) (-) Prove by induction that the sum of the angles of a convex n-gon

is (n− 2)180 degrees.

(22) Prove that for all positive integers n,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2. (2.4)

(23) Prove that for all positive integers n,

2(1 + 2 + · · ·+ n)4 = (15 + 25 + · · ·+ n5) + (17 + 27 + · · ·+ n7).

(24) Find a closed formula (no summation signs) for the expression
∑n

i=1 i(i+ 1).

(25) Let a0 = 1, and let an+1 = 10an − 1. Prove that for all n ≥ 1, the

equality an = (8 · 10n + 1)/9 holds.

(26) Let a0 = 1, and let an+1 = 10an − 3. Find an explicit formula for an.

(27) Let a0 = 3, and let an+1 =
√
an + 7 if n > 0. Prove that 3 < an < 4

for all n > 0.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

One Step at a Time. The Method of Mathematical Induction 31

(28) Let a0 = 0, a1 = 1, and let an+2 = 6an+1− 9an for n ≥ 0. Prove that

an = n · 3n−1 for all n ≥ 0.

(29) Let a0 = a1 = 1, and let an+2 = an+1 + 5an for n ≥ 0. Prove that

an ≤ 3n for all n ≥ 0.

(30) Let H be a ten-element set of two-digit positive integers. Prove that

H has two disjoint subsets A and B so that the sum of the elements

of A is equal to the sum of the elements of B.

(31) Prove that a positive integer is divisible by 3 if and only if the sum of

its digits is divisible by 3.

(32) Let a1, a2, · · · , an be the digits of a positive integer m, from left to

right. Prove that m is divisible by 11 if and only if a1−a2+a3−· · ·+
(−1)n−1an is divisible by 11.

(33) Let a1 = 5, and let an+1 = a2n. Prove that the last n digits of an are

the same as the last n digits of an+1.

(34) Prove that for any positive integer n, it is possible to partition any

triangle T into 3n+ 1 similar triangles.

(35) Let n > 14 be an integer. Prove that a square can be partitioned into

n smaller squares.

(36) Prove that if n > 2 is a natural number, then n can be written as a

product of primes.

(37) Define a function µ on the set of non-negative integers as follows. Let

µ(1) = 1, and let µ(n) = 0 if n > 1 and n is divisible by the square

of an integer a > 1. Otherwise, if n = p1p2 · · · pk, where the pi are all

distinct primes, then let µ(n) = (−1)k. Use induction to prove that

for all positive integers m > 1,

Zn =
∑

d|n
µ(d) = 0.

The summation is taken over all positive divisors d of n. (This is what

d|n denotes.)

Solutions to Exercises

(1) We prove the statement by strong induction on d. If d = 0, then p

is a constant polynomial, say p = c. Then
∑n

i=1 p(i) = nc, and the

statement is true.

Now let us assume that we know the statement for all polynomials of

degree less than d, and let p be a polynomial of degree d. First we claim
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that it suffices to prove our statement for the polynomial p(d) = nd.

Let a0, a1, · · · , ad be real numbers, with ad 6= 0. Then the statement

is true for the polynomial nd if and only if it is true for the polynomial

adn
d. Moreover, the statement is true for the polynomial adn

d if and

only if it is true for the polynomial h(n) = adn
d + ad−1n

d−1 + · · · +
a1d+ a0. Indeed, r(n) = ad−1n

d−1 + · · ·+ a1d+ a0 is a polynomial of

degree d − 1, so the induction hypothesis implies that
∑n

i=1 r(i) is a

polynomial of n of degree at most d. Therefore,
n
∑

i=1

h(i)−
n
∑

i=1

adi
d =

n
∑

i=1

r(i)

is a polynomial of degree at most d.

To prove that the statement is true for nd, it suffices to show that there

exists a polynomial z(n) of degree d+ 1 so that z(n+ 1)− z(n) = nd

for all positive integers n, and z(0) = 0. That will imply that

1d + 2d + · · ·+ nd = (z(1)− z(0)) + · · ·+ (z(n+ 1)− z(n))

= z(n+ 1)− z(0)

= z(n+ 1).

Finally, in order to prove that such a polynomial z(n) exists, let us

recall that (n+ 1)d+1 − nd+1 is a polynomial of degree d. This is not

exactly what we want, that is, the polynomial nd. However, using the

induction hypothesis just as we did in the previous paragraph, it is

easy to show that this implies the existence of z(n).

(2) First solution. We claim that the winner of the tournament (or any

winner, if there is a tie at the top) always lists the names of everyone

else. Indeed, suppose W is a winner of the tournament, that is, he

won k games, and nobody won more than k games. Now assume there

is a player P whose name W did not list. That means that P defeated

W , and P also defeated all the k players W defeated. So P won at

least k + 1 games, which is a contradiction.

Second solution. Induction on n, the number of players at the

tournament. If n = 2, the statement is true, for the player who

won the sole game lists the name of his opponent. Now assume the

statement is true for n, and take a tournament with n + 1 players.

Call the player with the smallest number of victories A. (If there is a

tie at the bottom, any player from that tie will do.) If we temporarily

disregard A, we have n players left, so by the induction hypothesis

there will be one of them, say B, who will list the names of the other
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n−1 players. Now if B defeated A, or if anyone defeated by B defeated

A, then B lists the name of A, too, and we are done. If not, then A

has defeated B, and all the players defeated by B, so A won more

games than B, a contradiction.

(3) Induction on n. For n = 1, the statement is trivially true. Now assume

the statement is true for n and prove it for n+ 1. The winner X of a

tournament with 2n+1 games must have won at least 2n games (why?).

Take X , and 2n people he defeated. By the induction hypothesis, we

can find n + 1 people among the 2n people defeated by X who can

form a line with the required property. Then we put X to the front

of this line and we have obtained a line of length n + 2 that has the

required property.

(4) We are going to prove the statement by strong induction on n. For

n = 1, 2, the statement is trivially true. Now assume that we know

the statement for all positive integers less than n+1, and prove it for

n+ 1.

First, we claim that we can assume that n + 1 is even. Indeed, if

n + 1 is odd, then we can add one more player to the tournament,

and have an even number of players. Once we have our round robin

tournament, we can simply take away the extra player, and say that

his opponent has a bye in each round.

Thus n+ 1 is even. We distinguish two cases.

• First assume that n+1 = 4k. Let us split our group of players into

two groups of size 2k each. Have both groups play a round-robin

tournament. By the induction hypothesis, that is possible in 2k−1

rounds. Then denote the players in the two groups a1, a2, · · · , a2k
and b1, b2, · · · , b2k. Have them play 2k rounds as follows. In the

first round, ai plays bi. In the second round ai plays bi+1, modulo

2k, that is, a2k plays b1. Continue this way, in round j, ai will

play bi+j . This completes a round robin tournament in 4k− 1 = n

rounds, as claimed.

• If n + 1 = 4k + 2, then again split the group of players into two

groups of size 2k+1 each. Proceed as before, except that when the

groups play their tournaments, there will be an idle player in each

of them, in each round. Have those two play each other.

(5) The statement is true for n = 0. Now assume it is true for n, and

prove it for n + 1. We know that an+1 = 3an + 2. By our induction

hypothesis, we have an = 2 · 3n − 1. Substituting this for an, we get
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an+1 = 3 · (2 · 3n − 1) + 2 = 2 · 3n+1 − 3 + 2 = 2 · 3n+1 − 1, and the

statement is proved.

(6) The statement is true for n = 0. Now assume it is true for n, and

prove it for n + 1. We know that an+1 = 4an − 1. By our induction

hypothesis, an = 2·4n+1
3 . Substituting this for an, we get

an+1 = 4 · 2 · 4
n + 1

3
− 1 =

2 · 4n+1 + 4

3
− 1 =

2 · 4n+1 + 1

3
,

which was to be proved.

(7) Computing the first few elements, we find that a0 = 1, a1 = 2, a2 = 6,

a3 = 18, a4 = 54, and so on. This seems to suggest that an = 2 · 3n−1

if n ≥ 1. We prove this by strong induction on n. The initial case is

true. Now assume we know the statement for all positive integers less

than or equal to n. Then, by our recurrence relation,

an+1 = 2a0 + 2a1 + · · ·+ 2an

= 2 + 2(2 + 6 + · · ·+ 2 · 3n−1)

= 2 + 4 · 3
n − 1

2
= 2 · 3n.

This proves that our explicit formula is correct for n+1, and the proof

is complete.

(8) Yes, he was. Let us identify the patients by their numbers, and let

f(i) be the function that tells when patient i is called. Then we

have to prove that the only one-to-one function f : {1, 2, · · · , n} →
{1, 2, · · · , n} that satisfies f(i) ≤ i for all i is the identity function.

(That is, the function defined by f(i) = i for all i.) Note that a one-

to-one function between two sets of the same size is necessarily onto.

A function that is both one-to-one and onto is called a bijection. We

will use bijections often in later chapters. We will then explain these

words, though we suspect you heard them before.

We prove our statement by induction on n. The statement is obviously

true for n = 1. Now assume we know that the statement is true for

n, and prove it for n+1. Let f : {1, 2, · · · , n+ 1} → {1, 2, · · · , n+ 1}
be a bijection that satisfies f(i) ≤ i for all i. Then we must have

f(n + 1) = n + 1. Indeed, there has to be an i so that f(i) = n + 1,

and if this i is not n + 1, then the condition f(i) ≤ i is violated. So

f(n+ 1) = n+ 1. This means that f maps the set {1, 2, · · · , n} onto
the set {1, 2, · · · , n}, and of course, satisfies f(i) ≤ i. However, the



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

One Step at a Time. The Method of Mathematical Induction 35

induction hypothesis then says that f(i) = i for all i ≤ n, and the

statement follows.

(9) As a(0) = 0, the initial step is complete. Now assume we know that

the statement is true for n, and prove it for n+1. As a(n) is divisible

by six, it suffices to show that a(n+ 1)− a(n) is divisible by six, and

that will prove that so is a(n+ 1). Indeed,

a(n+ 1)− a(n) = (n+ 1)3 + 11(n+ 1)− n3 − 11n

= 3n2 + 3n+ 1 + 11

= 3(n2 + n+ 4),

and the statement follows as n2 + n is always an even number.

(10) The statement is true for n = 8. Indeed, 38 = 94 > 84. This will be

our initial step. Now assume that we know that the statement is true

for n (where n ≥ 8). We then have to prove that bn+1 = 3n+1

(n+1)4 > 1.

We know that bn > 1, and that

bn+1 = bn · 3 ·
(

n

n+ 1

)4

.

Therefore, to show that bn+1 > 1, it suffices to show that ( n
n+1 )

4 > 1
3

when n ≥ 8. As ( n
n+1 )

4 = (1− 1
n+1 )

4 obviously grows when n grows, it

suffices to show that this holds when n = 8. Indeed,
(

8
9

)4
= 0.624 > 1

3 .

(11) Let an = 8n − 14n + 27. Then a1 = 21 is divisible by seven. Now

assume the statement is true for n, and prove it for n+1. To do that, it

suffices to show that an+1−an is divisible by seven. One verifies easily

that an+1−an = 8n+1−14(n+1)−8n−14n = 7 ·8n−14 = 7(8n−2),

which is always divisible by seven.

(12) We prove the statement by induction on the number n of squares that

have been cut up. When n = 0, then we have one square, and the

statement is true. Now assume the statement is true for n, and prove

it for n + 1. At step n + 1, we cut up one additional square. This

increases the number of all squares by three, so if that number was

of the form 3m + 1, now it is of the form 3m + 4 = 3(m + 1) + 1.

This proves our claim. A little additional thought shows that in fact,

n = m, that is, after we cut up n squares, we have 3n+ 1 squares.

(13) Let an = n!
(n/3)n . We have to prove that an > 1. If n = 1, then we

have a1 = 3, and the statement is true. Assume the statement is true

for n. To prove it for n+ 1, we show that an+1/an > 1. Indeed,

an+1

an
=

3n+1 · (n+ 1)!

(n+ 1)n+1
· nn

3n · n! = 3 ·
(

n

n+ 1

)n

.
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It is a well-known fact in Calculus that the sequence
(

n
n+1

)n

is de-

creasing and converges to 1/e. In particular, it is always larger than

1/e, let alone 1/3, and our statement is proved.

(14) Let bn = n!
(n/2.5)n . Then we compute

bn+1

bn
=

2.5n+1 · (n+ 1)!

(n+ 1)n+1
· nn

2.5n · n! = 2.5 ·
(

n

n+ 1

)n

.

As the sequence cn = ( n
n+1 )

n is decreasing, the ratio bn+1

bn
= 2.5cn

is decreasing with n. Moreover, cn → 1/e, so there exists an integer

m such that if n > m, then bn+1

bn
< 2.5

2.6 . As (2.52.6 )
n converges to 0, it

follows that eventually, we will have an N so that bN < 1, and the

proof follows by induction.

(15) We prove the statement by induction on n. For n = 1, the statement

is trivially true. Now assume we know that the statement is true for

all integers less than n, and prove it for n.

Assume first that n is even, say n = 2k. Then apply this same in-

equality for the numbers a1, · · · , ak and ak+1, · · · , a2k. As k < n, we

know by the induction hypothesis that for both sets of numbers, the

geometric mean is at most as large as the arithmetic mean. Replace

each of the numbers a1, · · · , ak by their arithmetic mean A, and re-

place each of the numbers ak+1, · · · , a2k by their arithmetic mean B.

Then the left-hand side of (2.3) increases, while the right-hand side

does not change. For our new sets of numbers, the inequality between

the geometric and arithmetic means is the following.

2k
√
AkBk ≤ k(A+B)

2k
. (2.5)

Note if we can prove (2.5), we will also get a proof of our original in-

equality (2.3). Indeed, (2.5) was obtained from (2.3) by increasing the

left-hand side and leaving the right-hand side unchanged. Therefore

(2.5) implies (2.3).

To see that (2.5) holds, note that (2.5) simplifies to

√
AB ≤ A+B

2
,

0 ≤ (A−B)2.

If n is odd, then assume without loss of generality that an is maxi-

mal among the ai. Replace the numbers a1, a2, · · · , an−1 with their

arithmetic mean C. By the induction hypothesis, this is larger than
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their geometric mean. Therefore, this operation increases the left-

hand side of (2.3) or leaves it the same, and leaves the right-hand

side unchanged. Just as in the case of even n, we have turned our

inequality into a sharper one, namely

n
√

Cn−1an ≤
(n− 1)C + an

n
.

Again, it suffices to prove this inequality as it implies (2.3). Let us

prove this inequality. As an ≥ C, the arithmetic mean (n−1)C+an

n is

at distance d from C, and distance (n− 1)d from an. We will modify

our numbers so that the left-hand side increases and the right-hand

side does not change. We will do this in n − 1 steps, and in each

step, we will change two numbers, one of which will always be the

maximal number. First we take one of our n− 1 copies of C, add d to

it, and subtract this d from an. Clearly, the sum, and therefore, the

arithmetic mean of our numbers did not change. On the other hand,

their geometric mean grew as Can ≤ (C + d)(an − d). Then add d

to another copy of C, and subtract d from an − d, and so on. After

n−1 steps, all our entries are equal to C+d. So raising the geometric

mean and keeping the arithmetic mean unchanged, we reach a point

where these two are equal. This shows that the geometric mean could

not be larger than the arithmetic mean.

Remark. In the second case, we have not used the fact that n was

odd, so we could have done the whole proof with just that method.

It would have been faster, but we wanted to show the nice trick of

splitting the set of our numbers into two subsets. If n is not even, but

not prime, the same method would have worked. We just would have

had to split the set of our numbers into k equal parts, where k is a

prime divisor of n.

(16) Analogous to the solution of the previous exercise, just substitute the

relevant sets of numbers by their geometric means, not their arithmetic

means.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Chapter 3

There Are A Lot Of Them.

Elementary Counting Problems

In the first two chapters, we have explained how to use the Pigeon-hole

Principle and the method of mathematical induction to draw conclusions

from certain numbers. However, to find those numbers is not always easy.

It is high time that we learned some fundamental counting techniques.

3.1 Permutations

Let us assume that n people arrived at a dentist’s office at the same time.

The dentist will treat them one by one, so they must first decide the order

in which they will be served. How many different orders are possible?

This problem, that is, arranging different objects linearly, is so om-

nipresent in combinatorics that we will have a name for both the arrange-

ments and the number of arrangements. However, we are going to answer

the question first.

Certainly, there are n choices for the person who will indulge in dental

pleasures first. How many choices are there for the person who goes second?

There are only n−1 choices as the person who went first will not go second,

but everybody else can.

The crucial observation now is that for each of the n choices for the

patient to be seen first, we have n − 1 choices for the patient who will be

second. Therefore, we have n(n − 1) ways to select these two patients. If

you do not believe this, try it out with four patients, called A, B, C, and D,

and you will see that there are indeed 12 ways the first two lucky patients

can be chosen.

We can then proceed in a similar manner: we have n − 2 choices for

the patient to be seen third as the first two patients no longer need to be

seen. Then we have n − 3 choices for the patient to be seen fourth, and

39
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so on, two choices for the patient to be seen next-to-last, and only one

choice, the remaining, frightened patient, to be seen last. Therefore, the

number of orders in which the patients can sit down in the dentist’s chair

is n · (n− 1) · (n− 2) · · · 2 · 1.

Definition 3.1. The arrangement of different objects into a linear order

using each object exactly once is called a permutation of these objects. The

number n · (n− 1) · (n− 2) · · · 2 · 1 of all permutations of n objects is called

n factorial, and is denoted by n!.

So we have just proved the following basic theorem.

Theorem 3.2. The number of all permutations of an n-element set is n!.

We note that by convention, 0! = 1. If you really want to know why

we choose 0! to be 1, and not, say, 0, here is an answer. Assume there are

n people in a room and m people in another room. How many ways are

there for people in the first room to form a line and people in the second

room to form a line? The answer is, of course, n! ·m! as any line in the first

room is possible with any line in the second room. Now look at the special

case of n = 0. Then people in the second room can still form m! different

lines. Therefore, if we want our answer, n!m! to be correct in this singular

case too, we must choose 0! = 1. You will soon see that there are plenty of

other situations that show that 0! = 1 is the good definition.

The number n! is quintessential in combinatorial enumeration, as you

will see throughout this book. You may wonder how large this number is,

in terms of n. This question can be answered at various levels of precision.

All answers that are at least somewhat precise require advanced calculus.

Here we will just mention, without proof that

n! ∼
√
2πn

(n

e

)n

. (3.1)

The symbol n! ∼ z(n) sign means that limn→∞ n!
z(n) = 1. Relation (3.1) is

called Stirling’s formula, and we will use it in several later chapters.

Example 3.3. How many different flags can we construct using colors

red, white, and green if all flags must consist of three horizontal stripes

of different colors?

Solution. By Theorem 3.2, the answer is 3! = 3 · 2 · 1 = 6. It is easy to

convince ourselves that this is indeed correct by listing all six flags: RWG,

RGW, WRG, WGR and GWR, and GRW.
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The simplicity of the answer to the previous question was due to several

factors: we used each of our objects exactly once, the order of the objects

mattered, and the objects were all different. In the rest of this section we

will study problems without one or more of these simplifying factors.

Example 3.4. A gardener has five red flowers, three yellow flowers and

two white flowers to plant in a row. In how many different ways can she

do that?

This problem differs from the previous one in only one aspect: the

objects are not all different. The collection of the five red, three yellow,

and two white flowers is often called a multiset. A linear order that contains

all the elements of a multiset exactly once is called a multiset permutation.

How many permutations does our multiset have? We are going to an-

swer this question by reducing it to the previous one, in which all objects

were different. Assume our gardener plants her flowers in a row, in any of

A different ways, then sticks labels (say numbers 1 through 5 for the red

flowers, 1 through 3 for the yellow ones, and 1 through 2 for the white ones)

to her flowers so that she can distinguish them. Now she has ten different

flowers, and therefore the row of flowers she has just finished working on can

look in 10! different ways. We have to tell how many of these arrangements

differ only because of these labels.

The five red flowers could be given five different labels in 5! different

ways. The three yellow flowers could be given three different labels in 3!

different ways. The two white flowers could be given two different labels in

2! different ways. Moreover, the labeling of flowers of different colors can be

done independently of each other. Therefore, the labeling of all ten flowers

can be done in 5! · 3! · 2! different ways once the flowers are planted in any

of A different ways. Therefore, A · 5! · 3! · 2! = 10!, or, in other words,

A =
10!

5! · 3! · 2! = 2520.

This argument can easily be generalized to a general theorem. However,

we will need a greater level of abstraction in our notations to achieve that.

This is because we will take general variables for the number of objects, but

also for the number of different kinds of objects. In other words, instead

of saying that we have five red flowers, three yellow flowers, and two white

flowers, we will allow flowers of k different colors, and we will say that there

are a1 flowers of the first color, a2 flowers of the second color, a3 flowers
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of the third color, and so on. We complete the set of these conditions by

saying that we have ak flowers of color k (or ak flowers of the kth color).

This is a long set of conditions, so some shorter way of expressing it

would certainly make it less painful. We will achieve this by saying that

we have ai flowers of color i, for all i ∈ [k]. Instead of saying that we plant

our flowers in a line, we will often say that we linearly order our objects.

Now we are in a position to state our general theorem.

Theorem 3.5. Let n, k, a1, a2, · · · , ak be non-negative integers satisfying

a1+a2+ · · ·+ak = n. Consider a multiset of n objects, in which ai objects

are of type i, for all i ∈ [k]. Then the number of ways to linearly order

these objects is

n!

a1! · a2! · · · · · ak!
.

Proof. This is a generalization of Example 3.4, and the same idea of

proof works here. The reader should work out the details. �

3.2 Strings over a Finite Alphabet

Now we are going to study problems in which we are not simply arranging

certain objects, knowing how many times we can use each object, but rather

construct strings, or words, from a finite set of symbols, which we call a

finite alphabet. We will not require that each symbol occur a specific number

of times; though we may require that each symbol occur at most once.

Theorem 3.6. The number of k-digit strings one can form over an n-

element alphabet is nk.

Proof. We can choose the first digit in n different ways. Then, we can

choose the second digit in n different ways as well since we are not forbidden

to use the same digit again (unlike in case of permutations). Similarly, we

can choose the third, fourth, etc., kth element in n different ways. We can

make all these choices independently from each other, so the total number

of choices is nk. �

Example 3.7. The number of k-digit positive integers is 9 · 10k−1.

Solution. There are two ways one can see this. From Theorem 3.6, we

know that the number of k-digit strings that can be made up from the



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

There Are A Lot Of Them. Elementary Counting Problems 43

alphabet {0, 1, · · · , 9} is 10k. However, not all these yield a k-digit positive

integer. Indeed, those with first digit 0 do not. What is the number of

these bad strings? Disregarding their first digit, these strings are (k − 1)-

digit strings over {0, 1, · · · , 9} with no restriction, so Theorem 3.6 shows

that there are 10k−1 of them. Therefore, the number of k-digit strings that

do not start with 0, in other words, the number of k-digit positive integers

is 10k − 10k−1 = 9 · 10k−1 as claimed.

Alternatively, we could argue as follows. We have 9 choices for the first

digit (everything but 0), and ten choices for each of the remaining k − 1

digits. Therefore, the number of total choices is 9 ·10 ·10 · · · ··10 = 9 ·10k−1,

just as in the previous argument.

Before we discuss our next example, we mention a general technique in

enumeration, the method of bijections. Suppose there are many men and

many women in a huge ballroom. We do not know the number of men, but

we know that the number of women is exactly 253. Suppose we think that

the number of men is also 253, but we are not sure. What is a fast way to

test this conjecture? We can ask the men and women to form man-woman

pairs. If they succeed in doing this, that is, nobody is left without a match,

and everyone has a match of the opposite gender, then we know that the

number of men is 253 as well. If not, then there are two possibilities: if

some man did not find a woman for himself, then the number of men is

more than 253. If some woman did not find a man, then the number of

men is less than 253.

This technique of matching two sets element-wise and then conclude

(in case of success) that the sets are equinumerous is very often used in

combinatorial enumeration. Let us put it in a more formal context.

Definition 3.8. Let X and Y be two finite sets, and let f : X → Y be a

function so that

(1) if f(a) = f(b), then a = b, and

(2) for all y ∈ Y there is an x ∈ X so that f(x) = y,

then we say that f is a bijection from X onto Y . Equivalently, f is a

bijection if for all y ∈ Y , there exists a unique x ∈ X so that f(x) = y.

In other words, a bijection matches the elements of X with the elements

of Y , so that each element will have exactly one match.

The classes of functions that have only one of the two defining properties

of bijections also have their own names.
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Definition 3.9. Let f : X → Y be a function. If f satisfies criterion (1)

of Definition 3.8, then we say that f is one-to-one or injective, or is an

injection. If f satisfies criterion (2) of Definition 3.8, then we say that f is

onto or surjective, or is a surjection.

Proposition 3.10. Let X and Y be two finite sets. If there exists a bijec-

tion f from X onto Y , then X and Y have the same number of elements.

Proof. The bijection f matches elements of X to elements of Y , in other

words it creates pairs with one element from X and one from Y in each

pair. Say f created m pairs, then both X and Y have m elements. �

The advantages of the bijective method are significant. Instead of enu-

merating the elements of X , we can enumerate the elements of Y if that

is easier. Then, we can find a bijection from X onto Y . Let us illustrate

this by computing the number of all subsets of [n] without resorting to

induction.

Example 3.11. The number of all subsets of an n-element set is 2n.

Solution. We construct a bijection from the set of all subsets of an n-

element set into that of all n-digit strings over the binary alphabet {0, 1}.
As this latter set has 2n elements by Theorem 3.6, it will follow that so

does the former.

To construct the bijection, let B be any subset of [n]. Now let f(B) be

the string whose ith digit is 1 if and only if i ∈ B and 0 otherwise. This way

f(B) will indeed be an n-digit word over the binary alphabet. Moreover, it

is clear that given any string s of length n containing digits equal to 0 and

1 only, we can find the unique subset B ⊆ [n] for which f(B) = s. Indeed,

B will precisely consist of the elements i ∈ [n] so that the ith element of s

is 1.

Example 3.12. A city has recently built ten intersections. Some of these

will get traffic lights, and some of those that get traffic lights will also get

a gas station. In how many different ways can this happen?

Solution. It is easy to construct a bijection from the set of all distributions

of lights and gas stations onto that of ten-digit words over the alphabet

A,B,C. Indeed, for each distribution of these objects, we define a word

over {A,B,C} as follows: if the ith intersection gets both a gas station and

a traffic light, then let the ith digit of the word that we are constructing
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be A, if only a traffic light, then let the ith digit be B, and if neither, then

let the ith digit be C.

Clearly, this is a bijection, for any ten-digit word can be obtained from

exactly one distribution of gas stations and traffic lights this way. So the

number we are looking for is, by Proposition 3.10, the number of all ten-

digit words over a three-digit alphabet, that is, 310.

Theorem 3.13. Let n and k be positive integers satisfying n ≥ k. Then

the number of k-digit strings over an n-element alphabet in which no letter

is used more than once is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

Proof. Indeed, we have n choices for the first digit, n− 1 choices for the

second digit, and so on, just as we did in the case of factorials. The only

difference is that here we do not necessarily use all our n objects, we stop

after choosing k of them. �

The number n(n− 1) · · · (n− k + 1) is sometimes denoted (n)k.

Example 3.14. A president must choose five politicians from a pool of

20 candidates to fill five different cabinet positions. In how many different

ways can she do that?

Solution. We can directly apply Theorem 3.13. We have a 20-element

alphabet (the politicians) and we need to count the number of 5-letter words

with no repeated letters. Therefore, the answer is (20)5 = 20 ·19 ·18 ·17 ·16.
If the candidates are all equally qualified, it may take a while...

3.3 Choice Problems

At the national lottery drawings in Hungary, five numbers are selected at

random from the set [90]. To win the main prize, one must guess all five

numbers correctly. How many lottery tickets does one need in order to

secure the main prize?

This problem is an example of the last and most interesting kind of

elementary enumeration problems, the choice problems. In these problems,

we have to choose subsets of a given set. We will often require that the

subsets have a specific size. The important difference from the previous

two sections is that the order of the elements of the subset will not matter;
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for example, {1, 43, 52, 8, 3} and {52, 1, 8, 43, 3} are identical as subsets of

[90].

The number of k-element subsets of [n] is of pivotal importance in enu-

merative combinatorics. Therefore, we have a symbol and name for this

number.

Definition 3.15. The number of k-element subsets of [n] is denoted
(

n
k

)

and is read “n choose k”.

The numbers
(

n
k

)

are often called binomial coefficients, for reasons that

will become clear in Chapter 4.

Theorem 3.16. For all non-negative integers k ≤ n,
(

n

k

)

=
n!

k!(n− k)!
=

(n)k
k!

.

Proof. To select a k-element subset of [n], we first select a k-element

string in which the digits are elements of [n]. By Theorem 3.6, we can

do it in n!/(n − k)! different ways. However, in these strings the order of

the elements does matter. In fact, each k-element subset occurs k! times

among these strings as its elements can be permuted in k! different ways.

Therefore, the number of k-element subsets is 1/k! times the number of

k-element strings, and the proof follows. �

Therefore, if we want to be absolutely sure to win at the Hungarian

lottery, we have to buy
(

90
5

)

= 90·89·88·87·86
1·2·3·4·5 = 43949268 tickets. If you do

that, make sure you fill them out right...

Definition 3.17. Let S ⊆ [n]. Then the complement of S, denoted Sc is

the subset of [n] that consists precisely of the elements that are not in S.

In other words, Sc is the unique subset of [n] that for all i ∈ [n] satisfies

the following statement: i ∈ Sc if and only if i /∈ S.

The following proposition summarizes some straightforward properties

of the numbers
(

n
k

)

. We choose to announce these easy statements as a

proposition since they will be used incessantly in the coming sections.

Proposition 3.18. For all non-negative integers k ≤ n, the following hold.

(1)
(

n

k

)

=

(

n

n− k

)

.
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(2)
(

n

0

)

=

(

n

n

)

= 1.

Proof.

(1) We set up a bijection f from the set of all k-element subsets of [n] onto

that of all n− k-element subsets of n. This f will be simplicity itself:

it will map any given k-element subset S ⊆ [n] into its complement Sc.

Then for any n−k-element subset T ⊆ [n], there is exactly one S so that

f(S) = T , namely S = T c. So f is indeed a bijection, proving that the

number of k-element subsets of [n] is the same as that of n− k-element

subsets of [n], which, by definition, means that
(

n
k

)

=
(

n
n−k

)

.

(2) The first equality is a special case of the claim of part 1, with k = 0.

To see that
(

n
0

)

= 1, note that the only 0-element subset of [n] is the

empty set.
�

We note in particular that
(

0
0

)

= 1, and that sometimes it is convenient

to define
(

n
k

)

even in the case when n < k. It goes without saying that in

that case, we define
(

n
k

)

= 0 as no set has a subset that is larger than the

set itself.

Example 3.19. A medical student has to work in a hospital for five days

in January. However, he is not allowed to work two consecutive days in the

hospital. In how many different ways can he choose the five days he will

work in the hospital?

Solution. The difficulty here is to make sure that we do not choose

two consecutive days. This can be assured by the following trick. Let

a1, a2, a3, a4, a5 be the dates of the five days of January that the student

will spend in the hospital, in increasing order. Note that the requirement

that there are no two consecutive numbers among the ai, and 1 ≤ ai ≤ 31

for all i is equivalent to the requirement that 1 ≤ a1 < a2 − 1 < a3 − 2 <

a4− 3 < a5− 4 ≤ 27. In other words, there is an obvious bijection between

the set of 5-element subsets of [31] containing no two consecutive elements

and the set of 5-element subsets of [27].

Instead of choosing the numbers ai, we can choose the numbers 1 ≤
a1 < a2 − 1 < a3 − 2 < a4 − 3 < a5 − 4 ≤ 27, that is, we can simply choose

a five-element subset of [27], and we know that there are
(

27
5

)

ways to do

that.
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The trick we used here is also useful when instead of requiring that the

chosen elements are far apart, we even allow them to be identical.

Example 3.20. Now assume that we play a lottery game where five num-

bers are drawn out of [90], but the numbers drawn are put back into the

basket right after being selected. To win the jackpot, one must have played

the same multiset of numbers as the one drawn (regardless of the order in

which the numbers were drawn). How many lottery tickets do we have to

buy to make sure that we win the jackpot?

Solution. We are going to apply the same trick as in the previous example,

just backwards. We claim there is a bijection from the set of 5-element

multisets

1 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ b5 ≤ 90 (3.2)

onto the set of 5-elements subsets of [94]. Indeed, such a bijection f is

given by f(b1, b2, b3, b4, b5) = (b1, b2 +1, b3 + 2, b4 + 3, b5 + 4). It is obvious

that the numbers bi satisfy the requirements given by (3.2) if and only if

f(b1, b2, b3, b4, b5) = (b1, b2 + 1, b3 + 2, b4 + 3, b5 + 4) is a subset of [94].

Therefore, we need to buy
(

94
5

)

lottery tickets to secure a jackpot.

There is nothing magic about the numbers 90 and 5 here. In fact, the

same argument can be repeated in a general setup, to yield the following

Theorem.

Theorem 3.21. The number of k-element multisets whose elements all

belong to [n] is

(

n+ k − 1

k

)

.

The following table summarizes our enumeration theorems proved in this

chapter.
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Permutations

Lists

Subsets

parameters formula

n distinct objects n!

ai objects of type i,
∑k

i=1 ai = n
n!

a1!·a2!···ak!

n distinct objects
(n)k = n!

(n−k)!list of length k

n distinct letters

words of length k
nk

k-element subsets of [n]
(

n
k

)

k-element multisets

with elements from [n]

k-element subsets of [n]

(

n+k−1
k

)

Table 3.1. Enumeration formulae proved in this chapter.

Notes

One of the most difficult exercises of this chapter is Exercise 24. The first

one to prove the formula given in that exercise was probably P. A. MacMa-

hon [29], in 1916. The proof presented here is due to the present author

[12]. A high-level survey (using commutative algebra) of results concerning

magic squares can be found in “Combinatorics and Commutative Algebra”

[39] by Richard Stanley, while a survey intended for undergraduate and

starting graduate students is presented in Chapter 9 of “Introduction to

Enumerative Combinatorics” [7] by the present author.

Exercises

(1) How many functions are there from [n] to [n] that are not one-to-one?

(2) Prove that the number of subsets of [n] that have an odd number of

elements is 2n−1.

(3) A company has 20 employees, 12 males and eight females. How many

ways are there to form a committee of 5 employees that contains at

least one male and at least one female?

(4) A track and field championship had participants from 49 countries. The
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flag of each participating country consisted of three horizontal stripes

of different colors. However, no flag contained colors other than red,

white, blue, and green. Is it true that there were three participating

countries with identical flags?

(5) In countries that currently belong to the European Union, 17 languages

are spoken by at least ten million people. For any two of these lan-

guages, the European Commission employs an interpreter who can

translate documents from one language to the other, and vice versa.

One journalist has recently noted that when the soon-to-be admitted

countries bring the number of languages spoken by at least ten million

people in the Union to 22, more than a hundred new interpreters will

be needed. Was she right? (No interpreter works two jobs.)

(6) How many five-digit positive integers are there with middle digit 6 that

are divisible by three?

(7) How many five-digit positive integers are there that contain the digit 9

and are divisible by three?

(8) How many ways are there to list the digits {1, 2, 2, 3, 4, 5, 6} so that

identical digits are not in consecutive positions?

(9) How many ways are there to list the digits {1, 1, 2, 2, 3, 4, 5} so that the

two 1s are in consecutive positions?

(10) A cashier wants to work five days a week, but he wants to have at least

one of Saturday and Sunday off. In how many ways can he choose the

days he will work?

(11) A car dealership employs five salespeople. A salesperson receives a

100-dollar bonus for each car he or she sells. Yesterday the dealer-

ship sold seven cars. In how many different ways could this happen?

(Let us consider two scenarios different if they result in different bonus

payments.)

(12) A traveling agent has to visit four cities, each of them five times. In

how many different ways can he do this if he is not allowed to start and

finish in the same city?

(13) A college professor has been working for the same department for 30

years. He taught two courses in each semester. The department offers

15 different courses. Is it sure that there were at least two semesters

when this professor had identical teaching programs? (A year has two

semesters.)

(14) A restaurant offers five different soups, ten main courses, and six

desserts. Joe decided to order at most one soup, at most one main

course, and at most one dessert. In how many ways can he do this?
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(15) A student in physics needs to spend five days in a laboratory during her

last semester of studies. After each day in the lab, she needs to spend

at least six days in her office to analyze the data before she can return

to the lab. After the last day in the lab, she needs ten days to complete

her report that is due at the end of the last day of the semester. In

how many ways can she do this if we assume that the semester is 105

days long?

(16)(a) Three friends, having the nice names A, B, and C played a ping-

pong tournament each day of a given week. There were no ties at

the end of the tournament. Prove that there were two days when

the final ranking of the three people was the same.

(b) A fourth person, called D, joined the company of the mentioned

three. These four friends played a tennis competition each day for

five weeks. When the five weeks were over, one of them noticed that

none of their one-day tournaments resulted in a tie at the first place,

or in a tie at the last place. Is it true that there were two contests

with the same final ranking of players?

(c) Now A, B and, C are playing a round-robin chess tournament each

day starting January 1. Each player plays against each other player

once leading the white pieces, and once leading the black pieces. The

three friends agreed that they will stop when there will be two days

with completely identical results. (That is, if on the earlier day, A

beat B when leading the whites, but played a draw with him when

leading the blacks, then, on the last day the friends play, A has to

beat B when leading the whites, and has to play a draw with him

when leading the blacks, and the same coinciding results must occur

for the pair (B,C), and for the pair (A,C).)

When their left-out friend, D, heard about their plan, she said “are

you sure you want to do this? You might be playing chess for two

years!” Was she exaggerating?

(17) Let k ≥ 1, and let b1, b2, · · · , bk be positive integers with sum less than

n, where n is a positive integer. Prove that then

b1!b2! · · · bk! < n!

holds. Can you make that statement stronger?

(18) How many 6-digit positive integers are there in which the sum of the

digits is at most 51?

(19) How many ways are there to select an 11-member soccer team and a

5-member basketball team from a class of 30 students if
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(a) nobody can be on two teams

(b) any number of students can be on both teams

(c) at most one student can be on both teams?

(20) On the island of Combinatoria, all cars have license plates consisting

of six numerical digits only. A witness to a crime could only give

a partial description of the getaway car. In particular, she noticed

that the license plate was from Combinatoria, there was only one digit

that occurred more than once, and that digit occurred three times. A

police officer estimated that this information will exclude more than 90

percent of all cars as suspects. Was his estimate correct?

(21) (+) A round robin chess tournament had 2n participants from two

countries, n from each country. There were no two players with the

same number of points at the end. Prove that there was at least one

player who scored at least as many points against his compatriots as

against the players of the other country. (In chess, a player gets one

point for a win and one half of a point for a draw.)

(22) (+)

(a) At a round robin chess tournament, at least 3/4 of the games ended

by a draw. Prove that there were two players who had the same

final score.

(b) Now assume the tournament has been interrupted after t rounds,

that is, after each player has finished t games. (We assume, for

simplicity, that the number of players is even.) Is it still true that if

at least 3/4 of the games played ended by a draw, then there were

two players with the same total score?

(c) Prove that if the games of the tournament are played in a random

order (there are no rounds; one player can finish many games before

another player starts), and the tournament is interrupted at some

point. Could it happen that three 3/4 of the finished games ended

by a draw, but there were no two players with the same total score?

(d) Is there a constant K < 1 such that if we organize the tournament

as in the preceding case, and we interrupt the tournament at a point

when at least K of the finished games ended by a draw, then there

will always be two players with the same total score?

(23) In how many different ways can we place 8 identical rooks on a chess

board so that no two of them attack each other?

(24) ++ A magic square is a square matrix with non-negative integer entries

in which all row sums and column sums are equal. Let H3(r) be the
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number of magic squares of size 3 × 3 in which each row and column

have sum r. Prove that

H3(r) =

(

r + 4

4

)

+

(

r + 3

4

)

+

(

r + 2

4

)

, (3.3)

where H3(r) is the number of 3 × 3 magic squares of line sum r. We

will return to formula (3.3) in Chapter 11. The material covered in

that chapter will allow us to give a simpler proof to this result.

Supplementary Exercises

(25) (-) How many three-digit positive integers contain two (but not three)

different digits?

(26) (-) How many ways are there to list the letters of the word AL-

ABAMA?

(27) (-) How many subsets does [n] have that contain exactly one of the

elements 1 and 2?

(28) (-) How many subsets does [n] have that contain at least one of the

elements 1 and 2?

(29) (-) How many three-digit positive integers start and end with an even

digit?

(30) How many four-digit positive integers are there in which all digits are

different?

(31) How many four-digit positive integers are there that contain the digit

1?

(32) How many three-digit numbers are there in which the sum of the digits

is even? (We do not allow the first digit to be zero.)

(33)(a) In how many ways can the elements of [n] be permuted if 1 is to

precede 2 and 3 is to precede 4?

(b) In how many ways can the elements of [n] be permuted if 1 is to

precede both 2 and 3?

(34) In how many ways can the elements of [n] be permuted so that the

sum of every two consecutive elements in the permutation is odd?

(35) Let n = pa1

1 pa2

2 · · · pak

k , where the pi are distinct primes, and the ai are

positive integers. How many positive divisors does n have?

(36)(a) Let d(n) be the number of positive divisors of n. For what numbers

n will d(n) be a power of 2?
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(b) Is it true that for all positive integers n, the inequality d(n) ≤
1 + log2 n holds?

(37) A student needs to work five days in January. He does not want to

work on more than one Sunday. In how many ways can he select his

five working days? (Assume that in the year in question, January has

five Sundays.)

(38) (+) A host invites n couples to a party. She wants to ask a subset

of the 2n guests to give a speech, but she does not want to ask both

members of any couple to give speeches. In how many ways can she

proceed?

(39) We want to select as many subsets of [n] as possible so that any two

selected subsets have at least one element in common. What is the

largest number of subsets we can select?

(40) We want to select an ordered pair (A,B) of subsets of [n] so that

A ∩B 6= ∅. In how many different ways can we do this?

(41) We want to select three subsets A, B, and C of [n] so that A ⊆ C,

B ⊆ C, and A ∩B 6= ∅. In how many different ways can we do this?

(42) A two-day mathematics conference has n participants. Some of the

participants give a talk on Saturday, some others give a talk on Sunday.

Nobody gives more than one talk, and there may be some people who

do not give a talk at all. At the end of the conference, a few talks

are selected to be included in a book. In how many different ways is

this all possible if we assume that there is at least one talk selected

for inclusion in the book?

(43) A group organizing a faculty-student tennis match must match four

faculty volunteers to four of the 13 students who volunteered to be in

the match. In how many ways can they do this?

(44) Let P be a convex n-gon in which no three diagonals intersect in one

point. How many intersection points do the diagonals of P have?

(45) A student will study 26 hours in preparation for an exam. She will

due this in the course of six consecutive days. On each of these days,

she will study either four hours, or five hours, or six hours. In how

many different ways is this possible?

(46) (+) Andy and Brenda play with dice. They throw four dice at the

same time. If at least one of the four dice shows a six, then Andy

wins, if not, then Brenda. Who has a greater chance of winning?

(47) (+) A store has n different products for sale. Each of them has a

different price that is at least one dollar, at most n dollars, and is

a whole dollar. A customer only has the time to inspect k different



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

There Are A Lot Of Them. Elementary Counting Problems 55

products. After doing so, she buys the product that has the lowest

price among the k products she inspected. Prove that on average, she

will pay n+1
k+1 dollars.

(48) In how many ways can we place n non-attacking rooks on an n × n

chess board?

(49) A class is attended by n sophomores, n juniors, and n seniors. In how

many ways can these students form n groups of three people each if

each group is to contain a sophomore, a junior, and a senior?

(50) The National Football League consists of 32 teams. These teams are

first divided into two conferences, the American Conference and the

National Conference, each of which consists of sixteen teams. Then

each conference is divided into four divisions of four teams each. Each

division has a distinct name. In how many ways can this be done?

(51) Answer the question of the previous exercise if there are two teams

from New York City in the National Football League, and they cannot

be assigned to the same conference.

(52) Let P3(r) be the number of 3 × 3 magic squares that are symmetric

to their main diagonal. Prove that P3(r) ≤ (r + 1)3. (Magic squares

are defined in Exercise 24.)

(53) How many n × n square matrices are there whose entries are 0 or 1

and in which each row and column has an even sum?

Solutions to Exercises

(1) The number of all functions from [n] to [n] is nn by Theo-

rem 3.6. Indeed, such a function f is defined by the array

(f(1), f(2), f(3), · · · , f(n)), and any entry in this array can be any

element of [n]. If f is a one-to-one function, then the array

(f(1), f(2), f(3), · · · , f(n)) is a permutation of the elements 1, 2, · · · , n
as it contains each of them exactly once. So the number of one-to-one

functions from [n] to [n] is n!, by Theorem 3.2. Therefore, the number

of functions from [n] to [n] that are not one-to-one is nn − n!.

Remark: Note that we were asked to compute the number of func-

tions that were not one-to-one, and we obtained that number in an

indirect way. We first computed the number of all functions from [n]

to [n], then we computed the number of all functions from [n] to [n]

that were one-to-one, and then we subtracted the second number from
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the first.

This technique of “number of good objects is equal to that of all

objects minus that of bad objects” is very often used in combinatorial

enumeration. Several exercises in this chapter can be solved this way.

(2) As in the proof of Example 3.11, we can bijectively encode all subsets

of [n] by 0-1 sequences consisting of n digits. If we want this sequence

to contain an odd number of ones, then we can choose the first n− 1

digits any way we want. The last digit can be used to make sure that

the number of all ones is odd. That is, if there were an odd number

of ones among the first n − 1 digits, then the last digit has to be a

zero, otherwise it has to be a one. Therefore, we make a choice n− 1

times, and each time we have two possibilities. So the total number

of possibilities is 2n−1.

(3) There are
(

20
5

)

ways to choose five people out of our twenty employees.

However,
(

12
5

)

of these choices will result in male-only committees, and
(

8
5

)

will result in female-only committees. Therefore, the number of

good choices is
(

20
5

)

−
(

12
5

)

−
(

8
5

)

.

(4) There are 4 · 3 · 2 = 24 different 3-color flags that can be made from

our four colors. As 2 ·24 = 48 < 49, it follows from the general version

of the Pigeon-hole Principle that there are three identical flags among

any 49 such flags.

(5) There are
(

17
2

)

= 17·16
2 = 136 pairs that can be formed of the 17 lan-

guages currently spoken by at least ten million people in the European

Union. When the number of these languages grows to 22, the number

of pairs of languages will be
(

22
2

)

= 22·21
2 = 231, so 95 new interpreters

will be needed. Therefore, the journalist was wrong.

(6) It is well-known (see Exercise 31 of Chapter 2) that a positive integer

is divisible by three if and only if the sum of its digits is divisible

by three. Therefore, a five-digit a integer with middle digit six is

divisible by three if and only if the four-digit integer obtained by

deleting the middle digit of a is divisible by three. There are 9000 four-

digit positive integers, and the third, sixth, ninth,....9000th of them

are divisible by 3 (these are the integers 1002, 1005, 1008,...,9999).

In other words, there are 3000 four-digit positive integers divisible by

three, so there are 3000 five-digit positive integers divisible by three

and having middle digit 6.

(7) The number of all five-digit positive integers is 90000, and one third of

them, 30000, are divisible by three. Let us count how many of these

30000 numbers do not contain the digit nine. Such a number can start
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with one of eight digits (1, 2, · · · , 8), then can have any of nine digits

(0, 1, 2, · · · , 8) in the second, third, and fourth positions. For the fifth

digit, we have more limited choice. We have to pick the fifth digit so

that the sum of all five digits is divisible by three. Depending on the

first four digits, we can either choose one of 0,3,6, or one of 1,4,7, or

one of 2,5,8. Either way, this means three choices. The total number

of choices we have is 8 · 93 · 3 = 17496, so this is the number of 5-digit

positive integers that are divisible by three, but do not contain the

digit 9. Therefore, there are 30000 − 17496 = 12504 5-digit positive

integers that are divisible by three and do contain the digit 9.

(8) The number of all permutations of this multiset is given by Theorem

3.5, and is equal to 7!
2! = 2520. However, we have to subtract the

number of those permutations in which the two identical digits are

in consecutive positions. To count these, let us glue the two identical

digits together. Then we have six digits, which are all different, and

therefore Theorem 3.2 shows that they have 6! = 720 permutations.

Therefore, the number of all permutations of our multiset in which the

two identical digits are not in consecutive positions is 2520 − 720 =

1800.

(9) Just as in Exercise 8, let us glue the two 1s together. Then we simply

have to count permutations of the multiset {1, 2, 2, 3, 4, 5}. Theorem

3.5 shows that there are 6!
2! = 360 such permutations.

(10) There are
(

7
5

)

=
(

7
2

)

= 21 ways to choose five days of the week. Let us

now count the bad choices, that is, those that contain both Saturday

and Sunday. Clearly, there are
(

5
3

)

= 10 of these. Indeed, they contain

Saturday, Sunday, and three of the remaining five days. Therefore, the

number of good choices is 21− 10 = 11.

(11) As we only consider two scenarios different if they result in different

bonus payments, we are not interested in the order in which the dif-

ferent salespeople sold the seven cars. What matters is how many

cars each of them sold. Therefore, we are interested in the number of

7-element multisets whose elements are from the set [5]. By Theorem

3.21, this number is
(

5+7−1
7

)

=
(

11
7

)

=
(

11
4

)

= 330.

(12) There are 20!
5!·5!·5!·5! ways to visit four cities, each of them five times.

Let us determine the number of ways to do this so that we start in

city A, and end in city A. In that case, we are free to choose the order

in which we make the remaining 18 visits. As three of those visits will

be to city A, and five will be to each of the remaining three cities, this

can be done in 18!
5!·5!·5!·3! ways. Obviously, the same argument applies
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for the number of visiting arrangements that start and end in B, that

start and end in C, and that start and end in D. So the final answer

is

20!

5! · 5! · 5! · 5! − 4 · 18!

5! · 5! · 5! · 3! .

(13) No, that is not sure. There are
(

15
2

)

= 15·14
2 = 105 ways to pick two

courses out of 15 courses, and 30 years consist of 60 semesters only.

(14) Joe can make one of six choices on soup as he may decide not to order

soup at all. Similarly, he can make one of 11 choices on the main

course, and one of seven choices on dessert. So the total number of

possibilities is 6 · 11 · 7 = 462.

(15) Let us number the days of the semester from 1 to 105, and let us

denote the days when the student is in the lab by a1, a2, · · · , a5. Then
the conditions imply that

1 ≤ a1 < a2 − 6 < a3 − 12 < a4 − 18 < a5 − 24 ≤ 105− 24 = 81.

Denote b1 = a1, b2 = a2−6, b3 = a3−12, b4 = a4−18, and b5 = a5−24.
Clearly, knowing the numbers bi is equivalent to knowing the numbers

ai.

Note that b5 ≤ 105− 24 = 81. There is no additional requirement for

the numbers bi besides b1 < b2 < b3 < b4 < b5, there are
(

81
5

)

possible

choices for the set of these numbers. Therefore, our student can make

this many choices.

(16)(a) There are 3! = 6 ways the contest could end, and there are seven

days in a week. We know, if from nowhere else, then from the title

of Chapter 1, that Seven Is More Than Six. Therefore, the pigeon-

hole principle implies that there were two contests with identical

results.

(b) If there were no ties at all, the contest could end in 4! = 24 different

ways. If there is a tie, it could only be at the second-third place.

The two people who tie can be chosen in
(

4
2

)

= 6 ways, then the

winner can be either of the remaining two people. So there are

6 ·2 = 12 different outcomes with a tie. Therefore the total number

of possible endings for the competition is 24 + 12 = 36. There are

only 35 days in five weeks, so it is possible that there are no two

days when the contest ends the same day.

(c) Each tournament consists of six games as we have three choices

for the person leading the white pieces, and two choices leading

the black pieces. Each of these six games can have three different
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results: either white wins, or black wins, or it is a draw. So there

are 36 = 729 ways the games of a tournament can end. Therefore,

the three friends will play for at most 730 days, which is exactly

two years as neither 2001, nor 2002 is a leap-year. So D was in fact

right, she was not exaggerating.

(17) Let bk+1 be a positive integer so that n =
∑k+1

i=1 bi. Theorem 3.5 then

tells us that

T =
n!

b1!b2! · · · bk+1!

is the number of linear orderings of n objects of k + 1 various kinds,

so that bi objects are of kind i. In particular, T = n!
b1!b2!···bk+1!

is a

positive integer, (as it is the number of elements in a nonempty set),

so

n!

b1!b2! · · · bk!
= bk+1!T.

The right-hand side (and therefore, the left-hand side) is larger than

1 as long as one of T and bk+1 is larger than 1. The only way in which

T = 1 could hold would be if there were no two distinct objects at all,

but that is not possible since there is at least one object of type k+1,

and one other object. So we proved that not only b1!b2! · · · bk! < n!,

but also, b1b2 · · · bk is a proper divisor of n!.

(18) The number of all 6-digit integers is 900000 by Example 3.7. Again, we

are going to count those which do not satisfy the criteria, that is, those

with digit sum of at least 52. There are only four 6-element multisets of

digits that sum to at least 52, namely {9, 9, 9, 9, 9, 9}, {9, 9, 9, 9, 9, 8},
{9, 9, 9, 9, 9, 7}, and {9, 9, 9, 9, 8, 8}. Theorem 3.5 implies that they

have 1,6,6, and 15 multiset permutations (respectively), so altogether

there are 28 numbers out of 900000 that violate the criteria. So the

number of 6-digit positive integers that satisfy the criteria is 899972.

(19)(a) We have
(

30
11

)

choices for the soccer team. Then we have to choose

from the remaining 19 people in
(

19
5

)

ways for the basketball team.

Consequently, the final answer is
(

30
11

)

·
(

19
5

)

.

(b) If there is no restriction at all, then after choosing the soccer team,

we can choose the basketball team in
(

30
5

)

ways, from the set of all

students. So the total number of choices is
(

30
11

)

·
(

30
5

)

.

(c) All
(

30
11

)

·
(

19
5

)

team compositions (computed in the first part in this

exercise) in which no student is on two teams are certainly good.

Apart from these, there are those in which there is exactly one
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student on both teams. We have 30 choices for this person, then

there are
(

29
10

)

·
(

19
4

)

ways to choose the remaining players from the

rest of the class. Thus the total number of possibilities is
(

30

11

)

·
(

19

5

)

+ 30 ·
(

29

10

)

·
(

19

4

)

.

(20) The digit that occurred three times could be any of ten digits. The

positions of its three occurrences could be any of the
(

6
3

)

= 20 three-

element subsets of [6]. The other three digits form a 3-digit word

over the remaining 9-letter alphabet without repetition, so we have

9 · 8 · 7 = 504 choices for them. As all these choices can be made

independently from each other, the total number of our choices is

10 · 20 · 504 = 100800. This is slightly more than ten percent of all

license plates, which would be 100000, so the police officer was a little

bit too optimistic.

(21) Let A be the country whose players scored, in totality, at most as many

points in the international games as players from the other country.

Take the n players from A, and let a1, a2, · · · , an denote the number of

points they accumulated against their countrymen. Let b1, b2, · · · , bn
be the number of points they accumulated against players from coun-

try B. Now assume that our claim is false, that is, ai < bi for all i. In

other words, ai ≤ bi − 0.5 for all i. Summing these inequalities over

all i ∈ [n], we get that

n
∑

i=1

ai ≤
(

n
∑

i=1

bi

)

− n/2. (3.4)

On the other hand, note that
∑n

i=1 ai = n(n−1)/2 as any two players

from A played each other once, and in each of those games, one point

was up for grabs. Comparing this with (3.4), we get

n(n− 1)

2
+

n

2
=

n2

2
≤
(

n
∑

i=1

bi

)

. (3.5)

Similarly,

n
∑

i=1

bi ≤ n2/2 (3.6)

as players from A got at most half of all points that were available at

the international games.
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Comparing (3.5) and (3.6) we see that
∑n

i=1 bi = n2/2 must hold.

That is,
∑n

i=1 bi is exactly n/2 larger than
∑n

i=1 ai. Therefore, equal-

ity holds in (3.4), and so equality must hold in all equations of the

type ai ≤ bi − 0.5. (Recall that (3.4) was obtained by taking the

sum of these equations for all i.) Therefore, for all i, we must have

ai = bi−0.5, meaning that the total score of the ith player from coun-

try A was ai + bi = 2a + 0.5, which is never an integer. Therefore,

no player from country A has a final score that is an integer. By the

very same argument, no player from country B has a final score that

is an integer. Indeed, in totality, players from B scored n2/2 points

against players from A, so the same argument works.

This is a contradiction as we know there are no two players with the

same final score. The number of possible non-integer final scores is

less than 2n: indeed, they are 0.5, 1.5, 2.5, · · · (2n − 1) − 0.5, which

is only 2n − 1 different scores for the 2n players. So there must be

a player who did better against his compatriots than against players

from the other country.

(22)(a) Let us change the scoring system of chess as follows: a player gets

one point for a win, zero points for a draw, and −1 points for a loss.

Clearly, this does not change the facts in our problem: people who

had different scores in the original scoring system have different

scores now, and people who had identical scores in the original

scoring system have identical scores now. Indeed, if player x won

ax games, got a draw bx times, and lost cx times, then his total

score in the old system is ax + (bx/2), and his total score in the

new system is ax − cx. Assume player y got the same total score

in the old system. That means

ax +
bx
2

= ay +
bx
2
.

Multiply this equation by 2, and subtract the equation ax+bx+cx =

ay + by + cy from it. (The latter simply shows that both players

played the same number of games.) We get

ax − cx = ay − cy,

which shows that the two players had the same score in the new

system, too.

Let us assume that all n players had different final scores. Let

k = n/2 if n is even, and let k = (n − 1)/2 if n is odd. Then we

can assume without loss of generality that there are k players with
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positive final scores. As these scores are all different, their sum is

at least 1+2+ · · ·+k = k(k+1)/2. As only wins result in positive

scores, there had to be at least k(k+1)/2 wins at the tournament.

The number of all games is, on the other hand,
(

n
2

)

. Therefore, the

ratio of wins (games not ended in a draw) and all games is

k(k + 1)

(n− 1)n
>

1

4
. (3.7)

(b) Yes, the same argument will work, except that the total number of

games played will be less than
(

n
2

)

, therefore the denominator in

formula (3.7) will decrease, therefore the ratio of wins will be even

larger.

(c) The problem with the previous argument here is that if not all

players complete the same number of games, then the new scoring

system is not the same as the classical one. Indeed, the argument

of part (a) would not work here as ax+bx+cx = ay+by+cy would

not hold. The statement is no longer true. A counterexample can

then be found for n = 4 as follows. Let games A−B, A−C end by

draws, and let game B −D be won by B. Then B has 1.5 points,

A has 1, C has 0.5, and D has 0. (Note that in the 1 − 0 − (−1)
scoring system, A and C would both have 0 points.)

(d) No. Our counterexample will be a generalization of the preceding

example, and also, of Example 1.7 of Chapter 1. Say we have n

players, (n is even) A1, A2, · · · , An−1 and B. Let An−1 play with

everyone, except for A1, let An−2 play with everyone except for A1

and A2, in general, let Ai play with Aj if i+ j > n, and let Ai play

with B if i > n/2. Let all these games end by a draw. Then Ai has

i/2 points for all i, and B has n
4 − 1

2 points. The only problem now

is that B has the same number of points as one of the players Ai.

To correct that, let B play with all the Ai he did not (there are n
2

of those), and defeat them all. Then B becomes a clear winner of

the tournament, and the points of the Ai do not change, so they

stay all different. Also note that the number of games played is

quadratic in n, whereas that of wins is linear in n, proving that the

ratio of draws can be arbitrarily close to 1 if n is large enough.

(23) First Solution. We can place the first rook anywhere on the board,

that is, we have 82 = 64 choices for its position. The second rook

cannot be in the row or column of the first one, leaving 72 = 49

choices for its position. Similarly, we will have 62 = 36 choices for

the position of the third rook, and so on. Therefore, if our rooks were
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distinguishable, we would have 82 · 72 · · · 12 = 8!2 ways to place them.

However, they are indistinguishable, so it does not matter which rook

is in which position as long as the set of all rooks covers the same eight

positions. Consequently, we have counted every placement n! times,

and the number of all placements is 8!2/8! = 8! = 40320.

Second solution. Each f : [8] → [8] can be bijectively associated

to a non-attacking rook placement as follows. For all i ∈ [8], put a

rook into the square (i, f(i)). This ensures that there will be exactly

one rook in each row and column. It is also easy to see that this is a

bijection, that is, all rook placements define one one-to-one function

from [8] onto itself. So the number of rook placements is n! by Exercise

1.

(24) Take any magic square of line sum r and side length 3. It is clear

that the four elements shown in the figure determine all the rest of

the square.

a

b

c

d

Indeed, the next table shows our only possible choice for each remain-

ing entry. Thus all we need to do is to compute the number of ways

we can choose a, b, c and d so that we indeed have that one choice, i.e.,
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the obtained entries of the magic square are all non-negative.

a

b

c

d r − a− d

a+ d− c

r − b− db+ d− c

r + c−

(a+ d+ b)

The previous table shows that the entries of our matrix will be non-

negative if and only if the following inequalities hold:

a+ d ≤ r (3.8)

b+ d ≤ r (3.9)

c ≤ a+ d (3.10)

c ≤ b+ d (3.11)

a+ d+ b− c ≤ r. (3.12)

We will consider three different cases, according to the position of the

smallest element on the main diagonal. In each of them, at least three

of the five conditions above will become redundant, and we will only

need to deal with the remaining one or two.

(a) Suppose 0 ≤ a ≤ b and 0 ≤ a ≤ c. In this case conditions (3.8),

(3.11), and (3.12) are clearly redundant, because they are implied

by (3.9) and (3.10).

The crucial observation is that in all the three cases we can collect

all our conditions into one single chain of inequalities. In this case

we do it as follows:

a ≤ 2a+ d− c ≤ a+ b+ d− c ≤ b+ d ≤ r. (3.13)
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Indeed, the first inequality is equivalent to (3.10), the second one

is equivalent to our assumption a ≤ b, the third one is equivalent

to our assumption a ≤ c, and the last one is equivalent to (3.9).

Moreover, note that once we know the terms of this chain, that is,

a, 2a+d− c, a+ b+d− c and b+d, then we know a, b, c and d, too,

thus we have determined the magic square. Thus all we need to

do is simply count how many ways there are to choose these four

terms. Inequality (3.13) shows that these terms are nondecreasing,

therefore the number of ways to choose them is simply the number

of 4-combinations of r+1 elements with repetitions allowed, which

is
(

r+4
4

)

. (Recall that 0 is allowed to be an entry.)

(b) Now suppose a > b and c ≥ b. Then (3.9), (3.11) and (3.12) are

redundant. Consider the chain of inequalities

b ≤ 2b+ d− c ≤ a+ b+ d− c− 1 ≤ a+ d− 1 ≤ r − 1. (3.14)

We can use the argument of the previous case to prove that (3.14)

equivalent to (3.8), (3.12) and our assumptions, as the roles of a

and b are completely symmetric. The only change is that here we

do not count those magic squares in which a = b, and this explains

the (−1) in the last three terms. Thus here we have to choose four

elements in non-decreasing order out of the set {0, 1, · · · , r − 1},
which can be done in

(

r+3
4

)

ways.

(c) Finally, suppose that a > c and b > c. Then (3.8), (3.9), (3.10)

and (3.11) are redundant. Condition (3.12) and our assumptions

can be collected into the following chain:

c ≤ b − 1 ≤ b+ d− 1 ≤ a+ b+ d− c− 2 ≤ r − 2 (3.15)

Here the first inequality is equivalent to our assumption c < b, the

second one says that d is non-negative, the third one is equivalent

to our assumption c < a, and the last one is equivalent to (3.12).

The four terms of (3.15) determine a, b, c and d, and they can be

chosen in
(

r+2
4

)

ways, which completes the proof.

Thus the number of 3 × 3 magic squares of line sum r is indeed
(

r+4
4

)

+
(

r+3
4

)

+
(

r+2
4

)

. Furthermore, the three terms in this sum count

the magic squares in which the (first) minimal element of the main

diagonal is the first, second, or third element.
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No Matter How You Slice It. The

Binomial Theorem and Related

Identities

In the last chapter, we started developing enumerative techniques by finding

formulae that covered six basic situations. We will continue in that direction

in Chapter 5. Now, however, we take a break and discuss the binomial

and the multinomial theorems, as well as several important identities on

binomial coefficients. The proofs of these identities are probably even more

significant than the identities themselves. They will consist of showing that

both sides of a given equation count the same kind of objects; they just do

it in two different ways. Therefore, the two expressions must be equal to

each other. This type of argument is the dream of most combinatorialists

when they prove identities.

4.1 The Binomial Theorem

Theorem 4.1. (Binomial theorem) For all non-negative integers n,

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k. (4.1)

Proof. Consider the product of n sums, (x+ y)(x+ y) · · · (x+ y). When

computing this product, we take one summand from each parentheses, mul-

tiply them together, then repeat this in all of 2n possible ways and sum the

results. We get a product equal to xkyn−k each time we take k summands

equal to x. There are
(

n
k

)

k-element subsets of the set of all n parentheses,

so we will get such a term
(

n
k

)

times, and the proof follows. �

The binomial theorem has a vast array of applications, starting as early

as elementary calculus. In this section we will see some of its immediate

applications to prove identities on binomial coefficients.

67
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Theorem 4.2. For all positive integers n, the alternating sum of binomial

coefficients
(

n
k

)

is zero. In other words,

n
∑

k=0

(−1)k ·
(

n

k

)

= 0.

Proof. Applying the binomial theorem with x = −1 and y = 1 we im-

mediately get our claim. �

Theorem 4.3. For all non-negative integers n and k,
(

n

k

)

+

(

n

k + 1

)

=

(

n+ 1

k + 1

)

. (4.2)

Proof. The right-hand side is, by definition, the number of k+1-element

subsets of [n + 1]. Such a subset S either contains n + 1, or it does not.

If it does, then the rest of S is a k-element subset of [n], and these are

enumerated by the first member of the left-hand side. If it does not, then

S is a k+ 1-element subset of [n], and these are enumerated by the second

member of the left-hand side. �

Theorem 4.4. For all non-negative integers n,

2n =

n
∑

k=0

(

n

k

)

.

Proof. Both sides count the number of all subsets of an n-element set.

The left-hand side counts directly, while the right-hand side counts the

number of k-element subsets, then sums over k. �

We can get an even shorter proof applying our fresh knowledge.

Proof. (of Theorem 4.4) Apply the binomial theorem with x = y = 1.�

The first proof is an example of a classic way of proving combinatorial

identities: by proving that both sides of the identity to be proved count the

same objects. If we count the same objects in two different ways, we should

get the same result, so this is a valid reasoning. Such proofs are ubiquitous

and well-liked in enumerative combinatorics. This section will contain a

handful of them, and many additional examples are listed as exercises.

Now let us write down all binomial coefficients in a triangle as shown in

Figure 4.1. That is, the ith element of row n is
(

n
i

)

, and the diagram starts

with row 0.
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61520156

510105

464

1

1

1

1

1

1

1331

121

11

1

Fig. 4.1 The first few rows of the Pascal triangle.

This diagram is called a Pascal triangle and has many beautiful prop-

erties. For example, Theorem 4.4 shows that the sum of the nth row is

2n, when we call the one-element row at the top the zeroth row. Theorem

4.3 shows that each entry of the triangle is the sum of the entries above it.

And Theorem 4.2 shows that the alternating sum of the rows is always 0.

Let us prove one more interesting property of the Pascal triangle.

Theorem 4.5. For all non-negative integers k and n,
(

k

k

)

+

(

k + 1

k

)

+

(

k + 2

k

)

+ · · ·+
(

n

k

)

=

(

n+ 1

k + 1

)

. (4.3)

Proof. The right-hand side clearly counts all k + 1-element subsets of

[n+1]. The left-hand side counts the same, separated into cases according

to the largest entry. That is, there are
(

k
k

)

subsets of [n+1] that have k+1

elements whose largest element is k + 1; there are
(

k+1
k

)

subsets of [n+ 1]

that have k + 1 elements whose largest element is k + 2, and so on. In

general, there are
(

k+i
k

)

subsets of [n + 1] that have k + 1 elements whose

largest element is k+ i+ 1, for all i ≤ n− k. Indeed, if the largest element

of such a subset is k + i + 1, then its remaining k elements must form a

subset of [k + i]. �

This means that if we start with the rightmost element of the kth row

of the Pascal triangle, and descend diagonally to the southwest for a while,

then the sum of all numbers we touch in this procedure is also an entry of

the Pascal triangle. The reader should find out where that entry is located.
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Finally, let us prove some identities about binomial coefficients that do

not directly follow from the binomial theorem, but nevertheless are a lot of

fun.

Theorem 4.6. For all non-negative integers n,

n
∑

k=1

k

(

n

k

)

= n2n−1. (4.4)

Before proving the theorem, note that it is not even obvious why
∑n

k=1 k
(

n
k

)

2n−1

should be an integer. Our proof will show that it is not only an integer, it

is equal to n. This hopefully convinces the reader that binomial coefficient

identities are beautiful.

Proof. (of Theorem 4.6) Both sides count the number of ways to choose a

committee among n people, then to choose a president from the committee.

On the left-hand side, we first choose a k-member committee in
(

n
k

)

ways,

then we choose its president in k ways. On the right-hand side, we first

choose the president in n ways, then we choose a subset of the remaining

n−1-member set of people for the role of non-president committee members

in 2n−1 ways. �

We provide another proof that uses the binomial theorem. It also gives

us an early hint that sometimes very finite-looking problems, such as choice

problems, can be solved by using methods from infinite calculus, such as

functions and their derivatives.

Proof. (of Theorem 4.6) Apply the binomial theorem with y = 1 to get

the identity

(x+ 1)n =

n
∑

k=0

(

n

k

)

xk. (4.5)

Both sides are differentiable functions of the variable x. So we can take

their derivatives with respect to x, and they must be equal. This yields

n(x+ 1)n−1 =

n
∑

k=1

k ·
(

n

k

)

xk−1.

Now substitute x = 1 to get (4.4). �
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These direct combinatorial arguments are so enjoyable that we cannot

refrain from discussing one more of them.

Theorem 4.7. For all positive integers n, m, and k,
(

n+m

k

)

=

k
∑

i=0

(

n

i

)(

m

k − i

)

.

Proof. The left-hand side counts all k-element subsets of [n +m]. The

right-hand side counts the same, according to the number of elements cho-

sen from [n]. Indeed, we can first choose i elements from [n] in
(

n
i

)

ways,

then choose the remaining k−i elements from the set {n+1, n+2, · · · , n+m}
in
(

m
k−i

)

ways. �

Considering any one row of the Pascal triangle, we note that the bi-

nomial coefficients
(

n
0

)

,
(

n
1

)

, · · · seem to increase as k increases, up to the

middle of the row, after which they seem to decrease. As the following

theorem shows, this is indeed true for all n.

Theorem 4.8. For all non-negative integers k and n, such that k ≤ n−1
2 ,

the inequality
(

n

k

)

≤
(

n

k + 1

)

(4.6)

holds. Furthermore, equality holds if and only if n = 2k + 1.

Proof. We provide a computational proof here. We need to show that if

the conditions hold, then

n!

k! · (n− k)!
≤ n!

(k + 1)! · (n− k − 1)!
.

Let us divide both sides by n!, then multiply both sides by k! · (n− k− 1)!

to get

1

n− k
≤ 1

k + 1
.

Taking reciprocals and rearranging, we get 2k + 1 ≤ n, which is equivalent

to the condition k ≤ n−1
2 , so the theorem is proved. �

Corollary 4.9. For all positive integers k and n, such that k ≥ n−1
2 , the

inequality
(

n

k

)

≥
(

n

k + 1

)

(4.7)

holds. Furthermore, equality holds if and only if n = 2k + 1.
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Proof. This is immediate from Theorem 4.8, and the fact that
(

n
k

)

=
(

n
n−k

)

. �

A sequence of numbers with this property, that is, that it first increases

steadily, then it decreases steadily, is called unimodal. It can often be quite

difficult to prove that a given sequence is unimodal. A more elegant, but

less straightforward, non-computational proof of Theorem 4.8 is given in

Exercise 19. A stronger statement is proved in Exercise 20.

4.2 The Multinomial Theorem

What if we want to compute the powers of (x + y + z), or (u + x+ y + z)

instead of just (x+ y)? The same line of thinking will help, only the result

will be a little more complicated to describe.

Example 4.10. We have

(x+y+z)3 = x3+y3+z3+3x2y+3x2z+3y2x+3y2z+3z2x+3z2y+6xyz.

(4.8)

Solution. We want to compute the product (x+y+z)·(x+y+z)·(x+y+z).

To do this, we have to pick one member of each of the three sums, take

their product, do this in all 33 = 27 possible ways, then add the obtained

27 products.

All the 27 products we obtain will be terms of degree 3. The only ques-

tion is what the coefficient of these terms will be. Why is it, for example,

that the right-hand side of (4.8) contains 3x2y and 6xyz?

Let us first examine how can one of our products be equal to x2y. This

happens when two of our three picks is an x, and the third one is a y. There

are three ways this can happen as we can pick the single y from any of our

three parentheses, then we must pick the two x terms from the remaining

three variables. Therefore, the coefficient of 3x2y in (x + y + z)3 is indeed

three. Clearly, identical argument applies for all terms of degree three that

contain one variable on the second power.

There is only one way for one of our 27 products to be equal to x3.

Indeed, that happens if and only if we choose an x from each of our three

parentheses. Therefore, the coefficient of x3 in (x+ y+ z)3 is one, and the

same is true for y3 and z3.

Finally, what about the term xyz? To get such a term, we have to

choose an x from one of our three parentheses, which can be done in three
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ways. Then, we have to choose a y from the remaining two parentheses,

which can be done in two ways. At the end, we must pick z from the

last parentheses. Therefore, there are six ways we can obtain an xyz-term,

completing the proof.

Just as in Theorem 3.21, we need a higher level of abstraction before

we can state a general theorem along the lines of Example 4.10. First of

all, we want a theorem that works for any number of variables, not just

three. Therefore, instead of calling our variables x, y, z, we will call them

x1, x2, · · · , xk. The following definition generalizes the notion of binomial

coefficients.

Definition 4.11. Let n =
∑k

i=1 ai, where n and a1, a2, · · · , ak are non-

negative integers. We define
(

n

a1, a2, · · · , ak

)

=
n!

a1! · a2! · · · ak!
. (4.9)

The numbers
(

n
a1,a2,··· ,ak

)

are called multinomial coefficients.

The reader should verify that if k = 2, then this definition reduces to

that of binomial coefficients.

Now we are in a position to state and prove the general theorem we

have been looking for.

Theorem 4.12. [Multinomial theorem] For all non-negative integers n and

k, the equality

(x1 + x2 + · · ·+ xk)
n =

∑

a1,a2,··· ,ak

(

n

a1, a2, · · · , ak

)

xa1

1 xa2

2 · · ·xak

k (4.10)

holds. Here the sum is taken over all k-tuples of non-negative integers

a1, a2, · · · , ak such that n =
∑k

i=1 ai.

Proof. We have to show that the term xa1

1 xa2

2 · · ·xak

k can be obtained

in exactly
(

n
a1,a2,··· ,ak

)

ways as a product of k variables, one from each

parentheses of (x1 + x2 + · · ·+ xk) · · · (x1 + x2 + · · ·+ xk). To obtain such

a term, we have to choose xi from exactly i parentheses, for all i ∈ [k].

Now let us take ai copies of xi, for all i ∈ [k], and order these n letters

linearly. Theorem 3.5 shows that this can be done in exactly
(

n
a1,a2,··· ,ak

)

ways. On the other hand, each linear ordering p defines a natural way of

choosing variables from the parentheses. Indeed, if the jth letter of p is

xi, then from the jth parentheses, we choose xi. This way our
(

n
a1,a2,··· ,ak

)
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linear orderings will produce exactly
(

n
a1,a2,··· ,ak

)

terms that are equal to

xa1

1 xa2

2 · · ·xak

k .

It is clear that this procedure establishes a bijection from the set of linear

orderings of n letters, ai of which is equal to xi for all i ∈ [k] onto that of

terms of (x1+x2+· · ·+xk)
n that are equal to xa1

1 xa2

2 · · ·xak

k . Therefore, the

coefficient of xa1

1 xa2

2 · · ·xak

k in (x1 +x2+ · · ·+xk)
n is precisely

(

n
a1,a2,··· ,ak

)

,

and the proof follows. �

There is a close connection between multinomial and binomial coeffi-

cients as explained by the following theorem.

Theorem 4.13. For all non-negative integers n and a1, a2, · · · , ak such

that n =
∑k

i=1 ai, the equality
(

n

a1, a2, · · · , ak

)

=

(

n

a1

)

· · ·
(

n− a1 − · · · − ai
ai+1

)

· · ·
(

n− a1 − · · · − ak−1

ak

)

(4.11)

holds.

Note that n− a1− a2− · · · − ak−1 = ak, so the last binomial coefficient

on the right-hand side of (4.11) is equal to
(

ak

ak

)

= 1.

Proof. The left-hand side counts all linear orderings of a multiset that

consists of ai copies of the symbol xi, for all i ∈ [k]. We show that the

right-hand side counts the same objects. Indeed, let us first choose the a1
positions we place all our symbols x1. This can be done in

(

n
a1

)

ways. Let us

now choose the a2 positions where we place our symbols x2. As a1 positions

are already taken, this can be done in
(

n−a1

a2

)

ways. Then we can choose the

a3 positions where we place our symbols x3. As a1+a2 positions are already

taken, this can be done in
(

n−a1−a2

a3

)

ways. Iterating this procedure, we will

choose the positions of all symbols, and we see that the total number of

possible outcomes is indeed the right-hand side of (4.11). �

4.3 When the Exponent Is Not a Positive Integer

What can we say about (1+x)m when m is not a positive integer? That is,

how can we expand an expression like (1 + x)−2/3? In order to find a nice,

compact answer to this question, first we define the binomial coefficient
(

m
k

)

for all real numbers m.

Definition 4.14. Let m be any real number, and let k be a non-negative
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integer. Then
(

m
0

)

= 1, and
(

m

k

)

=
m(m− 1) · · · (m− k + 1)

k!
,

if k > 0.

This definition expands the definition of binomial coefficients for positive

integers. Let us consider the Taylor series of (1 + x)m around x = 0. Note

that the nth derivative of (1 + x)m is (m)n(1 + x)m−n, and this expression

takes the value (m)n = m!
(m−n)! when x = 0. Therefore, using Taylor’s

theorem, we get the following identity.

Theorem 4.15. Let m be any real number. Then

(1 + x)m =
∑

n≥0

(

m

n

)

xn,

where the sum is taken over all non-negative integers n.

Thus (1 + x)m is an infinite power series if m is not a positive integer.

Note that if m is a positive integer, then
(

m
n

)

= 0 if n > m, and therefore

we only get a sum of m+ 1 elements for (1 + x)m.

Example 4.16. Find the power series expansion of
√
1− 4x.

Solution. By Theorem 4.15,

√
1− 4x = (1− 4x)1/2 =

∑

n≥0

(

1/2

n

)

(−4x)n. (4.12)

To simplify this expression, we have to find a simpler form for
(

1/2
n

)

. Note

that
(

1/2
0

)

= 1, while
(

1/2
1

)

= 1/2, and if n ≥ 2, then
(

1/2

n

)

=
1
2 · −1

2 · −3
2 · · · −2n+3

2

n!
= (−1)n−1 (2n− 3)!!

2n · n! ,

where (2n− 3)!! stands for the product of all odd integers from 1 to 2n− 3,

and is called 2n− 3 semifactorial.

Substituting this to formula (4.12), we get

√
1− 4x = 1− 2x−

∑

n≥2

2n · (2n− 3)!!

n!
xn.

For n ≥ 2, let us multiply both the numerator and the denominator of
2n·(2n−3)!!

n! by (n−1)!, and note that in the numerator, 2n−1(n−1)! is equal
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to the product of all even integers from 2 to 2n − 2. Therefore, if n ≥ 2,

then

2n · (2n− 3)!!

n!
= 2

(2n− 2)!

n!(n− 1)!
,

and so

√
1− 4x = 1− 2x− 2

∑

n≥2

(

2n−2
n−1

)

n
xn.

Notes

Exercises 19 and 20 concern two interesting areas of Combinatorics. One of

them is unimodality and log-concavity, and the other is the combinatorics

of lattice paths. Interested readers can consult Chapter 8 of [7] for an

introductory text on the topic. Another good starting point is [36], where

lattice paths are used to prove unimodality results in a very accessible way.

After that, we recommend [13] for unimodality and log-concavity results,

and [25] for lattice path enumeration.

Exercises

(1)(a) Is it possible to write a real number into each square of a 5×5 grid

so that the sum of the numbers in the entire grid is negative, but the

sum of the numbers in any 2 × 2 square (formed by 4 neighboring

boxes) is positive?

(b) What about a 6× 6 grid?

(2) (+)

(a) We plant 13 trees at various points in the interior of a garden

whose shape is a convex octogon. Then we create some non-

intersecting paths joining some of these trees and the eight corners

of the garden so that these paths partition the garden into trian-

gles. How many triangles will be created?

(b) What if we also add five trees to the boundary of the garden?

(These five trees are not in corners.)

(3) Prove that for all integers n ≥ 2,

2n−2 · n · (n− 1) =

n
∑

k=2

k(k − 1)

(

n

k

)

.
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How can we generalize this identity?

(4) Let k,m, n be non-negative integers such that k+m ≤ n. Prove that

(

n

m

)

·
(

n−m

k

)

=

(

n

k

)(

n− k

m

)

.

(5) Prove that for integers 0 ≤ k ≤ n− 1,

k
∑

j=0

(

n

j

)

=

k
∑

j=0

(

n− 1− j

k − j

)

2j.

(6) A heap consists of n stones. We split the heap into two smaller heaps,

neither of which are empty. Denote p1 the product of the number of

stones in each of these two heaps. Now take any of the two small heaps,

and do likewise. Let p2 be the product of the number of stones in each

of the two smaller heaps just obtained. Continue this procedure until

each heap consists of one stone only. This will clearly take n−1 steps,

where a step is the splitting of one heap. For what sequence of splits

will the sum p1 + p2 + · · · + pn−1 be maximal? When is that sum

minimal?

(7) Prove that any positive integer n has at least as many divisors of the

form 4k + 1 as divisors of the form 4k − 1.

(8) Prove that for all positive integers n, the inequality
(

2n
n

)

< 4n holds.

(9) How many subsets of [n] are larger than their complements?

(10) Which term of (x1 + x2 + · · ·+ xk)
k has the largest coefficient? What

is that coefficient?

(11) Let n < k. What is the largest coefficient in (x1 + x2 + · · ·+ xk)
n?

(12) Let n = rk, where r > 1 is an integer. What is the largest coefficient

in (x1 + x2 + · · ·+ xk)
n?

(13) Let k be a non-negative integer, let m be a positive integer so that

k < 2m, and let n = 2m − 1. Prove that
(

n
k

)

is odd.

(14) Let k and m be positive integers so that k < 2m, and let n = 2m.

Prove that
(

n
k

)

is even.

(15) Let p ≥ 3 be a prime number, and let m and k < pm be positive

integers. Show that
(

pm

k

)

is divisible by p.

(16) Let p be a prime number, and let x > 1 be any positive integer.

Consider a wheel with p spokes shown in Figure 4.2.

(a) We have paints of x different colors. How many ways are there to

color the spokes if we want to use at least two colors?
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Fig. 4.2 A wheel with five spokes.

(b) How many ways are there to do the same if we do not consider

two paint jobs different if one can be obtained from the other by

rotation?

(c) What theorem of number theory does this prove?

(17) Prove that
∑

a1+a2+a3=n

(

n

a1, a2, a3

)

= 3n.

(18) Prove that
∑

a1+a2+a3=n

(

n

a1, a2, a3

)

(−1)a2 = 1.

(19) (+) A walk on the grid of points with integer coordinates that uses

the steps (0, 1) and (1, 0) only is called a northeastern lattice path.

Let k and n be positive integers so that k < n/2. Define an injection

from the set of northeastern lattice paths from (0, 0) to (k, n− k) into

the set of northeastern lattice paths from (0, 0) to (k + 1, n− k − 1).

(Recall that the function f is called an injection if f(x) = f(y) implies

x = y; in other words, different elements have different images.) Why

does this prove that the sequence
(

n
0

)

,
(

n
1

)

, · · · ,
(

n
n

)

is unimodal?

(20) Prove that if k and n are positive integers, and k ≤ n − 1, then we

have
(

n

k − 1

)(

n

k + 1

)

≤
(

n

k

)(

n

k

)

. (4.13)

We note that the sequence a0, a1, a2, · · · , an of positive real num-

bers is called log-concave if for 1 ≤ i ≤ n − 1, the inequality

ai−1ai+1 ≤ a2i holds. So the exercise asks us to prove that the se-

quence
(

n
0

)

,
(

n
1

)

, · · · ,
(

n
n

)

is log-concave.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

No Matter How You Slice It. The Binomial Theorem and Related Identities 79

(21) (+) Give a non-computational proof of the previous exercise, using

northeastern lattice paths.

(22) Prove that if the sequence a0, a1, a2, · · · , an of positive real numbers

is log-concave, then it is unimodal.

(23) (+) Let Cn be the number of northeastern lattice paths from (0, 0)

to (n, n) that never go above the diagonal x = y. Prove that Cn =
(

2n
n

)

−
(

2n
n−1

)

=
(

2n
n

)

/(n+ 1).

(24) (+) Let a ≥ b be two positive integers. Prove that the number of

northeastern lattice paths from (0, 0) to (a, b) that never go above the

main diagonal is
(

a+b
b

)

−
(

a+b
b−1

)

.

(25) Find a closed form for
∑∞

n=1 nx
n−1.

(26) Prove that 1√
1−4x

=
∑

n≥0

(

2n
n

)

xn.

(27) Find the power series form of f(x) =
√

1+x
1−x .

Supplementary Exercises

(28) (-) Prove that for all positive integers n > 1, the inequality 2n <
(

2n
n

)

holds.

(29) (-) Prove that for all positive integers n, the number
(

2n
n

)

is even.

(30) (-) Prove that for all positive integers n > k, the inequality kn <
(

kn
n

)

holds.

(31) (-) The sum of each row of a 10× 6 matrix (that means ten rows, six

columns) is 36. If each column of the matrix has the same sum r,

what is that sum?

(32) (-) How many northeastern lattice paths are there from (0, 0) to (n, k)?

(33) Prove, by a combinatorial argument, that for all positive integers n,

the number
(

3n
n,n,n

)

is divisible by six.

(34) A computer programmer claims that he generated six real numbers

a1, a2, · · · , a6 so that the sum of any four consecutive ai is positive,

but the sum of any three consecutive ai is negative. Prove that his

claim is false.

(35) A school has 105 students, and seven classes. If each student takes

three classes, and each class is taken by the same number of students,

how many students are taking each class?

(36) How many northeastern lattice paths are there from (0, 0) to (10, 10)

that do not touch the point (5, 5), but do touch the point (3, 3)?

(37) (+) What is the number of northeastern lattice paths from (0, 0) to
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(n, n) that never touch the main diagonal other than in the starting

and ending point?

(38) Prove that for all positive integers n,
(

2n

n

)

=

n
∑

k=0

(

n

k

)2

.

(39) Prove that for all positive integers n,

n

(

2n− 1

n− 1

)

=

n
∑

k=1

k

(

n

k

)2

.

(40) Prove that for all positive integers n,

3n =

n
∑

k=0

2k
(

n

k

)

.

(41) Prove that for all positive integers k ≤ n, the equality

k
∑

i=0

(

n

i

)

(−1)i =
(

n− 1

k

)

(−1)k

holds.

(42) Take the integral of both sides of the equation

(1 + x)n =

n
∑

k=0

(

n

k

)

xk.

Explain what constant C you will need to take on the right-hand side

to keep the equation valid.

(43) Prove that for all positive integers n > 1,

n
∑

k=0

1

k + 1

(

n

k

)

(−1)k+1 =
−1

n+ 1
.

(44) Find a closed formula for the expression

n
∑

k=0

1

k + 1

(

n

k

)

tk+1,

where t is any fixed real number.

(45) Prove that for all positive integers n, the equality

n
∑

k=0

k even

(

n

k

)

2k =
3n + (−1)n

2

holds.
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(46) Prove that for all positive integers n, the equality

n
∑

k=1

k odd

(

n

k

)

5k =
6n − (−4)n

2

holds.

(47) (+) Let n = 4k, with k being a non-negative integer. Prove that

2k
∑

i=0

(

n

2i

)

(−1)i =
(

n

0

)

−
(

n

2

)

+

(

n

4

)

− · · · = 22k(−1)k.

(48) (++)

(a) Let n = 3k. Prove that

lim
n→∞

∑k
i=0

(

n
3i

)

2n
=

1

3
.

In other words, the sum of every third element of the nth row of

the Pascal triangle is roughly one third of the sum of all elements

of that row.

(b) Generalize the result of part (a).

(49) What is the coefficient of xn in the power series form of 3
√
1− 2x?

(50) If we expand the expression

(x1 + x2 + x3 + x4)
6,

what will be the largest coefficient that occurs?

(51) Consider the expression

(x1 + x2 + · · ·+ xk)
n.

(a) Let us assume that when we expand this power, there will be an

integer that occurs as a coefficient only once. What relation does

that imply between k and n?

(b) Can it happen that there will be more than one coefficient that

occurs only once in the expansion?

(52) (+) What digit is immediately on the right of the decimal point in

(
√
3 +
√
2)2002?

(53) (+) What digits are immediately on the left and right of the decimal

point in (
√
11 +

√
10)2002?

(54) We want to select as many subsets of [n] as possible, without selecting

two subsets so that neither one of them contains the other.

(a) Prove that we can always select at least 2n/n subsets.
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(b) Can we improve the result of part (a)?

(55) (+) A company specializing in international trade has 70 employees.

For any two employees A and B, there is a language that A speaks

but B does not, and also a language that B speaks but A does not.

At least how many different languages are spoken by the employees of

this company?

(56) Find the number of pairs of non-intersecting northeastern lattice paths

(p, q) so that p goes from (0, 0) to (k, n− k) and q goes from (−1, 1)
to (k − 1, n− k + 1).

(57) We have written 2n+ 1 numbers around a circle. Among these num-

bers, n are equal to 1, and n + 1 are equal to −1. Prove that there

is exactly one among these 2n+ 1 numbers with the following prop-

erty. If we call this number a1, and we call the numbers following it

in clockwise order a2, a3, · · · , a2n+1, then for all k ∈ [2n], the sums
∑k

i=1 ai are non-negative.

(58) Explain the connection between the previous exercise and Exercise 23.

(59) Let p > 2 be a prime number. For what values of n will each binomial

coefficient
(

n
k

)

, with 0 < k < n, be divisible by p?

(60) Exercise 20 showed that for any fixed n, the sequence
(

n
0

)

,
(

n
1

)

, · · · ,
(

n
k

)

was log-concave. Now let us prove that for any fixed k, the infinite

sequence
(

k
k

)

,
(

k+1
k

)

,
(

k+2
k

)

, · · · is log-concave. That is, show that for

any positive integers n ≥ k, the inequality
(

n

k

)(

n+ 2

k

)

≤
(

n+ 1

k

)2

holds. Try to give a combinatorial proof, similar to the proof of Ex-

ercise 20.

Solutions to Exercises

(1)(a) Yes, one example is shown in Figure 4.3.

(b) For 6× 6 grids, however, the answer is no. Indeed, if B is a 6 × 6

grid, then B can be partitioned into nine squares of size 2×2 each,

in an obvious way. Then the sum of the elements of B must equal

that of the sum of elements of these 2× 2 squares.

(2)(a) Let us determine the angles of all the k triangles to be created.

These angles will be either at one of the vertices of the octogon, and
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−1 −1 −1

−1−14                  4−1

−1     −1      −1      −1     −1

−1     −1      −1      −1     −1

−1     −1      −1      −1     −1

4                  4

Fig. 4.3 All 2× 2 squares have a negative sum.

then their sum is equal to the sum of the vertices of the octogon,

which is 6 · 180 = 1080 degrees, or they are around one of the

thirteen trees, and then they clearly sum to 13 ·360 = 4680 degrees.

Thus the total sum of the angles of the k triangles is 1080+4680 =

5760 degrees.

On the other hand, the sum of the degrees of k triangles is 180 · k
degrees, so we have 5760 = 180k, and therefore, k = 32.

(b) The five trees on the boundary simply add 5 · 180 degrees to the

sum of all angles, so the number of triangles also increases by five,

to 37.

(3) Same as the proof of Theorem 4.6, except that now we are choosing

a president and vice-president (if we follow the first proof), or we

differentiate (4.5) twice (if we follow the second).

To generalize, for any positive integer m ≤ n, we can differentiate

(4.5) m times, or we can choose m committee members for m different

offices, to get

2n−m(n)m =
n
∑

k=m

(k)m

(

n

k

)

.

(4) Both sides count the number of ways to choose an m-member soccer

team and a k-member basketball team from a group of n people, so

that nobody is on two teams. The left-hand side is the result of

computing this number by choosing the soccer team first, while the

right-hand side is the result of computing this number by choosing the

basketball team first.

(5) The left-hand side is the number of 0-1 sequences of length n with at

most k ones. The right-hand side is more complicated. Note that if

we want to check if a 0-1 sequence S of length n has at most k ones,
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and to that end, we test the first, second, third, etc. digits of S in this

order, then as soon as we find n− k zeros in S, we can be sure that S

has at most k ones. If, on the other hand we do not find n− k zeros

in S, then S has more than k ones.

Knowing this, let us count 0-1 sequences with at most k ones according

to the position of their (n − k)th zeros. The above paragraph shows

that such a zero always exists. Let us say that this zero occurs in the

(n − j)th position. Then 0 ≤ j ≤ k for trivial reasons. There have

to be n − k − 1 zeros on the left of this position- that can happen in
(

n−j−1
n−k−1

)

=
(

n−1−j
k−j

)

ways, and there can be any number of zeros on

the right of this position, which can be done in 2j ways. Summing for

j we obtain our claim.

(6) This sum is always the same, namely, it is
(

n
2

)

if n > 1. We prove

this by strong induction on n. The initial case is trivial. Assume we

know the statement for all positive integers less than n, and prove it

for n. Let us split our heap of n stones into two small heaps, one of

size k, and one of size n − k. Then p1 = k(n − k). Then, by our

induction hypothesis, the contribution of the first heap to the sum

p1 + p2 + · · ·+ pn−1 is
(

k
2

)

, and that of the second heap is
(

n−k
2

)

. As

k(n− k) +

(

k

2

)

+

(

n− k

2

)

=

(

n

2

)

,

our claim is proved.

(7) Consider all odd prime divisors of a positive integer n. They are

either of the form 4k + 1, or of the form 4k − 1. Denote them by

a1, a2, · · · , am, and b1, b2, · · · bp, respectively. Let

n = 2t · ax1

1 · · ·axm
m · by1

1 · · · byp
p .

An odd divisor of n will be of the form 4k−1 if and only if it contains

an odd number of prime factors of the form 4k − 1, multiplicities

counted.

Now we construct an injection from the set of divisors of n of the form

4k − 1 into the set of divisors of n of the form 4k + 1. Our injection

will be very simple as it will only change the exponent of one of the

bi. However, the construction of the injection will depend on n.

Let q be a divisor of n of the form 4k − 1. Then

q = ac11 · · · acmm · bd1

1 · · · bdp
p ,

with ci ≤ xi, di ≤ yi, for all i, and the sum of the di is odd.
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Assume first that n is such that one of the yi is odd; say y1. We then

define

f(q) = ac11 · · · acmm · by1−d1

1 · · · bdp
p .

Then the parity of the exponent of b1 changed, all other parities are the

same, so the sum of the exponents of the bi is now even. Therefore,

f(q) is of the form 4k + 1. This is clearly an injection (in fact, a

bijection), as f(f(q)) = q.

If n is such that all the yi are even, then we define a different injection

g. Let i be minimal so that di < yi. (There has to be such an i,

otherwise all di are even, and q is of the form 4k+1.) Then we define

ac11 · · · acmm · by1

1 · · · byi−1−di

i · · · bdp
p .

This will again change the parity of the exponent of bi, therefore g(q)

will be of the form 4k+ 1. Also note that i can be read off the image

g(i) as it is still the smallest index for which di < yi. This function g

is an injection. Indeed, to have g(q) = g(q′), the integer g′ must have

the exact same prime decomposition as q, so it must be equal to q′.
It is not a bijection though, for by1

1 · · · b
yp
p is not in its image.

So for all positive integers, we showed that there is an injection from

the set of divisors of the form 4k − 1 into that of divisors of the form

4k + 1, and therefore we proved the statement.

(8) The left-hand side is the number of n-element subsets of [2n], while

the right-hand side is the number of all subsets of [2n].

(9) Arrange all subsets of [n] into pairs, by matching each subset to its

complement. If n is odd, then two subsets of the same pair can never

be the same size, so exactly one of them has the required property

(the larger one). Therefore, half of all subsets, that is, 2n−1 subsets

are larger than their complements.

If n is even, then there will be
(

2n
n

)

/2 pairs, namely those pairs consist-

ing of n/2-element subsets and their complements, in which no subset

has the required property. So in this case, the answer is 2n−1− 1
2

(

2n
n

)

.

(10) We must find the k-tuple of non-negative integers a1, a2, · · · , ak for

which
∑k

i=1 ai = k, and k!
a1!·a2!···ak!

is maximal. The numerator of

this fraction is constant, while its denominator is at least 1 as it is

a product of positive integers. (Recall that 0! = 1.) Therefore, the

fraction is largest when its denominator is equal to 1. That happens

when a1 = a2 = · · · = ak = 1. In that case, the obtained coefficient is

k!, and it belongs to x1x2 · · ·xk.
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(11) The largest coefficient is n!, by the same argument as in the previous

exercise.

(12) It is straightforward to verify that if a + b is constant, then a!b! is

minimal when a = b (if a+ b is even), or when |a− b| = 1 (when a+ b

is odd). Now consider n!
a1!·a2!···ak!

. Again, the numerator is constant, so

we need to minimize the denominator. Using the fact we mentioned

at the beginning of this solution, one sees that the denominator is

minimal when ai = r for all r. Therefore, the largest coefficient is
(

rk

r, r, · · · , r

)

=
(rk)!

r!k
.

(13) Let i ≤ 2m − 1 be a positive integer. There is a unique way to write

i = 2j · p, where p is an odd integer. Then 2m − i = 2m − 2j · p =

2j(2m−j − p). This shows that the number of times 2 occurs in the

prime factorization of i is equal to the number of times 2 occurs in

the prime factorization of 2m − i. Now note that

(

n

k

)

=

k
∏

i=1

2m − i

i
.

Our argument shows that no factor 2m−i
i of the right-hand side is

divisible by 2. Therefore, the prime factorization of
(

n
k

)

does not

contain 2, and so
(

n
k

)

is odd.

(14) We know from Theorem 4.2 that
(

n
k

)

=
(

n−1
k−1

)

+
(

n−1
k

)

. The previous

exercise shows that both members of the right-hand side are odd, so

the left-hand side is even.

(15) Let j be an integer so that 1 ≤ i ≤ k, and let j be the unique integer

such that i = pjt, where t is not divisible by j. Then pm − i = pm −
pjt = pj(pm−j − t). So if p occurs j times in the prime factorization

of i, then p occurs j times in the prime factorization of pm − i. Now

(

pm

k

)

=
pm

k
·
k−1
∏

i=1

pm − i

i
.

Note that the first term of the right-hand side is divisible by p, while

in the other terms of the right-hand side, the p-factors cancel out, and

the proof is complete.

(16)(a) There are xp paint jobs, but x of them use only one color, thus the

number of good paint jobs is xp − x.

(b) As p is prime, each paint job can be rotated to p − 1 other paint

jobs. Thus the number of different paint jobs is (xp − x)/p.
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(c) As the number of different paint jobs must be an integer, this proves

that xp − x is divisible by p. This is called Euler’s theorem (or,

sometimes, Fermat’s theorem).

(17) This follows directly from the multinomial theorem by substituting

x1 = x2 = x3 = 1.

(18) This follows directly from the multinomial theorem by substituting

x1 = x3 = 1, and x2 = −1.
(19) Let p be a northeastern lattice path from (0, 0) to (k, n − k). Let

t be the bisector of the segment joining A = (k, n − k) and B′ =

(k + 1, n − k − 1). As k < n/2, the path p must intersect t at least

once. Let L be the intersection point of p and t that is closest to A.

Now reflect the part of p between L and A through t, to get a path

from L to B. Prepending this with the unchanged part of p from (0, 0)

to L, we get a path p′ from (0, 0) to B. It is clear that the function

f defined this way by f(p) = p′ is an injection. Indeed, given a path

q from (0, 0) to B, either q and t do not intersect, and then q does

not have a preimage, or they do intersect, and then L can be found

as above, and the preimage of q is obtained by reflecting the part of q

between L and B through t.

B
p

p’

t

A

L

(0,0)

Fig. 4.4 Constructing the injection f .

As we know from Exercise 32, the number of northeastern lattice

paths from (0, 0) to (k, n − k) is
(

n
k

)

. This proves that
(

n
k

)

≤
(

n
k+1

)

if k < n/2. On the other hand, we also know that
(

n
k

)

=
(

n
n−k

)

,

proving that
(

n
k

)

>
(

n
k+1

)

if k > n/2. So the numbers
(

n
k

)

first increase

steadily, then decrease steadily, in other words, they form a unimodal
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sequence.

The technique used in this solution is called the reflection principle.

See the Notes for references on this subject.

(20) By the definition of the binomial coefficients, (4.13) is equivalent to

n!

(k − 1)!(n− k + 1)!
· n!

(k + 1)!(n− k − 1)!
≤ n!

k!(n− k)!
· n!

k!(n− k)!
.

Dividing both sides by n!2 and then multiplying both sides by the

product (k + 1)!(k − 1)!(n− k + 1)!(n− k − 1)!, we get that (4.13) is

equivalent to

1 ≤ k + 1

k
· n− k + 1

n− k
,

which is obviously true as both terms on the right-hand side are larger

than one.

(21) Clearly, the binomial coefficient
(

n
k−1

)

enumerates northeastern lattice

paths from A = (1, 0) to B = (k, n − k + 1), whereas the binomial

coefficient
(

n
k+1

)

enumerates northeastern lattice paths from C = (0, 1)

to D = (k+1, n−k). On the other hand,
(

n
k

)

enumerates northeastern

lattice paths from A to D and also from C to B.

We are going to define a function g that takes a pair of paths, one

from A to B, and one from C to D, and maps them into a pair of

paths, one from A to D, and one from B to C. We will then show that

g is an injection. That will prove our claim by the easy enumerative

considerations of the previous paragraph.

Our map g is simplicity itself. Take a northeastern path p from A to B,

and a northeastern path q from C to D. Then p and q must intersect;

let X be their first intersection point. Flip the parts of paths XB and

XD, to get two new paths, one from A to X to D, and one from C to

X to B. Call these two paths p′ and q′, and define g(p, q) = (p′, q′).
To see that the map g is an injection, note that given two paths s and

u from A to D, and from B to C, either s and u do not intersect, or

they do, but then they have a first intersection point X . In this latter

case, their preimage can be obtained by flipping the part XB of s and

the part XB of u back.

(22) If the mentioned sequence is log-concave, then
a1
a0
≥ a2

a1
≥ a3

a2
≥ · · · ≥ an−1

an
.

This means that the ratio ai

ai−1
is steadily decreasing, so in particular

once it dips below one, it will stay below one. Therefore, once the
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B

D

C

X

q’q

A

C

B

D

A

p p’

X

Fig. 4.5 Constructing the injection g.

sequence of the ai starts decreasing, it will keep decreasing, showing

that this is indeed a unimodal sequence.

(23) We know from Exercise 32 that the number of all northeastern lattice

paths from (0, 0) to (n, n) is
(

2n
n

)

. Let us enumerate the bad ones,

that is, those that go above the diagonal. In other words, these are

the northeastern paths that touch the line y = x+ 1.

We prove that these paths are in bijection with northeastern paths

from (−1, 1) to (n, n). Let p be such a path, and let P be the first

intersection point of p and the line y = x+1. Let us reflect the part ps
of p that is between the origin and P through the line y = x+1. This

reflection takes (0, 0) into (−1, 1), and so it take ps into a northeastern

lattice path p′s from (−1, 1) to P . If we append the rest of p to the

end of p′s, we get a path h(p) from (−1, 1) to (n, n). To see that h is

a bijection, note that every path from (−1, 1) to (n, n) must intersect

the line y = x+1, so P can be recovered, and therefore, by reflection,

the preimage of any path can be uniquely recovered.

Thus the number of “bad” paths is
(

2n
n−1

)

, therefore the number of

good paths is
(

2n
n

)

−
(

2n
n−1

)

=
(

2n
n

)

/(n+ 1).

(24) Note that the previous problem was a special case of this, i.e., when

a = b, but we have not used the equality of these two parameters in

the proof. Therefore, the same proof will work.

(25) First solution. Recall that 1/(1−x) =∑n≥0 x
n. Taking derivatives,

we get
1

(1− x)2
=
∑

n≥1

nxn−1 =
∑

n≥0

(n+ 1)xn.

Second solution. Apply Theorem 4.15 with m = −2, and replace x
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(-1,1)

(0,0)

(n,n)

P

s
p

s
p’

Fig. 4.6 Constructing the bijection h.

by −x. Note that
(−2

n

)

=
(−2)(−3) · · · (−n− 1)

n!
= (n+ 1)(−1)n.

Therefore, Theorem 4.15 implies

1

(1− x)2
=
∑

n≥0

(n+ 1)(−1)n(−x)n =
∑

n≥0

(n+ 1)xn.

(26) We know that 1√
1−4x

= (1− 4x)−1/2, therefore, the binomial theorem

implies

1√
1− 4x

=
∑

n≥0

(−1
2

n

)

(−4x)n

=
∑

n≥0

−1
2 · −3

2 · · · −2n+1
2

n!
(−1)n22nxn

=
∑

n≥0

2n
1 · 3 · · · (2n− 1)

n!
xn.

So all we have to show is that
(

2n

n

)

= 2n
1 · 3 · · · (2n− 1)

n!
,

(2n)!

n!
= 2n1 · 3 · · · (2n− 1),

and this is true as on the left-hand side we can simplify all fractions

of the form 2i
i . Then we will be left with 2n from the n fractions of

this form, and all the odd terms (2i+ 1).
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(27) First of all, f(x) = (1 + x)(1 − x2)1/2. If we replace x by x2/4 in the

result of the previous exercise, this implies that

f(x) = (1 + x)
∑

n≥0

(

2n
n

)

4n
x2n

= (1 + x)
∑

n≥0

2n
(2n− 1)!!

4nn!
x2n

= (1 + x)
∑

n≥0

(2n− 1)!!

(2n)!
x2n

=
∑

n≥0

(2n− 1)!!

(2n)!
x2n +

∑

n≥0

(2n− 1)!!

(2n)!
x2n+1.
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Chapter 5

Divide and Conquer. Partitions

After the break taken in the last chapter, it is time we returned to our basic

enumeration problems. In Chapter 3 we were mainly concerned about lists

of objects, distinct or not, with repetitions allowed or not, and with the

order of the elements on the list being relevant or not. In this chapter

we will go one step further by considering distribution problems. We will

distribute n objects (balls) into k boxes, and ask in how many ways this

can be done.

5.1 Compositions

Let us assume we want to give away twenty identical balls to four children,

Alice, Bob, Charlie and Denise. As the balls are identical, what matters is

how many balls each child will get. So if we want to know the number of

ways we can give away these balls, we simply have to know the number of

ways to write 20 as a sum of four non-negative integers. Clearly, the order

of the integers will matter, that is, 1+ 6+ 8+5 does not correspond to the

same way of distributing the balls as 6+1+5+8. Indeed, in the first case,

Alice gets only one ball, in the second, she gets six.

Definition 5.1. A sequence (a1, a2, · · · , ak) of integers fulfilling ai ≥ 0 for

all i, and (a1 + a2 + · · ·+ ak) = n is called a weak composition of n. If, in

addition, the ai are positive for all i ∈ [k], then the sequence (a1, a2, · · · , ak)
is called a composition of n.

93
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Theorem 5.2. For all positive integers n and k, the number of weak com-

positions of n into k parts is
(

n+ k − 1

k − 1

)

=

(

n+ k − 1

n

)

.

Proof. The problem is certainly equivalent to counting the number of

ways of putting n identical balls into k different boxes. Place the k boxes

in a line, then place the balls in them in some way and align them in the

middle of the boxes. This creates a long line consisting of n balls and k− 1

walls separating the k boxes from each other. Note that simply knowing

in which order the n identical balls and k − 1 separating walls follow each

other is the same as knowing the number of balls in each box. So our task

is reduced to finding the number of ways to permute the multiset consisting

of n balls and k − 1 walls. Theorem 3.21 tells us that this number is

(n+ k − 1)!

n! · (k − 1)!
.

�

What if a grandparent insists on giving at least one ball to each child?

The problem is not any harder. First we can give one ball to each child, then

give away the remaining 16 balls to the four children in any of
(

16+4−1
4−1

)

=
(

19
3

)

ways. The generalization of this argument to n balls and k children is

the following statement.

Corollary 5.3. For all positive integers n and k, the number of composi-

tions of n into k parts is
(

n−1
k−1

)

.

How about the number of all compositions, that is, the number of com-

positions of n into any number of parts? Clearly, this question only makes

real sense for compositions, not for weak compositions. Indeed, if 0 is al-

lowed to be a part, then any number of zeros can be appended to the end of

any composition, therefore any positive integer n has infinitely many weak

compositions. For compositions, however, the question has a remarkably

compact answer.

Corollary 5.4. For all positive integers n, the number of all compositions

of n is 2n−1.

Proof. A composition of n will have at least one and at most n parts.

So the total number of compositions of n is
n
∑

k=1

(

n− 1

k − 1

)

= 2n−1.
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Indeed, the left-hand side is the number of all subsets of [n − 1], first

enumerated by their size k, and then summed over k ∈ [n]. �

The reader is hopefully thinking right now that such a nice closed result,

2n−1, must have an alternative explanation, one that really explains why

the result is a power of two. Such a proof indeed exists and we provide it

below.

Proof. (of Corollary 5.4) We prove the statement by induction on n. For

n = 1, the statement is true as the integer 1 has one composition. Now

assume that the statement is true for n, and take all 2n−1 compositions of

n. For each such composition C, we will define two different compositions

of n + 1. First, add one to the first element of C. This way we get a

composition of n + 1 with the first element at least 2. Second, take C,

and write an additional 1 to its front. This way we get a composition of

n+ 1 with first element 1. It is clear that different compositions of n lead

to different compositions of n + 1 this way. Each decomposition of n + 1

can be obtained in exactly one of these two ways. Therefore, it follows that

n+ 1 has twice as many compositions as n, which was to be proved. �

5.2 Set Partitions

Now let us assume that the balls are different, but the boxes are not. Then

we might as well label the balls by numbers 1 through n. In other words,

we may simply say that we want to partition the set [n] into k nonempty

subsets.

Definition 5.5. A partition of the set [n] is a collection of non-empty blocks

so that each element of [n] belongs to exactly one of these blocks.

The number of partitions of [n] into k nonempty blocks is denoted by

S(n, k). The numbers S(n, k) are called the Stirling numbers of the second

kind.

It follows from Definition 5.5 that S(n, k) = 0 if n < k. We set S(0, 0) =

1 by convention. In the next chapter, you will see an advantage of this

convention. Until then, be comforted in knowing that there is one way to

distribute zero objects into zero boxes, namely by not doing anything.

Example 5.6. For all n ≥ 1, we have S(n, 1) = S(n, n) = 1. For all n ≥ 2,

the equality S(n, n− 1) =
(

n
2

)

holds as a partition of [n] into n− 1 blocks

must consist of one doubleton and n− 2 singletons.
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Example 5.7. The set [4] has seven partitions into two nonempty

blocks, namely {1, 2, 3}{4}; {1, 2, 4}{3}; {1, 3, 4}{2}; {2, 3, 4}{1}, and also

{1, 2}{3, 4}; {1, 3}{2, 4}; and {1, 4}{2, 3}. Therefore, S(4, 2) = 7.

Several questions are in order. The reader may wonder what happened

to the Stirling numbers of the first kind. These will be discussed in Chapter

6. The reader may also think that the first thing we will do is to provide a

formula for S(n, k), and may in fact wonder why we have not done it yet.

However, there exists no closed formula for S(n, k). There is a formula for

S(n, k) that contains one summation sign, and we will prove it in Chapter

7 as we need the sieve formula to obtain it.

Nevertheless, we can prove some nice identities about set partitions right

now. They will be of recursive nature.

Theorem 5.8. For all positive integers k ≤ n,

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k). (5.1)

Proof. As before, we can obtain a combinatorial proof by taking a close

look at one particular element, say the maximum element n. If this el-

ement forms a singleton block, then the remaining n − 1 elements have

exactly S(n − 1, k − 1) ways to complete the partition. These partitions

are enumerated by the first member of the right-hand side. If, on the other

hand, the element n does not form a block by itself, then the remaining

n − 1 elements must form a partition with k blocks in one of S(n − 1, k)

ways. Then we can add n into any of the k blocks formed by this partition,

multiplying the number of all our possibilities by k. These partitions are

enumerated by the second member of the right-hand side. As the left-hand

side enumerates all partitions of [n] into k blocks, the claim is proved. �

If we have to put n different balls into k different boxes then the number

of ways to do this is k! · S(n, k). Indeed, first we can partition [n] into k

non-distinguishable blocks in S(n, k) ways, then we can label the k blocks

with labels 1, 2, · · · , k in k! different ways.

Corollary 5.9. The number of all surjective functions f : [n] → [k] is

k! · S(n, k).

Proof. Such a function defines a partition of [n]. The blocks are the sub-

sets of elements that are mapped into the same element i ∈ [k]. Therefore,

the blocks are labeled, and there are exactly k of them, so the proof follows

from the previous paragraph. �
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An interesting consequence of this is the following unexpected corollary.

It is surprising as it shows that xn, this very compact expression, is in fact

a sum of n+ 1 terms involving Stirling numbers.

Corollary 5.10. For all real numbers x, and all non-negative integers n,

xn =

n
∑

k=0

S(n, k)(x)k. (5.2)

Proof. Both sides are polynomials of x of degree n. So if we can show

that they agree for more than n values of x, we will be done. We will prove

an even stronger statement, namely that the two sides agree for all positive

integers x.

So let x be a positive integer. Then the left-hand side is the number

of all functions from [n] to [x]. We claim that the right-hand side is the

same, enumerated according to the size of the image. Indeed, if the image

of such a function is of size k, then there are
(

x
k

)

choices for the image I,

then, by Corollary 5.9, there are k! · S(n, k) choices for the function itself.

As (x)k = k! ·
(

x
k

)

, the claim is proved. �

Another way of extending our enumeration of partitions is by enumer-

ating all partitions, without restricting the number of parts.

Definition 5.11. The number of all set partitions of [n] into nonempty

parts is denoted by B(n), and is called the nth Bell number. We also set

B(0) = 1.

So B(n) =
∑n

i=0 S(n, i). The Bell numbers also satisfy a nice recurrence

relation.

Theorem 5.12. For all non-negative integers n,

B(n+ 1) =
n
∑

i=0

(

n

i

)

B(i). (5.3)

Proof. We must prove that the right-hand side enumerates all partitions

of [n+1]. Let us assume the element n+1 is in a block of size n−i+1. Then

there are i elements that are not in the same block as n + 1. Therefore,

there are
(

n
i

)

ways to choose these elements, and then there are B(i) ways to

partition them. Summing over all possible values of i, we get the statement

of the theorem. �
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5.3 Integer Partitions

Now assume that both the balls and the boxes are indistinguishable, so

when we distribute the balls into the boxes, the only thing that matter is

their numbers. In other words, we are interested in finding out the number

of ways of writing the positive integer n as a sum of positive integers, where

the order of the summands does not matter. That is, 4 = 3+1 or 4 = 1+3

will count as only one way of writing four as a sum of positive integers.

As the order of the summands does not matter, we do not lose generality

if we assume that they are in weakly decreasing order.

Definition 5.13. Let a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 be integers so that a1 +

a2 + · · · + ak = n. Then the sequence (a1, a2, · · · , ak) is called a partition

of the integer n. The number of all partitions of n is denoted by p(n). The

number of partitions of n into exactly k parts is denoted by pk(n).

We note that the word “partition” is used in a new meaning here. We

have used it before, in Definition 5.5, to mean “a way to split the set

[n]”. The new meaning, given in Definition 5.13 is independent of the

old one. This double meaning of the same word usually does not result in

confusion as the context usually clearly indicates which meaning is relevant.

In writing, so too does the notation, that is, we either speak of partitions

of [n], or of partitions of n. If there is a danger of confusion after all, it

is customary to refer to partitions of [n] as “set-partitions”. We also note

that some languages, like French, do have two different words for these two

notions (“partition” for set-partitions, and “partage” for partitions of the

integer n).

Example 5.14. The positive integer 5 has 7 partitions. Indeed, they

are (5); (4, 1); (3, 2); (3, 1, 1); (2, 2, 1); (2, 1, 1, 1); (1, 1, 1, 1, 1). Therefore,

p(5) = 7.

The problem of finding an exact formula for p(n) is even harder than

that of finding an exact formula for S(n, k). If we know p(n − 1), or, for

that matter, p(i) for all i < n, we still cannot directly compute p(n) from

these data (though some sophisticated recurrence relations do exist, and

we will mention them in the Notes section). The approximate size of the

number p(n) is provided by the following asymptotic formula.

p(n) ∼ 1

4
√
3
exp

(

π

√

2n

3

)

. (5.4)
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In other words, p(n) grows faster than any polynomial, but slower than

any exponential function g(n) = cn, with c > 1.

We will nevertheless find some interesting and useful results concerning

p(n) once we will have learned about generating functions. Until then, we

will discuss some highly interesting and enjoyable identities. Our main tool

in proving them will be the following graphical representation of partitions.

A Ferrers shape of a partition p = (x1, x2, · · · , xk) is a set of n square

boxes with horizontal and vertical sides so that in the ith row we have xi

boxes and all rows start at the same vertical line. It is named after the

American mathematician Norman MacLeod Ferrers. The Ferrers shape of

the partition p = (4, 2, 1) is shown in Figure 5.1. Clearly, there is an obvious

bijection between partitions of n and Ferrers shapes of size n.

Fig. 5.1 The Ferrers shape of the partition p = (4, 2, 1).

If we reflect a Ferrers shape of a partition p with respect to its main

diagonal, we get another shape, representing the conjugate partition of p.

Thus, in our example, the conjugate of (4, 2, 1) is (3, 2, 1, 1). In particular,

the ith row of the Ferrers shape of the conjugate partition of p is as long

as the ith column of the Ferrers shape of p.

Definition 5.15. A partition of n is called self-conjugate if it is equal to

its conjugate.

Example 5.16. Partitions (4, 3, 2, 1), (5, 1, 1, 1, 1), and (4, 2, 1, 1) are all

self-conjugate.

Now we are in a position to use Ferrers shapes to prove various partition

identities.

Example 5.14 shows that the positive integer 5 has three partitions into

at most two parts, 5, (4, 1) and (3, 2), and it also has three partitions into
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Fig. 5.2 Self-conjugate partitions.

parts that are at most two, namely (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1).

This is not by accident.

Theorem 5.17. The number of partitions of n into at most k parts is equal

to that of partitions of n into parts not larger than k.

Proof. The first number is equal to that of Ferrers shapes of size n with at

most k rows. The second number is equal to that of Ferrers shapes with at

most k columns. Finally, these two sets of Ferrers shapes are equinumerous

as one can see by taking conjugates. �

Theorem 5.18. The number of partitions of n into distinct odd parts is

equal to that of all self-conjugate partitions of n.

Proof. We define a bijection f from the set of self-conjugate partitions

of n onto that of partitions of n into distinct odd parts as follows. Take any

self-conjugate partition π = (π1, π2, · · · , πt) of n. Take its Ferrers shape,

and remove all the boxes from its first row and first column. As π is self-

conjugate, this means removing 2π1−1 boxes. Set f(π)1 = 2π1−1, that is,

make the first part of the image of π of size 2π1−1. Then continue this way.

That is, remove the first row and column of the remaining Ferrers shape.

This means removing 2π2− 3 boxes. So set f(π)2 = 2π2− 3. Continue this

way until the entire Ferrers shape is removed. The resulting partition will

be of the form f(π) = (2π1 − 1, 2π2 − 3, · · · , 2πi − (2i − 1), · · · ). So it will

indeed be a partition of n into odd parts, and the parts will all be distinct,

as we had π1 ≥ π2 ≥ · · · ≥ πt. We note that the set of all boxes consisting

of one fixed box b, all boxes below b, and all boxes on the right of b, is often

called a hook. Using this terminology, we can say that in each step of our

algorithm, we remove the hook of the box that is currently in the top left

corner of our Ferrers shape.

To see that f is a bijection, it suffices to prove that for any partition α of

n into distinct odd parts, there exists exactly one self-conjugate partition π

of n so that f(π) = α. Indeed, let α = (2a1−1, 2a2−3, · · · , 2au−(2u−1)).
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Then it follows from the definition of f that if f(π) = α, then the first row

and column of π must each contain a1 boxes, the second row and second

column of π must each contain a2 − 1 additional boxes, and so on. So we

can build up the unique Ferrers shape whose partition has image α, proving

our claim. �

Example 5.19. If π = (6, 6, 4, 3, 2, 2), then f(π) = (11, 9, 3). Figure 5.3

shows how f(π) is constructed. In step i, the hook consisting of all boxes

labeled i in the Ferrers shape of π is removed, and its boxes form row i of

the Ferrers shape of f(π).

1

2 22

11

2

1 1 1 1 1 1

1

2

1

1

1

1 1 1 1 1 1 1 1 1

2 22 2

3

2

2

2

2 2 2 2 2

3 3

3

3 3

2

Fig. 5.3 A self-conjugate partition and its image.

Theorem 5.20. Let q(n) be the number of partitions of n in which each

part is at least two. Then q(n) = p(n) − p(n − 1), for all positive integers

n ≥ 2.

Proof. We construct a bijection from the set of all partitions of n − 1

onto the set of all partitions of n that have at least one part equal to one.

The bijection is very simple: just add a part equal to 1 to the end of each

partition of n− 1. The only partitions of p(n) that cannot be obtained this

way are those enumerated by q(n), so the claim is proved. �

We will not provide a formula for pk(n) here (any such formula would

be cumbersome anyway). However, we will see in Chapter 8 how to get a

good description of these numbers.

Let us try to find some connection between the number of partitions

of the integer n, and that of partitions of the set [n]. It is clear that the

set partitions {1, 2, 3}, {4} and {1, 2, 4}, {3} do have something in common.

Indeed, they both consist of a block of size three and another block of

size one. We are going to generalize this notion as follows. Let Π =
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(π1, π2, · · · , πk) be a partition of [n], where the πi denote the blocks of π.
Rearrange the sequence of block sizes |π1|,|π2|,· · · , |πk| in non-increasing
order to get the sequence a1 ≥ a2 ≥ · · · ≥ ak. Then a = (a1, a2, · · · , ak) is
a partition of the integer n. We say that a is the type of the set partition
π.

Example 5.21. The set partition {1, 5, 6}, {2, 7}, {3, 9}, {4, 8}, {10} is of
type (3, 2, 2, 2, 1).

Theorem 5.22. Let a = (a1, a2, · · · , ak) be a partition of the integer n,
and let mi be the multiplicity of i as a part of a. Then the number of set
partitions of [n] that are of type a is equal to

Pa =

(
n

a1,a2,··· ,ak

)
∏

i≥1 mi!
.

Proof. Take ai balls of color i, for all i ∈ [k]. Order them linearly in(
n

a1,a2,··· ,ak

)
ways. Then partition [n] so that i and j are in the same block

if and only if the linear order we just created has monochromatic balls in
positions i and j. This procedure clearly creates a set partition of type a.

However, the number of different set partitions constructed this way is
not necessarily

(
n

a1,a2,··· ,ak

)
. For example, if a1 = a2, then having the a1

balls of color 1 in a subset A of positions, and having the a1 balls of color
2 in a subset B of positions will result in the same partition as having the
balls of color 1 in B, and having the balls of color 2 in A. In general, if mi

is the multiplicity of i as a part of a, then there are mi! ways the mi color
classes having i balls each can be permuted among each other. Therefore,
every set partition of type a will be obtained from exactly

∏
i≥1 mi! linear

orders, and the proof follows. �

The following table summarizes our results from this chapter when no
empty boxes are allowed.
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Surjections

Compositions

Set partitions

Integer partitions

parameters formula

n identical objects
(

n−1
k−1

)

k distinct boxes

n distinct objects
S(n, k)k!k distinct boxes

n identical objects
any number of
distinct boxes

2n−1

n distinct objects
any number of
distinct boxes

∑n
i=1 S(n, i)i!

n distinct objects
S(n, k)

k identical boxes
n distinct objects

any number of
identical boxes

B(n)

n identical objects
pk(n)

k identical boxes

n identical objects
any number of p(n)
identical boxes

Table 5.1. Enumeration formulae if no boxes are empty.

If empty boxes are allowed, then we have to fix the number of boxes.

Indeed, if we do not, then we can add as many empty boxes as we want,

yielding infinitely many solutions to all these problems. Therefore, instead

of eight different enumeration problems, we only have to treat four. Their

results have either been proved in this chapter, or are trivial. Table 5.2

summarizes them.
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Functions

Weak Compositions

Set partitions

Integer partitions

n distinct objects
k distinct boxes

kn

parameters formula

n identical objects
k distinct boxes

(

n+k−1
k−1

)

n distinct objects ∑k
i=1 S(n, i)k identical boxes

n identical objects ∑k
i=1 pi(n)k identical boxes

Table 5.2. Enumeration formulae if empty boxes are allowed.

Notes

Of the various enumeration problems discussed in this chapter, it is the

enumeration of the partitions of the integer n that has been the subject of

the most vigorous research. This problem proved to be interesting not only

for combinatorialists, but also for number theorists. The interested reader

should see [4] for further information on integer partitions. A particularly

nice classic result is the following recurrence relation, due to MacMahon.

Let us say that a pentagonal number is an integer of the form k(3k − 1)/2,

where k is any integer, positive or not. So pentagonal numbers are never

negative, and the first few are 0, 1, 2, 5, 7, 12. Then for any positive integer

n,

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · · (5.5)

where the ith term of the right-hand side has sign (−1)⌊i/2⌋ and absolute

value p(n− ki), with ki being the ith largest pentagonal number.

So for instance, for n = 8, the above formula shows that

p(8) = p(7) + p(6)− p(3)− p(1) = 15 + 11− 3− 1 = 22.

Pentagonal numbers have other applications besides formula (5.5). The

interested reader can consult [8] for an application to permutation enumer-

ation. Euler’s famous pentagonal number theorem states that the number
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of partitions of n into distinct odd parts is equal to the number of partitions

of n into distinct even parts as long as n is not pentagonal, and that these

two numbers only differ by one if n is pentagonal. A precise statement

of this theorem and its detailed proof can be found in the undergraduate

textbook [7].

Exercises

(1) Find a formula for S(n, 3).

(2) Prove that if n ≥ 3, then B(n) < n!.

(3) Prove that if n ≥ 2, then n! < S(2n, n) < (2n)!.

(4)(a) Let h(n) be the number of ways to place any number (including

zero) non-attacking rooks on the Ferrers shape of the “staircase”

partition (n− 1, n− 2, · · · , 1). Prove that h(n) = B(n).

(b) In how many ways can we place k non-attacking rooks on this

Ferrers shape?

(5) Let m and n be positive integers so that m ≥ n. Prove that the

Stirling numbers of the second kind satisfy the recurrence relation

S(m,n) =

m
∑

i=1

S(m− i, n− 1)ni−1.

(6) Prove that the number of partitions of n into exactly k parts is equal

to the number of partitions of n in which the largest part is exactly k.

(7) Prove that the number of partitions of n into at most k parts is equal

to that of partitions of n+ k into exactly k parts.

(8) The Durfee square of a partition p is the largest square that fits in

the top left corner of the Ferrers shape of p. The Durfee square of

p = (5, 3, 2, 2) has side length 2 as shown in the Figure 5.4.
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Fig. 5.4 The Durfee square of the partition (5, 3, 2, 2).

If we know the parts of a partition p, how can we figure out the side

length of its Durfee square without drawing the Ferrers shape of p?
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(9) Let k be a positive integer, and let q be a non-negative integer such

that q < k. Define pk,q(r) = pk(rk + q). Prove that pk,q(r) is a

polynomial function of r.

(10) Let m be a fixed positive integer. Prove that S(n, n−m) is a polyno-

mial function of n. What is the degree of this polynomial?

(11) Prove that for all integers n ≥ 2, the number p(n)− p(n− 1) is equal

to the number of partitions of n in which the two largest parts are

equal.

(12) Let n ≥ 4. Find the number of partitions of n in which the difference

of the first two parts is

(a) at least three,

(b) exactly three.

(13) Find a formula involving p(n) for the number of partitions of n in

which the three largest parts are equal. (You can assume that n ≥ 4.)

(14) Prove that for all positive integers n,

p(1) + p(2) + · · ·+ p(n) < p(2n).

(15) Our four friends from Exercise 16 of Chapter 3, A, B, C, and D

organize a long jump competition every day until the final ranking

of the four of them will be the same on two different days. At most

how long will they have to wait for that to happen? (Each jump

is measured in centimeters, so all kinds of ties, twofold, threefold,

fourfold, are possible.)

(16) Prove that for all positive integers n,
n
∑

k=1

k!S(n, k) = (−1)n.

Explain what this identity means without resorting to mathematical

formulas.

Supplementary Exercises

(17) (-) How many compositions does the integer 15 have whose first part

is not 1?

(18) (-) How many partitions does the set [10] have in which the element

1 does not form a block by itself?

(19) (-) What is the number of partitions of [8] into two blocks in which

the two blocks do not have the same size?
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(20) (-) What is the number of compositions of 5 with a unique largest

part?

(21) (-) Prove that p(n) is equal to the number of partitions of the integer

2n with no odd parts.

(22) A student has to take twelve hours of classes a week. Due to her

extracurricular activities, she must take at least three hours of classes

on Monday, at least two on Thursday, and at least one on Friday.

(a) In how many ways can she do this?

(b) In how many ways can she do this if there is only one class on

Tuesday that she may take?

(23) Find the number of compositions of ten into even parts.

(24) Find the number of weak compositions of 25 into five odd parts.

(25) A student has to take eight hours of classes a week. He wants to have

fewer hours on Friday than on Thursday. In how many ways can he

do this?

(26) Find a closed formula for S(n, 2) if n ≥ 2.

(27) Find a closed formula for S(n, n− 2), for all n ≥ 2.

(28) Find a closed formula for S(n, n− 3), for all n ≥ 3.

(29) Recall that pk(n) is the number of partitions of the integer n into

exactly k parts.

(a) Prove that for all positive integers k ≤ n, the inequality pk(n) ≤
(n− k + 1)k−1 holds.

(b) Is it true that pk(n) is a polynomial function of n?

(30) Prove that p(n) grows faster than any polynomial function of n. That

is, prove that if f is any polynomial function in n, then there exists

an integer N so that f(n) < p(n) for all n > N . Do not use formula

(5.4).

(31) Prove that for all positive integers n, the inequality p(n)2 < p(n2+2n)

holds.

(32) Let F (n) be the number of all partitions of [n] with no singleton blocks.

Prove that B(n) = F (n) + F (n+ 1). A bijective proof is preferred.

(33) Find a recursive formula for the numbers F (n) in terms of the numbers

F (i), with i ≤ n− 1.

(34) Let Bk(n) be the number of partitions of [n] so that if i and j are in

the same block, then |i− j| > k. Prove that Bk(n) = B(n− k), for all

n ≥ k.

(35) Let an be the number of compositions of n into parts that are larger

than 1. Express an by an−1 and an−2.
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(36) Let bn be the number of compositions of n into parts that are larger

than 2. Find a recurrence relation satisfied by bn, similar to the one

you found for an in the previous exercise.

Solutions to Exercises

(1) We can assume that n ≥ 3. First we determine the number of sur-

jections f : [n] → [3]. The number of all functions f : [n] → [3] is

3n. Three of these functions have an image of size one. Moreover, by

Exercise 26 and Corollary 5.9, 3 · 2 · (2n−1− 1) such functions have an

image of size two. Therefore, the number of all surjections f : [n]→ [3]

is 3n − 3 · 2 · (2n−1 − 1)− 3. So Corollary 5.9 shows that

S(n, 3) =
3n − 3 · (2n − 2)− 3

6
=

3n−1 − (2n − 2)− 1

2

=
3n−1 + 1

2
− 2n−1.

(2) We prove the statement by induction on n. For n = 3, the statement

is true as 3! = 6 > B(3) = 5. Now assume the statement is true for

n and let us prove that it is true for n + 1. Equation (5.3) and the

induction hypothesis together yield the following upper bound on the

left-hand side.

B(n+ 1) =

n
∑

i=0

(

n

i

)

B(i) <

n
∑

i=0

(

n

i

)

i!

=

n
∑

i=0

(n)i < (n+ 1)n! = (n+ 1)!,

and the proof follows.

(3) The upper bound follows from the previous exercise. For the lower

bound, write the numbers 1, 2, · · · , n in one line in this order, then

write the numbers n+ 1, n+ 2, · · · 2n below them in any order. This

can be done in n! ways, and each such arrangement defines a partition

of [2n] into n blocks of size two each. Strict inequality follows as n ≥ 2,

so partitions with other block sizes are possible.

(4)(a) Number the rows and columns of the staircase Ferrers shape as

shown in Figure 5.6. Then each set of non-attacking rooks defines

a partition of the set [n] as follows. Let i and j be in the same

block if there is a rook in the intersection of row i and column j.
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In order to see that this is a bijection, let π be a partition of [n],

and let B be a block of π. Let b1 < b2 < · · · < bm be elements of

B. Then it follows from the previous paragraph that B had to be

defined by a rook on the box (b1, b2), a rook on the box (b2, b3), and

so on, ending with a rook on the box (bk−1, bk). Indeed, a block of

size k takes k − 1 rooks to define. No row or column can contain

more than one rook. The fact that b1 and b2 are in the same block

means that there has to be a rook on the box (b1, b2), then the fact

that b2 and b3 are in the same block implies that there has to be a

rook on the box (b2, b3), and so on.

1

2

3

4

5

6 5 4 3 2

Fig. 5.5 Numbering the rows and columns of the staircase shape.

(b) Continuing the argument from part (a), the placement of no rooks

corresponds to the all singleton partition, which has n blocks. The

placement of each rook decreases the number of blocks by one (by

uniting two blocks), hence the placement of k rooks creates a par-

tition with n− k blocks. So the number of placing k non-attacking

rooks on this Ferrers shape is S(n, n− k).

(5) Let π be a partition of [m] into n parts. The left-hand side is the

number of such partitions. To see that the right-hand side is the same,

let m − i be the largest integer so that the restriction πi of π into [i]

has only n−1 blocks. Then we have S(m−i, n−1) possibilities for πi.

It follows from the definition of m− i that m− i+1 must be in a new,

last block B of π. Then, the numbers m−i+2,m−i+3, · · · ,m can be

in any blocks, yielding ni−1 choices for the blocks of these elements.

Therefore, the total number of possibilities for π is S(m−i, n−1)ni−1.

Summing over all i, the statement follows.

(6) These are partitions whose Ferrers shape has exactly k rows (resp.

columns), so the statement follows by taking conjugates.

(7) Take the Ferrers shape of a partition of n into at most k parts, and

add an extra box to the end of each row. If there were less than k
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rows, then add additional rows of length one so that the shape has k

rows. This way, you get the Ferrers shape of a partition of n+ k with

exactly k rows.

To see that this is a bijection, it suffices to show that for all Ferrers

shapes F with k rows and n + k boxes, one can find a unique Fer-

rers shape whose image is F . That shape can be obtained by simply

deleting the last box of each of the k rows of F .

(8) Let p = (p1, p2, · · · , pi). Then the side length of the Durfee square is

the largest i so that pi ≥ i.

(9) We will prove a stronger statement by induction on k, namely that

pk,q(r) is a polynomial of degree k− 1. If k = 1, then pk,q(r) = 1, and

the statement is true.

It is a well-known fact of calculus (see Exercise 1 of Chapter 2) that

a function f(n) is a polynomial of degree d if and only if the function

g(n) = f(n)− f(n− 1) is a polynomial of degree d− 1. It is therefore

sufficient to prove that pk,q(r)− pk,q(r − 1) is a polynomial of degree

n− 2.

Take a partition of rk + q into k parts. Subtract one from each of its

parts. We get a partition of (r− 1)k+ q into at most k parts. Indeed,

some parts could be equal to 1 in the original partition and now they

would disappear.

Therefore,

pk,q(r) = pk,q(r − 1) + pk−1,q(r − 1) + · · ·+ p0,q(r − 1),

where p0,q(r−1) = 1 if q = 0, and r = 1, and p0,q(r−1) = 0 otherwise.

After rearrangement, we get

pk,q(r) − pk,q(r − 1) =
k−1
∑

i=0

pi,q(r − 1).

By the induction hypothesis, all terms on the right-hand side are poly-

nomials. The last one of them has degree k − 2, and the rest have

smaller degrees. Therefore, the right-hand side is a polynomial of de-

gree k − 2, and thus so is the left-hand side. Consequently, pk,q(r) is

a polynomial of degree k − 1, by the fact we mentioned in the second

paragraph of this solution.

(10) We prove the statement by induction on m, the initial case of m = 0

being obvious. We will use the same fact of calculus that we used to

solve the previous exercise. Applying formula (5.1) with k = n −m,

we get, after rearrangement

S(n, n−m)−S(n− 1, n− 1−m) = (n−m)S(n− 1, n− 1− (m− 1)).
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Here, the right-hand side is a polynomial by the induction hypothesis,

so the left-hand side must be a polynomial. However, the left-hand

side is just the difference of two consecutive values of S(n, n−m), so

S(n, n−m) is a polynomial.

The degree of S(n, n−m) as a polynomial is 2m as it clearly follows

from the above induction argument.

(11) We know from Theorem 5.20 that p(n) − p(n − 1) is equal to the

number of partitions of n in which each part is at least two. Taking

conjugates, this latter is equal to the number of partitions of n in

which the two largest parts are equal.

(12)(a) Take any partition of n − 3, and add three to its first part. This

way we get each partition of the desired property exactly once.

Therefore, the answer is p(n− 3).

(b) Decreasing the first part of such a partition by three, we get a

partition of n− 3 with the first two parts equal. Exercise 11 shows

that the number of these is p(n− 3)− p(n− 4).

(13) The conjugate of such a partition consists of parts of size at least

three. Therefore the number q(n) of such partitions is equal to p(n)−
r(n)− s(n), where r(n) is the number of partitions of n with smallest

part one, and s(n) is the number of partitions of n with smallest part

two.

We know from Theorem 5.20 that r(n) = p(n− 1). Let us determine

s(n). If π is a partition of n with smallest part two, and we remove

the smallest part of π, then we get a partition π′ of n−2 with smallest

part at least two. In other words, π′ does not contain one as a part,

therefore, by Theorem 5.20, we have p(n− 2)− p(n− 3) = s(n). This

shows that

q(n) = p(n)− r(n)− s(n) = p(n)− p(n− 1)− p(n− 2) + p(n− 3).

(14) If π is a partition of i for i ≤ n, then its largest part is at most n, so

it can be prepended by a new first part 2n− i > n. The new partition

we obtain is a partition of 2n. This sets up an injection from the set

of partitions of all positive integers at most n into the set of partitions

of 2n, and the proof follows.

(15) Each final result of the competition defines an ordered partition of

{A,B,C,D} into k blocks, where k is the number of jumps of differ-

ent length. In other words, people who tied form the blocks of this

partition, and the blocks are ordered according to the sizes of the

jumps belonging to people in each block. For example, if B won, A
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and D tied for the second place, and C got last, then the ordered

partition defined by this result is {B}, {A,D}, {C}.
The number of ordered partitions of [n] into k blocks is obviously

S(n, k) · k!. Therefore, the number of all ordered partitions of

{A,B,C,D} into at most four blocks is

4
∑

k=1

S(n, k) · k! = 1 · 1 + 7 · 2 + 6 · 6 + 1 · 24 = 75.

So the four friends will have their competitions for at most 76 days.

(16) Simply set x = −1 in formula (5.2). The meaning of the result is that

the number of surjections from a given set with an even-sized image

and the number of surjections from that same set with an odd-sized

image differs by ±1.
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Chapter 6

Not So Vicious Cycles. Cycles in

Permutations

We have considered several enumeration problems in the previous three

chapters. One of them, that of permutations, stands out by its omnipres-

ence in mathematics. The reason for that is that permutations can be

viewed not only as linear orders of different objects, most often elements

of [n], but also as functions from [n] to [n]. In particular, a permutation

p = p1p2 · · · pn can be conceived as the unique function p : [n] → [n] for

which p(i) = pi.

Example 6.1. The permutation 312 can be viewed as the (bijective) func-

tion f : [3]→ [3] defined by f(1) = 3, f(2) = 1, and f(3) = 2.

The advantage of this approach is that now one can define the prod-

uct of two permutations on [n] by simply taking their composition as a

composition of functions.

Example 6.2. Let f = 312 and let g = 213. Then (f · g)(1) = g(f(1)) =

g(3) = 3, (f · g)(2) = g(f(2)) = g(1) = 2, and (f · g)(3) = g(f(3)) = g(2) =

1. Therefore, fg = 321.

Example 6.3. Let f and g be defined as in the preceding example. Then

(g · f)(1) = f(g(1)) = f(2) = 1, (g · f)(2) = f(g(2)) = f(1) = 3, and

(g · f)(3) = f(g(3)) = f(3) = 2. Therefore, gf = 132.

As these two examples show, multiplication of permutations is not a

commutative operation, that is, it is not true in general that fg = gf . The

reader may have seen examples of such operations before, such as matrix

multiplication. Exercise 12 explains why multiplication of permutations is

a special case of that.

Note that many authors use a slightly different notation for the product

of two permutations, in that when they write gf , they mean that we first

113
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apply f , then g. In this book, multiplication of permutations will not be as

important as enumeration of permutations, so even if the reader used that

notation before, there will be no danger of confusion.

Operations involving multiplications of permutations are the subject of

the theory of permutation groups. Our book walks through Combinatorics,

and will not contain a digression to that very interesting field. However,

some of the exercises at the end of this chapter do relate to the multiplica-

tion of permutations.

6.1 Cycles in Permutations

Take the permutation 321564. Again, this permutation can be viewed as

a function g : [6] → [6]. Let us take a closer look at g. First, g(2) = 2,

in other words, 2 is a fixed point of the permutation g. Second, g(1) = 3,

and g(3) = 1. This implies in particular that g2(1) = 1, and g2(3) = 3,

moreover, g3(1) = 3, and g3(3) = 1, and so on. In other words, if we

repeatedly apply g, the elements 1 and 3 will only be permuted among

each other, without any interference from the other entries. Furthermore,

g2 has the effect of the identity permutation 12 · · ·n on the entries 1 and 3,

but g does not. To describe this phenomenon, we will say that 1 and 3 form

a 2-cycle in g. Similarly, g(4) = 5, g(5) = 6, and g(6) = 4. Iterating g, we

see that g2(4) = 6, g2(5) = 4, and g2(6) = 5. Finally, g3(4) = 4, g3(5) = 5,

and g3(6) = 6. Again, we notice that g permutes elements 4, 5, and 6

among each other so that g3 has the effect of the identity permutation on

the entries 4, 5, and 6, but g and g2 do not. To describe this phenomenon,

we will say that 4, 5 and 6 form a 3-cycle in g.

Before we can formally define cycles, we need the following lemma.

Lemma 6.4. Let p : [n] → [n] be a permutation, and let x ∈ [n]. Then

there exists a positive integer 1 ≤ i ≤ n so that pi(x) = x.

Proof. Consider the entries p(x), p2(x), · · · , pn(x). If none of them is

equal to x, then the Pigeon-hole Principle implies that there are two of

them that are equal, say pj(x) = pk(x), with j < k. Then, applying p−1 to

both sides of this equation, we get pj−1(x) = pk−1(x). Repeating this step,

we get pj−2(x) = pk−2(x), and repeating this step j− 3 more times, we get

p(x) = pk−j+1(x). �

Time has come for us to make a formal definition of the notion of cycles
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in permutations.

Definition 6.5. Let p : [n] → [n] be a permutation. Let x ∈ [n], and let

i be the smallest positive integer so that pi(x) = x. Then we say that the

entries x, p(x), p2(x), · · · , pi−1(x) form an i-cycle in p.

Corollary 6.6. All permutations can be decomposed into the disjoint

unions of their cycles.

Proof. Lemma 6.4 shows that each entry is a member of a cycle. By the

definition of cycles, distinct cycles are disjoint. �

Example 6.7. The cycles of 321564 are (31), (2), and (564).

Given the cycle decomposition (31)(2)(564) of g, it is easy to reconstruct

g as follows: the image g(i) of i is the entry immediately following i in its

cycle, or, if i is the last entry in its cycle, then g(i) is the first entry of that

same cycle.

While the cycle decomposition of a permutation f is unique, the same

cycle decomposition can be written in many different ways. The convention

is to write entries that belong to the same cycle in parentheses. The order

of the entries in the parentheses is such that j immediately follows i if

f(i) = j. Furthermore, f(b) = a, where b is the last entry and a is the

first entry in the parentheses. However, these principles do not preclude

multiple notations for the same permutation. For instance, (241)(35) and

(53)(412) denote the same permutation. In that permutation, f(2) = 4,

f(4) = 1, f(1) = 2, f(3) = 5, and f(5) = 3.

We would like to avoid the danger of confusion caused by the phe-

nomenon we have just described. Therefore, we will write our permutations

in canonical cycle form. That is, each cycle will be written with its largest

element first, and the cycles will be written in increasing order of their first

elements. Thus the permutation f of our previous example has canonical

cycle form (412)(53).

Recall that besides using the canonical cycle form, we can also write

a permutation f : [n] → [n] as a list, or linear order, by simply writing

f(1)f(2) · · · f(n). This is sometimes called the one-line notation of permu-

tations.

Example 6.8. Our running example, (412)(53) would be written as 24513

in the one-line notation.
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The next section will show the extreme usefulness of our ability to write

permutations in two different notations. Figure 6.1 illustrates the two dif-

ferent ways one can think about the same permutation.

1

2

34

5

5

5

4

4

1

1

2

2

3

3

Fig. 6.1 Two ways to look at 24513 = (412)(53).

The cycle decomposition of a permutation contains a lot of information

about the permutation. It is therefore important to enumerate permuta-

tions according to their cycle decompositions.

In the rest of this section, all permutations will be taken on the set

[n], and for shortness we will call them n-permutations. The set of all n-

permutations is denoted by Sn. This is because in group theory, this set is

called the symmetric group.

Theorem 6.9. Let a1, a2, · · · , an be nonnegative integers so that the equal-

ity
∑n

i=1 i ·ai = n holds. Then the number of n-permutations with ai cycles

of length i where i ∈ [n], is

n!

a1!a2! · · ·an! · 1a12a2 · · ·nan
. (6.1)

Proof. Write down all elements of [n] in a row in some order, then insert

parentheses going left to right, according to the required cycle lengths: first

a1 pairs of parentheses creating a1 1-cycles, then a2 pairs of parentheses

creating a2 2-cycles, and so on. This way we obtain a permutation in which

the cycle lengths are nondecreasing left to right.

There are n! ways to do this- that is the number of ways to write down

the elements of [n], and there is only one way to insert the parentheses in

the described manner. However, there are several ways of writing down the
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n integers that will lead to the same permutation once the parentheses are

inserted. We must figure out how many.

The elements within any cycle of length i can be in i different orders and

still yield the same cyclic permutation. Therefore, every permutation can

be obtained at least Πn
i=1i

ai times as there are ai cycles of size i. Moreover,

if two ways of writing down the elements of [n] result in permutations which

have the exact same cycles of length i for all i, just in different order, then

again they lead to the same permutation. As ai cycles can be permuted

in ai! different ways, and permuting the cycles can be done independently

from the order of the elements within the cycles, we have shown that each

permutation can be obtained Πn
i=1i

aiai! ways, and the proof follows. �

If an n-permutation p has ai cycles of length i, for i = 1, 2, · · · , n, then
we say that (a1, a2, · · · , an) is the type or cycle type of p. Thus (6.1) provides
a formula for the number of permutations with a given type.

Example 6.10. The number of n-permutations having only one cycle, in

other words, the number of n-permutations of type (0, 0, · · · , 0, 1) is equal
to (n− 1)!.

One combinatorial meaning of Example 6.10 is this. The number of

ways n people can sit around a table is (n− 1)!. (We consider two seating

assignments identical if everyone has the same left neighbor in the first

seating as in the second.)

Now we are in a position to fulfill an old promise, namely we can define

the Stirling numbers of the first kind.

Definition 6.11. The number of n-permutations with k cycles is called a

signless Stirling number of the first kind, and is denoted by c(n, k). The

number s(n, k) = (−1)n−kc(n, k) is called a Stirling number of the first

kind.

We will explain the reason for including (−1)n−k in the definition of

s(n, k) shortly. It will not surprise anyone that c(n, 0) = 0 if n > 0 as

nonempty permutations all have cycles. Moreover, we set c(0, 0) = 1, and

c(n, k) = 0 if n < k, just as it was the case with the Stirling numbers of

the second kind.

Similarly to the numbers S(n, k), the numbers c(n, k) also satisfy a

simple recurrence relation.

Theorem 6.12. Let n and k be positive integers satisfying n ≥ k. Then

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k). (6.2)
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Proof. We show that the right-hand side counts all n-permutations with

k cycles, just as the left-hand side. In such a permutation, there are two

possibilities for the position of the entry n.

(1) The entry n can form a cycle by itself, and then the remaining n− 1

entries have to form k − 1 cycles. This can happen in c(n− 1, k − 1)

ways, so the first member of the right-hand side of (6.2) enumerates

these permutations.

(2) If the entry n does not form a cycle by itself, then the remaining n−1

entries must form k cycles, and then the entry n has to be inserted

somehow into one of these cycles. The k cycles can be formed in

c(n − 1, k) ways, then the entry n can be inserted in any of these

cycles, after each element. This multiplies the number of possibilities

by n− 1, and explains the second term of the right-hand side of (6.2).

Readers should test their understanding by trying to explain why we did

not miss any permutations by inserting n after each entry in each cycle,

and not into the front of each cycle. �

The reader is probably wondering whether there is some strong connec-

tion between the Stirling numbers of the first kind and the Stirling numbers

of the second kind that justifies the similar names. The following Lemma

is our main tool in establishing that connection.

Lemma 6.13. Let n be a fixed positive integer. Then
n
∑

k=0

c(n, k)xk = x(x + 1) · · · (x+ n− 1). (6.3)

Proof. We prove that the coefficients of xk on the right-hand side also

satisfy the recursive formula (6.2) that is satisfied by the signless Stirling

numbers of the first kind.

Let Gn(x) = x(x + 1) · · · (x + n− 1) =
∑n

k=0 an,kx
k. Then

Gn(x) = (x+ n− 1)Gn−1(x) = (x+ n− 1)

n−1
∑

k=0

an−1,kx
k

=

n
∑

k=1

an−1,k−1x
k + (n− 1)

n−1
∑

k=0

an−1,kx
k.

Now we are using a technique that will return in countless applications

in Chapter 8. We have just proved that
n
∑

k=0

an,kx
k =

n
∑

k=1

an−1,k−1x
k + (n− 1)

n−1
∑

k=0

an−1,kx
k.
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In other words, we proved that two polynomials were identical. The only

way that can happen is when the coefficients of the corresponding terms

agree in the two polynomials. That is, the equality

an,k = an−1,k−1 + (n− 1)an−1,k

must hold for all positive integers n and k so that n ≥ k. Therefore, the

numbers an,k and c(n, k) do satisfy the same recurrence relation. As their

initial terms trivially agree, that is, c(0, 0) = a0,0 = 1, c(n, 0) = an,0 = 0 if

n > 0, this implies that c(n, k) = an,k. �

Let us replace x by −x in (6.3), and multiply both sides by (−1)n. We

get

n
∑

k=0

s(n, k)xk = (x)n. (6.4)

Now the reader can see why we included the term (−1)n−k in the defi-

nition of s(n, k). Comparing this equation to (5.2), that stated

xn =

n
∑

k=0

S(n, k)(x)k,

we see that the Stirling numbers of the first kind have the “inverse effect”

of the Stirling numbers of the second kind. To formulate this observation

in a more precise way, we need some notions from linear algebra, and we

will assume that the reader has taken a basic course in that field.

It is well-known that the set of all polynomials with real coefficients is a

vector space V over the field of real numbers. The most obvious basis of V

is B = {1, x, x2, x3, · · · }, but it is not the only interesting basis. It is easy

to show that B′ = {1, (x)1, (x)2, (x)3, · · · } is also a basis of V .

Now let S (resp. s) be the infinite matrix whose entry in position (n, k)

is S(n, k) (resp. s(n, k)). Then (6.4) shows that s is the transition matrix

from B to B′, while (5.2) shows that S is the transition matrix from B′ to
B. This proves the promised connection between the two different kinds of

Stirling numbers.

Theorem 6.14. The matrices S and s are inverses of each other, that is,

Ss = sS = I.
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6.2 Permutations with Restricted Cycle Structure

The following lemma turns the canonical cycle form into a very powerful

tool.

Lemma 6.15. [Transition Lemma] Let p : [n]→ [n] be a permutation writ-

ten in canonical cycle notation. Let g(p) be the permutation obtained from p

by omitting the parentheses and reading the entries as a permutation in the

one-line notation. Then g is a bijection from the set Sn of all permutations

on [n] onto Sn.

Example 6.16. Let p be our running example, that is, p = (412)(53).

Then w g(p) = g((412)(53)) = 41253.

Solution. It suffices to show that for each permutation q = q1q2 · · · qn
written in the one-line notation, there exists exactly one permutation p ∈ Sn

so that q = g(p). In other words, we have to show that there is exactly one

way to insert parentheses into the string q = q1q2 · · · qn so that we get a

permutation in canonical cycle form.

To see this, note that q1 certainly starts a new cycle, so the first left

parenthesis has to be inserted to the front of the string. Where will this

first cycle end? As we are looking for a permutation in canonical cycle

form, q1 has to be the largest of its cycle. Therefore, if i is the smallest

index so that q1 < qi, then the first cycle has to end before qi. On the other

hand, if j < i, then the second cycle cannot start with qj as we know that

qj < q1, and the cycles have to be in increasing order of their first elements.

This implies that the second cycle has to start with qi, and so we have to

insert the first right parenthesis, and the second left parenthesis between

qi−1 and qi.

Then we can continue this deterministic procedure to find all our cycles.

By an analogous argument, we have to start a new cycle at qk if and only if

qk is larger than the leading entries of all previous cycles, which means in

particular that qk is larger than all entries on its left. As these entries are

uniquely determined by q, the preimage g−1(q) of q exists and is unique.

Example 6.17. The preimage of 4356172 under g is (43)(5)(61)(72).

The entries of q that are larger than all entries on their left are called left-

to-right maxima. Note that if q has t left-to-right maxima, then g−1(q) = p

has t cycles. Also note that the leftmost left-to-right maximum of q is
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always q1, and the rightmost left-to-right maximum of q is always the entry

n. A surprising application of Lemma 6.15 is the following.

Proposition 6.18. Let i and j be two elements of [n]. Then i and j are

in the same cycle in exactly half of all n-permutations.

Proof. As we can relabel our entries by switching n and i, and switching

n− 1 and j, it is sufficient to prove that the entries n and n− 1 are in the

same cycle in exactly half of all n-permutations. Let q = q1q2 · · · qn be an

n-permutation, and let g(p) = q, where g is the bijection of Lemma 6.15.

As we said, the entry n of q is always a left-to-right maximum, namely the

rightmost left-to-right maximum of q. Therefore, the last cycle of p starts

with n, and the entries in that cycle of q are precisely the entries on the

right of n in q.

Therefore, p contains n and n− 1 in the same cycle if and only if n− 1

is on the right of n in q. As that happens in half of all n-permutations, the

proof follows. �

The following surprising result shows that the likelihood that a given

entry i is part of a k-cycle is independent of k. In fact, it is 1/n.

Lemma 6.19. Let i ∈ [n]. Then for all k ∈ [n], there are exactly (n− 1)!

permutations of length n in which the cycle containing i is of length k.

Proof. Again, it is sufficient to prove the statement for i = n, then

the general statement follows by relabeling. Let q = q1q2 · · · qn be an n-

permutation, let g(p) = q, where g is the bijection of Lemma 6.15, and let

qj = n. Then the cycle C containing n in p is of length n − j + 1 as n

itself starts the last cycle. So if we want C to have length k, we must have

j = n + 1 − k. However, there are clearly (n − 1)! permutations of length

n that contain n in a given position, and the proof follows. �

Theorem 6.9 tells us how to compute the number of permutations of a

given type. Sometimes we do not exactly know the type of our permuta-

tions, but we at least know something about it. As it turns out, we can

still enumerate the relevant permutations in many cases. In what follows,

we will show a nice example for that. Other examples can be found in the

Exercises.

Let ODD(m), resp. EVEN(m) be the set of m-permutations with all

cycle lengths odd, resp. even.

Lemma 6.20. For all positive integers m, the equality |ODD(2m)| =

|EVEN(2m)| holds.
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Proof. We construct a bijection Φ from ODD(2m) onto EVEN(2m).

Let π ∈ ODD(2m). Then π consists of an even number 2k of odd

cycles. Denote by C1, C2, · · · , C2k the cycles in canonical order. For all i,

1 ≤ i ≤ k, take the last element of C2i−1, and put it to the end of C2i to

get Φ(π), the image of π.

Example 6.21. If p = (4)(513)(726)(8), then Φ(p) = (5134)(72)(86).

Note that if C2i−1 is a singleton, it disappears. Also note that the

canonical form is maintained.

We claim that Φ is a bijection from ODD(2m) onto EVEN(2m). Let

σ ∈ EVEN(2m), with cycles c1, c2, · · · , ch. To prove that Φ is a bijection,

it suffices to show that we can recover the only permutation π ∈ ODD(2m)

for which Φ(π) = σ.

While recovering π, we must keep in mind that it might have more than

h cycles, because some of its singletons might have been absorbed by the

cycles immediately after them. If the last value in ch is larger than the first

value in ch−1, then create a singleton cycle with this value, placing it in

front of ch and repeat the whole procedure using ch−2 and ch−1. Otherwise,

move this value from ch to the end of ch−1 and repeat the whole procedure

using ch−3 and ch−2. If at any point only one cycle remains, create a

singleton cycle with the last value in that cycle. It is then straightforward

to check that the permutation π obtained this way fulfills Φ(π) = σ. It also

follows from the simple structure of Φ that at no point of the recovering

procedure could we have done anything else. �

Example 6.22. The preimage of (41)(62)(75)(83) under Φ is

(412)(6)(753)(8).

Example 6.23. The preimage of (21)(53)(64)(87) under Φ is

(1)(2)(534)(6)(7)(8).

Now that we so nicely proved that |ODD(2m)| = |EVEN(2m)|, we may

well ask if there is a formula describing these numbers. The following The-

orem answers that question in the affirmative, and has a touch of surprise

in it. Would you have thought that the number of these permutations is

always a perfect square?

Theorem 6.24. For all positive integers m,

|ODD(2m)| = |EVEN(2m)| = 12 · 32 · 52 · · · (2m− 1)2. (6.5)
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Solution. Because of Lemma 6.20, it suffices to prove the second equality.

Let p be an n-permutation with even cycles only. Clearly, we cannot have

p(1) = 1, as that would mean that the entry 1 forms a 1-cycle in p. So there

are 2m−1 choices for p(1). Then there are 2m−1 choices for p2(1) = p(p(1))

as we can choose everything but p(1) itself.

So far we have chosen p(1) and p(p(1)). These two elements will either

form a 2-cycle (when p(p(1)) = 1), or they will not. In either case, we will

have 2m− 3 choices for the image of the next entry. That is, if 1 and p(1)

form a 2-cycle, and i is an element outside that cycle, then we have 2m− 3

choices for p(i). Indeed, we can choose anything except 1, p(1), these have

already been chosen, and p(i), as that would mean that i is a 1-cycle. If,

on the other hand 1 and p(1) do not form a 2-cycle, then we choose the

next element of their cycle, p3(1) next. The entry p3(1) cannot be p(1) and

p2(1) as those elements are already chosen, and cannot be 1 either as that

would create the 3-cycle (1, p(1), p2(1)). So there are 2m−3 choices for the

next element in this case too.

Continuing this line of argument, we see that selecting our (2i − 1)st

entry we always have 2m− 2i+ 1 choices, and selecting our 2ith entry we

always have 2m − 2i + 1 choices, (as we can close cycles of even length),

and the proof follows.

Thus we have a formula for |ODD(n)| if n is even. If n is odd, then

clearly, |EVEN(n)| = 0, but we can still look for a formula for |ODD(n)|.

Theorem 6.25. For all positive integers m,

|ODD(2m+1)| = (2m+1) · |ODD(2m)| = 12 ·32 ·52 · · · (2m− 1)2(2m+1).

(6.6)

Proof. We construct a bijection Ψ from ODD(2m) × [2m + 1] onto

ODD(2m + 1). In this bijection, we will need the notion of a gap posi-

tion. This notion will be useful to solve some of the exercises, too. An

m-permutation has m + 1 gap positions, one after each element in each

cycle, and one at the very beginning of the permutation, before all entries

and cycles.

Example 6.26. The permutation (42)(513) has six gap positions, indicated

by bars in the following array: |(4|2|)(5|1|3|).

Let π ∈ ODD(2m), and let k ≤ 2m+1 be a positive integer. We define

Ψ(π, k) as follows. First, take Φ(π), where Φ is the bijection of Lemma 6.20.
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Let us now add 1 to each entry of Φ(π), so it becomes a permutation of the

set {2, 3, · · · , 2m + 1}. Insert the new entry 1 to the kth gap position of

Φ(π). That will change one cycle to an odd cycle. Note that the canonical

cycle form is preserved. Run the remaining cycles through Φ−1 to get odd

cycles. This way we obtain a (2m+1)-permutation consisting of odd cycles

only, and that permutation is our Ψ(π).

Lemma 6.27. The map Ψ defined above is a bijection from the set

ODD(2m)× [2m+ 1] onto the set ODD(2m+ 1).

Proof. To find the reverse of Ψ, take π′ ∈ ODD(2m+1), put the cycle in

π′ which contains the entry 1 aside, and run the remaining cycles through

Φ to get even cycles. Read off k as the gap position in which the entry 1 is.

Remove the entry 1 from its odd cycle, and run the obtained permutation,

which has all even cycles, through Φ−1, to get Ψ−1(π′). Note that at every
step, we have reversed the corresponding step of Ψ. �

This completes the proof of the theorem. �

Notes

A fair part of the results in Section 6.2 were obtained after Herb Wilf asked

some intriguing questions in [49]. Most of the results presented here have

been generalized in [11]. For example, it has been proved that if p is prime,

then the ratio of n-permutations that have a pth root to all n-permutations

is steadily decreasing, and converges to zero. See Exercises 21 and 22 for

the relevant definitions.

Exercises

(1) Is it true that c(n, n− 1) = S(n, n− 1)?

(2) Find a formula for c(n, n− 2).

(3) Compute the values of c(5, k), for k = 1, 2, 3, 4, 5.

(4) Prove that for any fixed k, the function c(n, n − k) is a polynomial

function of n. What is the degree of that polynomial?

(5) Let r(n) be the number of n-permutations whose square is the identity

permutation. Prove that if n ≥ 1, then r(n + 1) = r(n) + nr(n − 1),

where r(0) = 1.
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(6) Find a recursive formula for the number t(n) of n-permutations whose

cube is the identity permutation.

(7) Prove that on average, permutations of length n have Hn cycles, where

Hn =

n
∑

i=1

1

i
.

(8) How many n-permutations contain entries 1, 2 and 3 in the same cycle?

(9) An alpine ski team has n members. They descend a particular slope

one by one every day, and no two of them ever record identical times.

On an average day, how many times will the best record of that day be

broken?

(10) An airplane has n seats, and all of them have been sold for a particular

flight, with no overbooking. When the last passenger arrives, he finds

that his seat is taken. When he shows his reservation to the passenger

at his seat, that passenger stands up, and goes to her own assigned

seat. If that seat is empty, she seats down, and the seating procedure

is over. If not, she shows her reservation to the person seating at that

seat. That person stands up, and goes to his assigned seat, and so on.

This procedure continues until someone finds his or her assigned seat

empty.

Tom was not the last passenger to board the plane. What is the prob-

ability that he has to move during this procedure?

(11) Let p be an n-permutation. We associate a permutation matrix Ap to

p as follows. Let Ap(i, j) = 1 if p(i) = j, and let Ap(i, j) = 0 otherwise.

Here Ap(i, j) denotes the entry of Ap that is in the intersection of the

ith row and the jth column. Prove that | detA| = 1.

(12) Prove that if p and q are two n-permutations, then ApAq = Apq.

(13) The inverse of an n-permutation is the permutation q for which pq =

qp = 123 · · ·n. We then write q = p−1. Prove that each permutation

has a unique inverse.

(14) Prove that permutations f and f−1 are of the same type.

(15) What is the combinatorial meaning of AT
p ?

(16) In permutations, 1-cycles are often called fixed points. Prove, using

permutation matrices, that permutations pq and qp always have the

same number of fixed points.

(17) Let us assume that we know the type (a1, a2, · · · , an) of an n-

permutation. Determine the smallest positive integer d such that

pd = 123 · · ·n.
(18) A permutation p is called a nontrivial involution if p2 = 12 · · ·n, but p 6=
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12 · · ·n. Prove that if n > 1, then the number of nontrivial involutions

in Sn is odd.

(19) Generalize the previous exercise for all prime numbers t.

(20) Let n ≥ 2. Prove that detAp = 1 for exactly one half of all n-

permutations p.

(21) We say that a permutation p ∈ Sn has a square root if there is a

permutation q ∈ Sn so that q2 = p. Find a sufficient and necessary

condition of p having a square root, in terms of its cycle lengths.

(22) We say that a permutation p ∈ Sn has a kth root if there is a permu-

tation q ∈ Sn so that qk = p. Is the following statement true?

“A permutation has a kth root if and only if it is of type (a1, a2, · · · , an),
and whenever i is divisible by k, ai is divisible by k.”

(23) (+) Construct a bijection

τ : ODD(2m+ 1)× [2m+ 1]→ ODD(2m+ 2).

(24) (++) Let SQ(n) be the set of n-permutations having at least one square

root. Prove that for all positive integers n, we have |SQ(2n)|·(2n+1) =

|SQ(2n+1)|. Note that this means that p(2n) = p(2n+1), where p(m)

denotes the probability that a randomly chosen m-permutation has a

square root.

(25) Let k, m, and r be positive integers, and let kr = m. Prove that the

number of n-permutations all of whose cycle lengths are divisible by k

is

1 · 2 · · · (k − 1)(k + 1)2(k + 2) · · · (2k − 1)(2k + 1)2(2k + 2) · · · (m− 1)

=
m!

krr!
· (k + 1)(2k + 1) · ((r − 1)k + 1).

Supplementary Exercises

(26) (-) What is the number of n-permutations in which entries 1 and 2

part of the same 3-cycle?

(27) (-) Find the number of permutations of six whose square is the identity

permutation.

(28) (-) What is the number of permutations of length 20 whose longest

cycle is of length 11?

(29) (-) What is the number of n-permutations that have n−1 left-to-right

maxima?
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(30) (-) A group of ten children want to play cards. They split into three

groups, one of these groups has four children in it, the other two have

three each. Then each group sits around a table. Two seatings are

considered the same if everyone’s left neighbor is the same.

(a) In how many ways can this be done if the three tables are identical?

(b) In how many ways can this be done if the three tables are distinct?

(31) What is the number of (2n)-permutations whose longest cycle is of

length n?

(32) Let p = p1p2 · · · pn be a permutation. An inversion of p is a pair of

entries (pi, pj) so that i < j but pi > pj .

Let us call a permutation even (resp. odd) if it has an even resp. odd

number of inversions.

Prove that the permutation consisting of the one cycle (a1a2 · · ·ak) is
even if k is odd, and is odd if k is even.

(33) Find a combinatorial proof for the fact that there are n!/2 even n-

permutations.

(34) What is the relation between the parity of a permutation p and detAp?

(35) Let us assume that we only know the type of the n-permutation p.

How can we decide whether p is odd or even?

(36) Let us assume that we know the length n of a permutation p, and the

number k of its cycles. Can we figure out from these data whether p

is an odd or an even permutation?

(37) Prove the result of Supplementary Exercise 33 by an appropriate sub-

stitution into formula (6.3).

(38) How many permutations p ∈ S6 satisfy p3 = 1?

(39) How many even permutations p ∈ S6 satisfy p2 = 1?

(40) Let n be divisible by 3. Prove that c(n, n/3) ≥ n!
3n/3(n/3)!

.

(41) Prove that for all positive integers n, r and k such that n = rk, the

inequality

(r − 1)!k ≤ c(n, k)

S(n, k)
≤ (n− k)!

holds.

(42)(a) Prove that in the polynomial

(1 + x)(1 + 2x) · · · (1 + (n− 1)x)

the coefficient of xn−k is c(n, k), for all k ∈ n.

(b) State and prove the corresponding fact for the numbers s(n, k).
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(43) Let a(n, k) be the number of permutations of length n with k cycles in

which the entries 1 and 2 are in the same cycle. Prove that for n ≥ 2,

n
∑

k=1

a(n, k)xk = x(x + 2)(x+ 3) · · · (x+ n− 1).

(44) (+) Let br(n, k) be the number of permutations of length n with k

cycles in which all entries of [r] are in the same cycle. Prove that for

n ≥ r,

n
∑

k=1

br(n, k)x
k = (r − 1)!

x(x + 1) · · · (x+ n− 1)

(x+ 1)(x+ 2) · · · (x+ r − 1)
.

(45) Let a(n, k) be defined as in Supplementary Exercise 43. Let t(n, k) =

c(n, k) − a(n, k) be the number of permutations of length n with k

cycles in which the entries 1 and 2 are not in the same cycle. Prove

that a(n, k) = t(n, k + 1), for all k ≤ n− 1.

(46) A group of n tourists arrive at a restaurant. They sit down around

circular tables, leaving no table empty. Then each table orders one of

r possible drinks. Prove that the number of ways this can happen is

r(r + 1) · · · (n+ r − 1).

Two seating arrangements are considered the same if each person has

the same left neighbor in both of them.

(47) We write each element of [n − 1] on a separate card, then randomly

select any number of cards, and take the product of the numbers of

written on them. Then we do this for all 2n−1 possible subsets of the

set of n− 1 cards. (The empty product is taken to be 1.) Finally, we

take the sum of the 2n−1 products we obtained. What is this sum?

(48) Modify the previous exercise so that instead of considering all 2n−1

subsets, we only consider all k-element subsets of the n − 1 cards.

What is the sum of all
(

n−1
k

)

products we obtain in that scenario?

(49) Find a recurrence relation satisfied by the numbers u(n) of n-

permutations whose fourth power is the identity permutation.

(50) A library has n books. Readers of this library are “almost” careful.

That is, after reading a book, they put it back to its shelf, missing its

proper place by only one notch. Prove that after a sufficient amount

of time, any permutation of the books on the shelves can occur.

(51) Prove that two n-permutations p and q have the same type if and only

if there exists an n-permutation g so that q = gpg−1 holds.
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(52) Inversions of a permutation were defined in Supplementary Exercise

32. Let I(n, k) be the number of n-permutations that have k inver-

sions. Prove that I(n, k) = I(n,
(

n
2

)

− k).

(53) Let I(n, k) be defined as in the previous exercise. Prove that

(n2)
∑

k=0

I(n, k)xk = (1 + x)(1 + x+ x2) · · · (1 + x+ · · ·+ xn−1).

(54) Deduce from the result of the previous exercise that the number of even

n-permutations is the same as the number of odd n-permutations.

(See Supplementary Exercise 32 for the definition of even and odd

permutations.)

(55) Find an explicit formula for I(n, 3).

Solutions to Exercises

(1) Yes, that is true. S(n, n−1) is the number of ways to partition [n] into

one doubleton and n−2 singletons. To get c(n, n−1), we have to take

a permutation consisting of one cycle on each of these n − 1 subsets.

There is only one way to do this, thus c(n, n− 1) = S(n, n− 1) =
(

n
2

)

.

(2) An n-permutation that has n− 2 cycles can have either two 2-cycles,

or one 3-cycle, and the rest must be all 1-cycles. In the first case, we

can choose the elements of the first 2-cycle in
(

n
2

)

ways, the elements

of the second 2-cycle in
(

n−2
2

)

ways, then take a 2-cycle on each of

them in one way. This yields
(

n
2

)

·
(

n−2
2

)

/2 permutations as the order

of the cycles is irrelevant. In the second case, we have to choose the

elements of the 3-cycle in
(

n
3

)

ways, then take a 3-cycle on them in 2

ways. This yields 2
(

n
3

)

permutations, and proves that

c(n, n− 2) =
n(n− 1)(n− 2)(n− 3)

8
+

n(n− 1)(n− 2)

3
.

(3) It follows from (6.10) that c(5, 1) = 4! = 24. Exercise 1 shows that

c(5, 4) =
(

5
2

)

= 10, and Exercise 2 shows that c(5, 3) = 15 + 20 = 35.

It is obvious that c(5, 5) = 1. As
∑5

k=1 c(5, k) = 5! = 120, the equality

c(5, 2) = 50 follows.

(4) We prove the statement by induction on k. If k = 1, then the state-

ment is true by Exercise 1. Now assume we know the statement for

k − 1. This implies

c(n, n− k) = c(n− 1, n− k − 1) + (n− 1)c(n− 1, n− k),
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c(n, n− k)− c(n− 1, n− k − 1) = (n− 1)c(n− 1, n− k).

Here the right-hand side is a polynomial by the induction hypothesis,

and therefore so is the left-hand side. However, the left-hand side is the

difference of two consecutive values of c(n, n−k), therefore c(n, n−k)

must be a polynomial by Exercise 1 of Chapter 2. Similarly, the degree

of c(n, n − k) is 2n, by this same inductive setup, and Exercise 1 of

Chapter 2.

(5) In such permutations, all cycles must be 1-cycles or 2-cycles. If the

entry n + 1 forms a 1-cycle, then the remaining n entries can form

a good permutation in r(n) ways. If the entry n + 1 is part of a 2-

cycle, then there are n choices for the other entry of that 2-cycle, then

there are r(n− 1) ways for the remaining n− 1 entries to form a good

permutation.

(6) This is similar to the previous exercise. All cycles of such permutations

have length one or three. If n + 1 is in a 3-cycle, then there are
(

n
2

)

choices for the other two elements of the cycle, and there are 2 choices

for the cycle itself, once its elements are known. Then the remaining

entries can form a good permutation in t(n − 2) ways. If the entry

n + 1 forms a 1-cycle, then the remaining n entries can form a good

permutation in t(n) ways. Therefore, t(n+1) = n(n−1)t(n−2)+t(n)

if n ≥ 3.

(7) We prove the statement by induction on n. For n = 1, the statement is

true. Assume it is true for n−1. There is 1/n chance that entry 1 forms

a 1-cycle, and then the remaining n− 1 elements form Hn−1 cycles on

average. If entry 1 does not form a 1-cycle, then, take any permutation

of the elements {2, 3, 4, · · · , n} in the canonical distribution. Insert

entry 1 after any of these elements. This will not change the number

of cycles as entry 1 will not start a new cycle. Therefore, the number

of permutations with k cycles stays the same for all k, so their average

stays the same, too, i.e. H(n− 1). Therefore, we get

H(n) =
1

n
· (H(n− 1) + 1) +

n− 1

n
·H(n− 1) = H(n− 1) +

1

n
,

and the statement follows.

(8) Entries 1, 2, and 3 are together in one cycle exactly as often as elements

n − 2, n− 1, n are. This latter happens exactly when, after omitting

all parentheses from the cycle notation, n precedes both n − 2 and

n− 1. And that clearly happens in 1/3 of all permutations. So there

are n!/3 such permutations, for n ≥ 3.
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(9) This is the same as to ask that on average, how many left-to-right

minima does a random n-permutation have. In accordance with the

paragraph following Example 6.17, a left-to-right minimum is an entry

of a permutation p = p1 · · · pn that is smaller than all entries on its left.

This is the same as the average number of cycles in an n-permutations,

and we have computed that in Exercise 7.

(10) If 1, 2, · · · , n denote the passengers, and f(1), f(2), · · · , f(n) denote

their assigned seats, then it is clear that f(1)f(2) · · · f(n) is a permu-

tation. Tom will have to move if and only if in this permutation, his

seat is part of the same cycle as the seat f(n) of passenger n, who

arrived last. We know from Proposition 6.18 that the chance of that

is one half.

Exercise 7, and the paragraph following Example 6.17 tell us that for

left-to-right maxima, the answer is H(n) =
∑n

i=1
1
n . To see that this

is also the answer for left-to-right minima, note that p1p2 · · · pn has

t left-to-right minima if and only if the permutation q = q1q2 · · · qn,
where qi = n + 1 − pi, has t left-to-right maxima. By the way, q is

called the complement of p.

(11) That is true as each row and column will have exactly one nonzero

member. Therefore, when expanding the determinant by any row or

column, we will only obtain one nonzero product. That product will

be the product of many ones, so the only open question is whether

that product will occur in the determinant with a positive sign or with

a negative sign. That depends on p.

(12) Consider (ApAq)(i, j). By the definition of matrix multiplication, this

is the inner product of the ith row of Ap and the jth column of Aq. As

both of these vectors have exactly one nonzero element in them, their

inner product will be 1 if and only if those nonzero elements occur

in the (same) kth position in both vectors. That, however, happens

if and only if p(i) = k, and q(k) = j, which is also equivalent to

pq(i) = j. Therefore, (ApAq)(i, j) = Apq(i, j).

(13) The n-permutation q is the inverse of the n-permutation p if and only

if p(i) = j implies q(j) = i. This relation uniquely defines q.

(14) Reversing each cycle of p results in p−1.

(15) If p(i) = j, then Ap(i, j) = 1, so AT
p (j, i) = 1. Therefore, AT

p defines

a permutation q in which q(j) = i if and only if p(i) = j. This means

pq = qp = 12 · · ·n, so q is the inverse of p. Thus the transpose of a

permutation matrix is the permutation matrix of the inverse of the

original permutation. This also implies ApA
T
p = I.
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(16) The number of fixed points of a permutation can be read off its per-

mutation matrix as the number of ones in the main diagonal. As the

remaining entries of the main diagonal are zeros, the number of ones in

the main diagonal also equals the sum of diagonal elements, which is

called the trace of the matrix. It is well known in Linear Algebra that

trace(AB) = trace(BA) for all n× n matrices A and B. Therefore,

trace(ApAq) = trace(AqAp),

and the claim is proved.

(17) The smallest positive integer d with that property is the least common

multiple of the cycle lengths of the permutation, that is, the indices

i so that ai > 0. Indeed, the kth, 2kth, etc. powers of a k-cycle are

equal to the identity permutation.

(18) If n > 1, then n! is even. Let us arrange all n-permutations into pairs,

by placing p and p−1 in the same pair. That will create a t pairs,

containing altogether 2t permutations, but will not match involutions

and 12 · · ·n to anything. Thus the number of these latter is n! − 2t,

therefore the number of involutions is n!− 2t− 1, and that is an odd

number.

(19) If t is prime, and n ≥ t, then the number of n-permutations p so that

pt = 12 · · ·n, but p 6= 12 · · ·n is congruent to −1 modulo t. The proof

is analogous to that of the previous exercise.

(20) Consider (21) = (21)(3)(4) · · · (p), the permutation that simply swaps

the first two entries. For any p ∈ Sn, we define h(p) = (12)p. As

detA(12) = −1, the matrices Ap and Ah(p) have determinants of op-

posite signs. On the other hand, h(h(p)) = p, therefore h creates pairs

of permutations (p, h(p)). Each pair will contain exactly one permu-

tation whose matrix has determinant 1, and the claim is proved.

(21) Let r ∈ Sn, and consider r2. It is straightforward to verify that if k

is odd, then the k-cycles of r will stay k-cycles in r2, and if k is even,

the k-cycles of r will split into two k
2 -cycles in r2. So the only way

r2 can have even cycles is by obtaining them from an even cycle of

r, that has split into two cycles of the same size, each of them even.

Therefore, r2 will have an even number of cycles of each even length.

On the other hand, we claim that this is sufficient. That is, if p has an

even number of cycles of each even length, then p has a square root.

Indeed, if p has even cycles (a1 · · · at) and (b1 · · · bt), then they can be

obtained by taking the square of the (2t)-cycle (a1b1a2b2a3 · · · atbt).
Odd cycles of p, such as (d1d3d5 · · · dkd2d4 · · · dk−1) can be obtained
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as the square of (d1d2 · · · dk). After finding square roots for all cycles
of p, a good choice for the square root of p is the product of those
cycles.
We have proved that p has a square root if and only if p has an even
number of cycles of each even length.

(22) No, that is not true in this generality. The claim is true if k is prime,
and in that case, it can be proved the same way the previous exercise
was proved.
If k is not prime, however, then the statement is not true. For instance,
if k = 4, then the requirements do not say anything about the number
of 2-cycles of p. Thus p = (21)(3)(4)(5) · · · (n) would have to have a
fourth root. That is clearly impossible, however, as this p does not
even have a square root. (If there were a q so that q4 = p, then q2

would be a square root of p.) The reader is invited to construct a
similar counterexample for a generic composite number k.

(23) Take a pair (π, k) ∈ ODD(2m + 1)× [2m + 1], and insert the entry 1
to the (k + 1)th gap position. Note that this implies that the entry 1
cannot create a singleton cycle as it cannot go to the first gap position.
Take away the cycle C containing 1, and run Φ (of Lemma 6.20)
through the remaining cycles. Then, together with C, we have a
permutation in EVEN(2m + 2). Run it through Φ−1 to get τ(π, k) ∈
ODD(2m + 2).

(24) We are going to construct a bijection κ from SQ(2n)× [2n + 1] onto
SQ(2n + 1). As the growth of |SQ(n)| is equal to that of |ODD(n)|
when passing from an even n to an odd n + 1, we try to integrate
Ψ of Lemma 6.27 into κ, by “stretching” the odd cycles part of our
permutations. We proceed as follows.
Let (π, k) ∈ SQ(2n)× [2n + 1]. Take π, and break it into even cycles
part and odd cycles part, or, for short, odd part and even part. Again,
let k mark a gap position in π. If this gap position is in the odd cycles,
or at the end of π, then interpret the gap position as a gap position for
the odd part only, and simply run the odd part and this gap position
through Ψ to get κ(π), together with the unchanged even parts. Note
that 2n + 1 will appear in an odd cycle when we are done.
If the gap position marked by k is in one of the even cycles, say c, we
can think of it as marking the member of c immediately following it,
say x. Replace x by 2n + 1 in c. To keep the information encoded by
x, we interpret x as a gap position in the odd part of π. Indeed, if x is
larger than exactly i− 1 entries in the odd part, then let us mark the
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ith gap position in the odd cycles part. So now we are in a situation

like in the previous case, that is, the gap position is in the odd part.

Run the odd part and this gap position through Ψ. Instead of inserting

2n+ 1 to the marked position, however, insert temporarily a symbol

B, to denote a number larger than all entries in the odd part. Then

decrement all entries in the odd part that are larger than x (including

B) by one notch. The obtained odd cycles and the unchanged even

cycles (except for the mentioned change in c) give us κ(π). Note that

2n+ 1 will be in an even cycle when we’re done.

We claim that the map κ defined above is a bijection from the set

SQ(2n)× [2n+ 1] onto the set SQ(2n+ 1). First, let us verify that κ

maps into SQ(2n+ 1). Indeed, (π) and κ(π) have the same number

of cycles of each even length, so by Exercise 21, π ∈ SQ(2n) implies

κ(π) ∈ SQ(2n+ 1).

To get the reverse of κ, take a permutation π′ ∈ SQ(2n+1), and locate

2n+ 1. If it is in an odd cycle, then run the odd cycles through Ψ−1.

This will yield an odd part one shorter, and an element of [2n + 1].

Putting this together with the unchanged even part, we get κ−1(π′).
If 2n+1 is in an even cycle, then run the odd cycles part through Ψ−1.

This will specify a gap position in the odd part, and so we recover the

entry x. Increment entries larger than x by one notch in the odd part.

To get the even part, put x back to the place of 2n + 1. The gap

position immediately preceding 2n+ 1 is our k in κ−1(π′).
(25) Note that when we proved Theorem 6.24, we proved a special case of

this problem, that is, the one when k = 2. The very same method will

prove this general statement.
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You Shall Not Overcount. The Sieve

7.1 Enumerating The Elements of Intersecting Sets

In a high school class there are 14 students who play soccer and there are

17 students who play basketball. How many students play at least one of

these two sports?

The above question may sound extremely simple. However, we cannot

answer it from the given information. Simply adding the two given numbers

could yield an incorrect answer. Indeed, there may be students who play

both sports. If we simply added the number of basketball players and the

number of soccer players, we would count these students twice. To correct

that, we would have to subtract their number once (so that they are counted

only once), but we can only do that if we know their number.

Example 7.1. There are 14 students in a high school class who play soccer,

and there are 17 students who play basketball. Four students play both

games. How many students play at least one of the two games?

Solution. By the above argument, the number of students playing at least

one of these two games is 14 + 17− 4 = 27.

Figure 7.1 illustrates the above situation.

The situation becomes more complicated, but still controllable, if the

students are playing up to three different games. This is the content of our

next example.

Example 7.2. In a high school class, there are 14 students who play soccer,

17 students who play basketball, and 18 students who play hockey. Four

135
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Soccer Basketball

410 13

Fig. 7.1 Two intersecting sets.

students play both soccer and basketball, three play both soccer and hockey,

and five play both basketball and hockey. There is one student who plays

all three games. How many students play at least one of these games?

Solution. We can start our answer as before: adding the numbers of stu-

dents playing soccer, basketball and hockey 14 + 17 + 18 results in an

overcount because we count students who play two of these games twice,

therefore we have to correct this mistake and subtract the number of these

students so that they are only counted once. This yields the number

14 + 17 + 18 − 4 − 3 − 5. This is not a complete answer, however. The

only student who plays all three games was counted three times (once for

each game), but then she was subtracted three times (once for each pair of

games), so right now she is not counted at all. Therefore, we have to correct

this mistake by counting her, that is, by adding 1 to our final answer. Thus

there are 14 + 17 + 18− 4 − 3− 5 + 1 = 38 students in the class that play

at least one of these three games.

We can again represent this situation by a diagram. This diagram is

shown in Figure 7.2.

The reader can probably see that as the number of games increases,

the same question requires a more and more tedious answer. Therefore, a

general theorem is certainly useful to handle situations of this kind.

Theorem 7.3. [Sieve Formula.] Let A1, A2, · · · , An be finite sets. Then

|A1 ∪ A2 ∪ · · · ∪ An| =
n
∑

j=1

(−1)j−1
∑

i1,i2,··· ,ij
|Ai1 ∩ Ai2 ∩ · · · ∩Aij |, (7.1)
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8

Fig. 7.2 Three intersecting sets.

where (i1, i2, · · · , ij) ranges all j-element subsets of [n].

Note that Theorem 7.3 is called the Sieve Formula since it counts “good”

elements by sifting out the “bad” ones. A more formal name for the princple

behind that counting idea is the Inclusion-Exclusion Principle.

Before proving this quintessential theorem, we would like to stress that

the seemingly complicated expression on the right-hand side refers in fact

to a conceptually simple sum: the alternating sum of the sizes of all j-fold

intersections. The alternating sign is explained by the fact that we have

to correct the overcounts. The two examples discussed before the theorem

were the special cases when n = 2 and n = 3. In the first example, the sum

on the right-hand side was |A1|+ |A2| − |A1 ∩ A2|, in the second example,

the sum on the right-hand side was

|A1|+ |A2|+ |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|+ |A1 ∩ A2 ∩A3|.
Proof. (of Theorem 7.3) Notice that an element not in A1∪A2∪· · ·∪An

is not counted in any term on the right-hand side of (7.1). Thus we only

have to show that each element of A1∪A2∪· · ·∪An is counted exactly once

on the right-hand side. To do that, pick any element x ∈ A1∪A2∪· · ·∪An.

Let S ⊆ [n] be the set of indices so that x ∈ Ai if and only if i ∈ S,

and let s = |S|. Note that s ≥ 1. As x ∈ Ai only if i ∈ S, a t-fold

intersection Ai1 ∩Ai2 ∩· · ·∩Ait cannot contain x unless (i1, i2, · · · , it) ⊆ S.

So when determining the number of times x is counted by the right-hand

side, we only have to consider the intersections involving the Ai which are

indexed by S. On the other hand, each of these intersections does contain x.
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Therefore, the right-hand side counts x once for each of these subsets, with

alternating signs. So altogether, the right-hand side counts the element x

s−
(

s

2

)

+

(

s

3

)

− · · ·+ (−1)s−1

(

s

s

)

= 1 (7.2)

times. To see that the left-hand side of (7.2) is indeed 1, subtract 1 from

both sides, then multiply both sides by −1, to get

1− s+

(

s

2

)

−
(

s

3

)

− · · ·+ (−1)s
(

s

s

)

= 0 = (1 − 1)s,

which is true by the Binomial theorem (and is further explained in Theorem

16.21). �

7.2 Applications of the Sieve Formula

Let us discuss some classic applications of the sieve formula. The first is

the problem of derangements.

Example 7.4. A party was attended by n guests. When the guests arrived,

they left their hats in the same coatroom. After the party ended, there was

an electrical power failure, so each guest took a hat from the coatroom at

random. When the guests were back on the street, they were amused to

find out that none of them got his hat back. In how many different ways

could that happen?

In a more mathematical formulation: how many permutations of the

set [n] have no fixed points, that is, have the element i in the ith position

for no i? Such permutations are called derangements. Indeed, if the hat of

the first person is denoted by 1, that of the second person is denoted by 2,

and so on, then every way of the n people taking the n hats corresponds to

a permutation of the set [n]. If the first person takes hat 7, then the first

element of this permutation will be 7, if the second person takes hat 3, then

the second element of this permutation will be 3, and so on. Now that we

showed that the two formulations are in fact equivalent, we will give our

answer in the language of permutations.

Solution. (of Example 7.4) It is easy to count permutations in which entry

1 or entry 2 or entry i is not a fixed point, but we want permutations

with no fixed points. Their number is clearly equal to the number of all

permutations minus the number of permutations with at least one fixed
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point. This sounds similar to the two examples we have discussed at the

beginning of this section.

Let Ai be the set of all permutations of [n] in which the element i is

in the ith position, in other words, in which the element i is fixed. Then

Theorem 7.3 will give us the answer to our question if we can compute the

sizes of the intersections on the right-hand side of (7.1).

What is the size of A1? The set A1 consists of permutations in which

the first element is 1. This means that elements 2, 3, · · · , n, can be freely

permuted among each other, and this can be done in (n−1)! different ways.

So |A1| = (n− 1)!. Similarly, |A2| = (n− 1)! as in this case element 2 has

to be fixed, and all the remaining elements can be freely permuted. An

analogous argument shows that |Ai| = (n − 1)! for all n values i ∈ [n].

Therefore, the total contribution of the first term of the right-hand side to

the total value of the right-hand side is (n− 1)! · n = n!.

Now we move up to the next member of the right-hand side of (7.1),

that is, to intersections of the type |Ai ∩ Aj |. The set Ai ∩ Aj consists of

permutations in which elements i and j are fixed, and the remaining n− 2

entries can be permuted freely, in (n − 2)! ways. As there are
(

n
2

)

choices

for i and j, the total contribution of the second term is

−
(

n

2

)

(n− 2)! = − n!

2! · (n− 2)!
· (n− 2)! = −n!

2!
.

In general, a similar argument shows that the contribution of the ith

term is

(−1)i−1

(

n

i

)

· (n− i)! = (−1)i−1 n!

i! · (n− i)!
· (n− i)! = (−1)i−1n!

i!
.

Indeed, if i given elements are fixed, the remaining n − i elements can be

permuted in (n − i)! ways. On the other hand, there are
(

n
i

)

possibilities

for the set of i given elements.

Therefore, Theorem 7.3 yields

|A1 ∪ A2 · · · ∪An| =
n
∑

j=1

(−1)j−1
∑

i1,i2,··· ,ij
|Ai1 ∩Ai2 ∩ · · · ∩ Aij |

= n!− n!

2!
+

n!

3!
− · · ·+ (−1)n−1n!

n!
=

n
∑

i=1

(−1)i−1n!

i!
.

So we have computed the number of permutations of [n] with at least

one fixed point. Consequently, the numberD(n) of permutations of [n] with
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no fixed points, or the number of derangements, is n! minus this number,

that is,

D(n) =

n
∑

i=0

(−1)in!
i!
. (7.3)

This completes the proof.

The right-hand side of formula (7.3) strongly depends on n. Still, the

reader may want to get a feeling about roughly how likely it is that a

random permutation has no fixed point. One can get such an intuition by

dividing the number of favorable outcomes by that of all outcomes, that is,

dividing the number of all derangements of [n] by that of all permutations

of [n]. This yields

D(n)

n!
=

n
∑

i=0

(−1)i 1
i!

=
n
∑

i=0

(−1)i
i!

.

This shows that if n converges to infinity, then D(n)/n! converges to e−1,

so for large values of n, roughly 1/e (so more than one third) of all permu-

tations are derangements. So there is a fairly high chance all people will be

looking for their hats.

The reader is invited to prove that for all positive integers n, the number

D(n) is the closest integer to n!/e.

We have promised in Section 5.2 that we will obtain a formula for the

Stirling numbers of the second kind. Time has come to fulfill that promise.

Theorem 7.5. For all positive integers n and k, the equality

S(n, k) =
1

k!

k
∑

i=0

(−1)i
(

k

i

)

(k − i)n =

k
∑

i=0

(−1)i 1

i!(k − i)!
(k − i)n

holds.

Proof. Instead of finding a formula for S(n, k), we will find a formula for

k! · S(n, k). We know from Corollary 5.9 that the latter is the number of

all surjections from [n] to [k].

It is clear that the number of all functions from [n] to [k] is kn as any

element of the domain can be mapped into one of k elements. However,

not all these functions will be surjections; many will miss one, two, or more
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elements of [k] in their image. We have to enumerate those that do not

miss any element of k. This sounds a little bit similar to the previous

problem (there we were also interested in the number of certain objects no

part of which had a certain property). It is therefore hopeful that the same

approach will work here.

Let i ∈ [k] and let Ai denote the set of all functions from [n] to [k]

whose image does not contain i. It is then clear that |Ai| = (k − 1)n as

such functions can map any element of [n] into any one of k − 1 elements.

Similarly,

|Ai1 ∩ Ai2 ∩ · · · ∩ Aij | = (k − j)n,

for all j ≤ k. Therefore, the sieve formula yields:

|A1 ∪ A2 · · · ∪An| =
n
∑

j=1

(−1)j−1
∑

i1,i2,··· ,ij
|Ai1 ∩Ai2 ∩ · · · ∩ Aij |

=

k
∑

i=1

(−1)i−1

(

k

i

)

(k − i)n.

This is the number of functions from [n] to [k] whose range is not the

entire set [k]. So the number of those with range [k], in other words, the

number of surjections, can be obtained by subtracting this number from

that of all functions from [n] to [k], and our claim follows. �

The following Theorem is just a version of the sieve formula. We state it

separately as its formulation goes in a direction we will continue in Chapter

16.

Theorem 7.6. Let f and g be functions that are defined on the subsets of

[n], and whose range is the set of real numbers. Let us assume that f and

g are connected by

g(S) =
∑

T⊆S

f(T ).

Then

f(S) =
∑

T⊆S

g(T )(−1)|S−T |. (7.4)

Proof. If we express g(T ) by values of f on the right-hand side of (7.4),

we see that for all U ⊆ S, the value f(U) will appear once for each set

T satisfying U ⊆ T ⊆ S. Each such appearance of f(U) will be counted
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with a sign given by (−1)|S−T |. The number of such subsets T for which

|S − T | = i is equal to
(|S−U|

i

)

, since T is determined by the elements of S

that are not in T , and T contains U .

Therefore, f(U) will appear on the right-hand side of (7.4) exactly
∑|S−U|

i=0 (−1)i
(|S−U|

i

)

= (1 − 1)|S−U| times. This number is always zero,

except when |S − U | = 0, that is, when S = U . So the only term on

the right-hand side that does not cancel out will be f(S), and the claim is

proved. �

Notes

Chapter 2 of “Enumerative Combinatorics”, (Volume 1) by Richard Stanley

[41] provides a higher-level review of the applications of the Sieve Formula.

Exercises

(1) A grade school class has two sports teams. For any two students in the

class, there is at least one team so that the two students are members

of that team. Prove that there is a team that contains all students of

that class.

(2) A grade school class has three sports teams. For any two students

in the class, there is at least one team so that the two students are

members of that team. Prove that there is a team that contains at

least 2/3 of the students of the class.

(3) How many positive integers k ≤ 210 are relatively prime to 210?

(4) Let m be a positive integer. Denote by φ(m) the number of integers

in [m] that are relatively prime to m. Let p, q, and r be distinct prime

numbers. Compute φ(pqr).

(5) Let p1, · · · , pk be distinct prime numbers. Find a formula for

φ(p1 · · · pk).
(6) Is it true that φ(mn) = φ(n)φ(m), for all positive integers m and n?

(7) Find a formula for φ(pk), where p is a prime number.

(8) Find a formula for φ(n) if the prime factorization of n is known.

(9) Let p = p1p2 · · · pn be an n-permutation. We say that i is a descent of

p if pi > pi+1. The descent set of p is the set of all of its descents. How

many 8-permutations have descent set T that is a subset of {1, 4, 6}?
(10) How many 8-permutations have descent set {1, 4, 6}?
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(11) How many 8-permutations have descent set {1, 2, 4, 5, 7}?
(12) (This is a dual version of Theorem 7.6.) Let h and r be functions that

are defined on the subsets of [n], and whose range is the set of real
numbers. Assume that h and r are connected by

r(S) =
∑
S⊆T

h(T ).

Prove that then

h(S) =
∑
S⊆T

r(T )(−1)|T−S|.

(13) Let p = p1p2 · · · pn be an n-permutation, and assume n ≥ 3. We
say that i is an excedance of p if pi > i. Compute the number of
n-permutations whose excedance set contains at least one of n−2 and
n− 1.

(14) (+) Let f(n, k) be the number of ways to select a subset of [n], and
then select an involution on that subset that has k fixed points. (The
empty set has one involution, and that involution has no fixed points.)
Let g(n) =

∑n
k=0 f(n, k)(−1)k. Prove that g(n) is equal to the number

of fixed point-free involutions on [n].

Supplementary Exercises

(15) (-) How many partitions of [n] contain at least one of the singleton
blocks {1} and {n}?

(16) (-) How many n-permutations contain at least one of the 1-cycles (1),
(2), and (3)?

(17) (-) How many compositions does the integer n has in which neither
the first nor the last entry is 1?

(18) (-) How many permutations of length n contain at least one of the
2-cycles (12) and (34)?

(19) (-) How many n-permutations p = p1p2 · · · pn are there in which at
least one of p1 and pn is even?

(20) Give a combinatorial proof of the identity D(n+1) = n(D(n)+D(n−
1)) for n ≥ 1. Do not use the formula for the numbers D(n) that we
proved in the text. Set D(0) = 1 and D(1) = 0.

(21) How many n-permutations are there that contain exactly one cycle of
length one?
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(22) Let d(n, k) be the number of derangements of length n that consist
of k cycles. Find a formula for d(n, k) in terms of signless Stirling
numbers of the first kind.

(23) Let Fk(n) be the number of partitions of [n] into k blocks, each block
consisting of more than one element. Express the numbers Fk(n) in
terms of Stirling number of the second kind.

(24) How many three-digit positive integers are divisible by at least one of
six and seven?

(25) How many two-digit positive integers are relatively prime to both two
and three?

(26) In how many ways can we list the digits {1, 1, 2, 2, 3, 4, 5} so that two
identical digits are not in consecutive positions?

(27) How many positive integers are there that are not larger than 1000
and are neither perfect squares nor perfect cubes?

(28) Show an example of four infinite subsets of the set of all positive
integers so that the intersection of any three of them is an infinite set,
but the intersection of all four of them is empty.

(29) How many n-permutations are there with exactly one descent?
(30) (+) How many n-permutations are there with exactly two descents?
(31) How many 2 × 2 matrices are there with entries from the set

{0, 1, · · · , k} in which there are no zero rows and no zero columns?
(32) Let F (n) denote the number of partitions of [n] which contain no

singleton blocks. Find a formula for the numbers F (n) in terms of the
Bell numbers B(n).

(33) (+) Prove that limn→∞
F (n)
B(n) = 0.

(34) How many 2 × 2 matrices are there with entries from the set
{0, 1, 2, · · · , k} that contain neither 0 rows nor 0 columns?

(35) (+) Find a combinatorial proof for the result of Exercise 16 of Chapter
5. Do not use equation (5.2).

(36) Find a closed formula (no summation signs) for
∑n

i=0

(
n
i

)
D(i).

Solutions to Exercises

(1) Consider the diagram of this situation. It will look similar to Figure
7.1. We note, however, that in this case, it cannot happen that the
leftmost and the rightmost domains of that diagram both contain a
nonzero number. Indeed, that would mean that there is one student
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who is only a member of team A, and there is another one who is

only a member of team B, so they are not on any common teams.

Therefore, all positive integers of the diagram are contained in one of

the two circles. Thus one team must contain all students.

(2) Again, consider the diagram of this situation. It will be similar to

Figure 7.2. However, there cannot be any positive numbers in the

domains that belong to one circle only. (Unless, that is, all students

are on that team.) Denote A,B,C,D the numbers in the remaining

domains as shown in Figure 7.3. Assume without loss of generality

that C ≤ A, and C ≤ B. Then

A+B +D

A+B + C +D
≥ A+B

A+B + C
≥ A+B

A+B + (A+B)/2
=

2

3
.

We used the fact that a fraction that is less than one increases if we

increase its numerator and denominator by the same positive number.

D

A

CB

Fig. 7.3 The situation of Exercise (2).

(3) Let Ai be the set of those positive integers from [210] that are divisible

by pi, where p1 = 2, p2 = 3, p3 = 5, and p5 = 7. Then |Ai| = 210
pi

,

|Ai ∩ Aj | = 210
pipj

, and |Ai ∩ Aj ∩ Ak| = 210
pipjpk

. Therefore, we have all

the ingredients for the application of the sieve formula. We get, after

routine computation,

210− | ∪4i=1 Ai| = 48.

This method takes a long time, even for small numbers like 210. The

following exercises will show a much faster method.

(4) We count those positive integers that are not relatively prime to pqr

instead. Clearly, there are pq integers in [pqr] that are divisible by r,

there are pr that are divisible by q, and there are qr that are divisible
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by p. On the other hand, there are p integers in [pqr] that are divisible

by qr, there are q that are divisible by pr, and there are pq that are

divisible by r. Finally, pqr is the only integer in this interval that is

divisible by pqr. Therefore, the sieve implies

φ(pqr) = pqr − pq − pr − qr + p+ q + r − 1 = (p− 1)(q − 1)(r − 1).

Note that the function φ is called Euler’s totient function.

(5) Let m = p1 · · · pk, and let m′ = p1 · · · pk−1. We claim that φ(m) =

Πk
i=1(pi−1). We are going to prove this claim by induction on k. The

initial case of k = 1 is obviously true. Assume the statement is true

for k − 1, and prove it for k.

By the induction hypothesis, there are φ(m′) = Πk−1
i=1 (pi − 1) integers

in [m′] that are relatively prime to [m′]. Moreover, if q ≤ pk − 1, then

n = m′q + r is relatively prime to m′ if and only if r is relatively

prime to m′. Therefore, there are pk · φ(m′) integers in [m] that are

relatively prime to [m′]. As divisibility by pi for i < k does not

influence divisibility by pk, exactly
1
pk

of these numbers is divisible by

pk, and exactly pk−1
pk

of them is relatively prime to pk. Therefore, we

get

φ(m) =
pk − 1

pk
· pk · φ(m′) = Πk

i=1(pi − 1).

(6) No, that is not true. For instance, φ(2) = 1, φ(4) = 2, however

φ(8) = 4.

(7) In this case, m is relatively prime to pk if and only if m is not divisible

by p. As exactly one integer in [p] is divisible by p, we have φ(pk) =
p−1
p · pk = pk−1(p− 1).

(8) Let n = pa1

1 · · · pak

k , where the pi are the prime divisors of n. We claim

that φ(n) = Πk
i=1p

ai−1
i (pi − 1). We prove this claim by induction on

k. The initial case of k = 1 is true as it was proved in the previous

exercise. The induction step is analogue to that of Exercise 5.

(9) In 8-permutations with a descent set contained in {1, 4, 6}, we know

that p2 < p3 < p4, moreover p5 < p6, and p7 < p8. There is no

requirement on the relations not listed here. Therefore, we can get

such a permutation if we split the set [8] into four subsets, of sizes

1, 3, 2, and 2, arrange each of these subsets in increasing order, then

concatenate the four increasing strings in this order. The number of

ways to do this is
(

8

1

)(

7

3

)(

4

2

)(

2

2

)

= 8 · 35 · 6 · 1 = 1680,

so this is the number of permutations with the required property.
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(10) We are going to use Theorem 7.6. Denote g(S) the number of permu-

tations with descent set contained in S, and denote f(S) the number

of permutations with descent set equal to S. In order to be able

to use Theorem 7.6, we have to compute the values of g(T ), for all

T ⊆ {1, 4, 6}. This has been done for T = {1, 4, 6} in the previous

exercise. It is also obvious that g(∅) = 1. For the other subsets, we

proceed as in the previous exercise, and get

• g({1}) =
(

8
1

)

= 8,

• g({4}) =
(

8
4

)

= 70,

• g({6}) =
(

8
6

)

= 28,

• g({1, 4}) =
(

8
1

)(

7
3

)

= 280,

• g({1, 6}) =
(

8
1

)(

7
5

)

= 168,

• g({4, 6}) =
(

8
4

)(

4
2

)

= 420.

Therefore, Theorem 7.6 shows

f({1, 4, 6}) = 1680− 280− 168− 420 + 8 + 70 + 28− 1 = 917.

(11) It would take a long time to proceed as in the previous exercise, so

we apply the following trick. Instead of counting these permutations

p = p1p2 · · · p8, count their reverses p′ = p8p7 · · · p1. As p had descent

set {1, 2, 4, 5, 7}, its reverse will have descent set {2, 5}. Indeed, if i

was not a descent in p, then pi < pi+1. So in the reverse permutation

p′, the entry pi+1, that is in position 8 − i, will be larger than the

entry immediately following it. Therefore, 8− i is a descent of p′.
Consequently, we only have to compute f({2, 5}), and that is relatively

simple. We have

• g(∅) = 1,

• g({2}) =
(

8
2

)

= 28,

• g({5}) =
(

8
5

)

= 56,

• g({2, 5}) =
(

8
2

)(

6
3

)

= 560.

Therefore, Theorem 7.3 implies

f({2, 5}) = 560− 28− 56 + 1 = 477 = f({1, 2, 4, 5, 7}).
(12) Define new functions f and g by f(A) = h(Ac), and g(A) = r(Ac),

where Ac denotes the complement of A in [n]. Then the condition

of this exercise translates into the condition of Theorem 7.6, and the

result of Theorem 7.3 translates back to the result of this exercise.

(13) Let f(S) be the number of n-permutations whose excedance set con-

tains S. Then f(n− 1) = (n− 1)! as in such permutations, the entry
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n must be in position n − 1. Similarly, f(n − 2) = 2(n − 1)! as in

permutations enumerated by f(n − 2), either the entry n − 1 or the

entry n has to be in position n− 2. Finally, f(n− 2, n− 1) = (n− 2)!

as in such permutations, the entry n must be in position n − 1, and

the entry n − 1 must be in position n − 2. Therefore, by the sieve

formula, there are

f(n− 1) + f(n− 2)− f(n− 2, n− 1) = 3(n− 1)!− (n− 2)!

permutations with the required property.

(14) The statement to prove is equivalent to
∑

k even

f(n, k)−
∑

k odd

f(n, k) = g(n).

Let S ⊆ [n], and let p be an involution on S. Now consider the

following map. Find the largest element M of [n] that is either a fixed

point of p or is not in S. If M ∈ S, remove M from S, and remove

M from p. This results in a new, shorter involution F (p) that has one

less fixed points than p. If M /∈ S, then add M to S, and add M to

p as a fixed point. This results in a new, longer involution F (p) that

has one more fixed points than p.

So the parity of the number of fixed points of p and F (p) is always

different. In other words, the involution F matches involutions with

an even number of fixed points with involutions with an odd number

of fixed points. The only time F is not defined is when M is not

defined, that is, when the set whose maximum was defined to be M is

empty. That happens exactly when S = [n] and p has no fixed points.
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A Function Is Worth Many Numbers.

Generating Functions

As Herb Wilf said, a generating function of a sequence is a clothesline on

which you hang all elements of the sequence. That single clothesline con-

tains all elements of the sequence, and all information about them. This

great idea, that is, to comprise data given by infinitely many numbers into

a single function, leads to what is arguably the most powerful tool in Enu-

merative Combinatorics, namely to the technique of generating functions.

8.1 Ordinary Generating Functions

8.1.1 Recurrence Relations and Generating Functions

The frog population of an infinitely large lake grows fourfold each year. On

the first day of each year, 100 frogs are taken out of the lake and shipped

into another lake. Assuming that there were 50 frogs in the lake originally,

how many frogs will be in the lake in 20 years? In 30 years? In 100 years?

In n years?

The difficulty here does not lie in finding some kind of an answer. It is

very easy to find a recursive answer. Indeed, if ai denotes the number of

frogs at the end of the ith year, so that a0 = 50, a1 = 4 · 50 − 100 = 100,

a2 = 4 · 100 − 100 = 300, and so on, then it is not difficult to prove that

an+1 = 4an − 100 if n ≥ 0. In the computer age, such an answer is very

useful, as we can go ahead and compute the values of an for all n as long as

the memory of our computer lasts. There is, however, a tremendous waste

in this method. Let us assume that we are only interested in the number of

frogs after 87 years. Then, using the formula an+1 = 4an − 100, we would

have to compute the values of a1, a2, · · · , a86 in order to be able to compute

149
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a87 at the end. So we would have to compute 86 values in which we were

not interested.

To avoid such a waste of time and energy, it is best to find an explicit

formula for an. That is, we would like to deduce a formula for an that does

not contain an−1, or any other elements of the sequence; a formula that

depends only on n, and is therefore directly computable.

All we have to work with is the equation

an+1 = 4an − 100, (8.1)

and the initial condition a0 = 50. This seems to be precious little at first

sight. However, (8.1) holds for all non-negative values of n. So we in fact

have infinitely many equations, in infinitely many variables. To collect all

the information scattered in these infinitely many equations into just one

equation, we will introduce the technique of generating functions.

Definition 8.1. Let {fn}n≥0 be a sequence of real numbers. Then the

formal power series F (x) =
∑

n≥0 fnx
n is called the ordinary generating

function of the sequence {fn}n≥0.

As this section discusses ordinary generating functions only, we will some-

times omit the word “ordinary” for shortness. In what follows, we will

manipulate (8.1) so that the ordinary generating function of the sequence

{an} appears. To that end, let us multiply both sides of (8.1) by xn+1,

then sum over all n ≥ 0. This may well be a new operation for the reader,

and it is crucial for the rest of this chapter, so we repeat it one more time.

Take a copy of (8.1) for each non-negative integer n, multiply both sides by

xn+1, and then take the sum of the infinitely many equations obtained. We

get

∑

n≥0

an+1x
n+1 =

∑

n≥0

4anx
n+1 −

∑

n≥0

100xn+1. (8.2)

The left-hand side is almost the generating functionG(x) of the sequence

{an}n≥0. Indeed, after replacing n + 1 by n, the only missing term is a0.

So the left-hand side of (8.2) is G(x)− a0. The first term of the right-hand

side is 4xG(x), while the second term of the right-hand side is 100x
1−x , by

elementary calculus. So (8.2) is equivalent to

G(x) − a0 = 4xG(x)− 100x

1− x
. (8.3)
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We have completed our first task: we compressed the information given

by the infinitely many equations of the type an+1 = 4an−100 into just one

equation.

The reader may think something along these lines “Big deal. True, the

number of equations is only one, but that one equation contains the function

G(x), which has infinitely many terms, and is a weird thing anyway. So

where is the great progress?” We cannot blame the reader for such thoughts

at this point; they are quite natural. However, equation (8.3) is very useful,

mainly because G(x) is not just any function, it is a (formal) power series.

Though the reader has probably met power series while studying calculus,

the word formal is important there. By definition, a formal power series is

an expression of the form
∑

n≥0 bnx
n, where the bi are real numbers. Thus

formal power series are defined by their coefficients, and are not necessarily

equal to the Taylor series of some function. For example, the formal power

series
∑

n≥0 n!x
n is not equal to the Taylor series of any function as it is

not convergent for any x 6= 0.

Rearranging (8.3) we get

G(x) =
a0

1− 4x
− 100x

(1 − x)(1 − 4x)
. (8.4)

Remember that a0 = 50, so the right-hand side does not contain any

unknowns, in other words, it is a formal power series in x. Therefore, we

have obtained an explicit formula for G(x), the generating function of the

sequence {an}.
Finally, we want to obtain an explicit formula for the numbers an them-

selves. Note that (8.4) is an equation on formal power series, and two formal

power series are equal if and only if for all n, the coefficient of xn is the

same in both of them. The coefficient of xn in G(x) (so on the left-hand

side of (8.4)) is an by definition. Therefore, in the formal power series on

the right-hand side of (8.4), the coefficient of xn is also an. On the other

hand, we can also compute this coefficient as the sum of the coefficients

of xn in the two members of the right-hand side. The first term is easier.

Indeed,
a0

1− 4x
= 50

∑

n≥0

(4x)n = 50
∑

n≥0

4nxn,

so in the first term of the right-hand side, the coefficient of xn is 50 · 4n.
The second term is a little bit more complicated. That term is

100x

(1 − x)(1 − 4x)
= 100x ·





∑

n≥0

xn



 ·





∑

n≥0

4nxn



 .
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So the constant (the coefficient of x0) is 0 in this term, and if n ≥ 1,

then we have to find the coefficient of xn−1 in the product
(

∑

n≥0 x
n
)

·
(

∑

n≥0 4
nxn

)

. This, that is, finding the coefficient of an in a product, is

something we will have to do very often while using generating functions.

There are two ways to do this; we will show one now, and the other one

after the completion of this solution.

The method we show now is that of partial fractions, which the reader

may have well seen before in a Calculus or Differential Equations class.

Let us try to find constants A and B so that

A

1− x
+

B

1− 4x
=

100x

(1− x)(1 − 4x)
.

Multiplying both sides by (1− x)(1 − 4x) yields

A(1− 4x) +B(1 − x) = 100x,

(−B − 4A)x+A+B = 100x.

The polynomial on the left-hand side will be equal to the polynomial on the

right-hand side if the coefficients of the two linear terms are the same and

the two constants are the same. That is, −B − 4A = 100, and A+ B = 0.

Solving this system, we get that A = 100/3 and B = −100/3. Therefore,
100x

(1− x)(1 − 4x)
=

100

3
· 1

1− 4x
− 100

3
· 1

1− x

=
100

3





∑

n≥0

4nxn −
∑

n≥0

xn





=
∑

n≥0

(4n − 1)xn 100

3
.

Now that we have computed both terms on the right-hand side of (8.3),

we can conclude that the coefficient of xn there (and thus, the left-hand

side of (8.3)) is

an = 50 · 4n − 100 · 4
n − 1

3
. (8.5)

We have completed our task, that is, we have found an explicit for-

mula for an. It is easy to check that (8.5) is indeed the correct formula.

Substituting n = 0 we indeed get a0 = 50. Moreover,

4an−100 = 4(50 ·4n−100 · 4
n − 1

3
)−100 = 50 ·4n+1−100 · 4

n+1 − 4

3
−100
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= 50 · 4n+1 − 100 · 4
n+1 − 1

3
,

so the sequence of numbers given by our explicit formula (8.5) satisfies the

recurrence relation (8.1).

Let us summarize the technique we have just learned to turn recursive

formulae into explicit ones.

(1) Define the ordinary generating function G(x) of the sequence {an}n≥0.

(2) Transform the recursive formula into an equation in G(x). This can

usually be done by multiplying both sides of the recursion by xn, or

xn+1, sometimes xn+k, and summing for all non-negative n.

(3) Solve for G(x).

(4) Find the coefficient of xn in G(x). As this coefficient is an, this will

provide an explicit formula for an.

Remarks.

(1) Here is an alternative way of handling the expression 100x
(1−x)(1−4x) =

100x·(∑n≥0 x
n)·(∑n≥0 4

nxn). There are many ways we can get a term

in our product (
∑

n≥0 x
n) · (∑n≥0 4

nxn) in which the exponent of x is

n− 1. (We are interested in that coefficient because when we multiply
∑

n≥0 4
nxn by 100x, this coefficient will turn into the coefficient of xn.)

We can take 1 from the first sum, and multiply it by 4n−1xn−1 from

the second sum. Or we could take x from the first sum, and multiply it

by 4n−2xn−2 from the second sum. In general, if i is such that 0 ≤ i ≤
n−1, we can take xi from the first sum, and multiply it by 4n−1−ixn−1−i

from the second sum, getting the term 4n−1−ixn−1. There are no other

ways to get xn−1 in our product as the coefficients of x are non-negative

in both sums. So the coefficient of xn−1 in (
∑

n≥0 x
n) · (∑n≥0 4

nxn) is

4n−1 + 4n−2 + · · ·+ 4 + 1 =
4n − 1

4− 1
=

4n − 1

3
.

Therefore, the coefficient of xn in 100x
(1−x)(1−4x) is 100 · 4n−1

3 , agreeing

with our previous computation.

(2) There are several software packages that can compute the partial frac-

tion decomposition of 100x
(1−x)(1−4x) . For instance, in Maple, we can sim-

ply type

convert(100*x/((1-x)*(1-4*x),parfrac,x));

to obtain the desired decomposition.
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Let us practice the technique of generating functions with another ex-

ample.

Example 8.2. We have invested 1000 dollars into a savings account that

pays five percent interest at the end of each year. At the beginning of each

year, we deposit another 500 dollars into this account. How much money

will be in this account after n years?

Solution. It is again very easy to find a recurrence relation. Let an be the

account balance after n years. Then a0 = 1000, and an+1 = 1.05 ·an+500.

Let us go through the steps of our strategy one by one.

(1) Let G(x) =
∑

n≥0 anx
n be the generating function of the sequence

{an}n≥0.

(2) Multiplying both sides of the recurrence relation by xn+1 and summing

over all non-negative integers n, we get
∑

n≥0

an+1x
n+1 =

∑

n≥0

1.05anx
n+1 +

∑

n≥0

500xn+1. (8.6)

Here the left-hand side is clearly G(x)− a0, while the first term of the

right-hand side is 1.05xG(x), and the second term of the right-hand

side is simply 500x
1−x . So (8.6) is equivalent to

G(x) − a0 = 1.05xG(x) +
500x

1− x
.

(3) Therefore,

G(x) =
1000

1− 1.05x
+

500x

(1− x)(1 − 1.05x)
. (8.7)

(4) To find an, it suffices to find the coefficient of xn on the right-hand

side, which is the sum of the coefficient of xn in the first term, and the

coefficient of xn in the second term. Note that
1000

1− 1.05x
= 1000 ·

∑

n≥0

1.05nxn,

so the coefficient of xn in the first term is 1000 · 1.05n. For the second

term, note that

500x

(1− x)(1 − 1.05x)
= 500x ·





∑

n≥0

xn









∑

n≥0

1.05nxn



 . (8.8)

In order to find the coefficient of xn in this expression, we will now

use the alternative method shown in the Remarks after the previous
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example. If the reader is less than certain that he could apply the

method of partial fractions here, we encourage the reader to try that

method and compare his result to ours.

Note that to find the coefficient of xn in (8.8), it suffices to find the

coefficient of xn−1 in
(

∑

n≥0 x
n
)(

∑

n≥0 1.05
nxn

)

. In this product,

we will get a term with exponent n− 1 if and only if we take xi from

the first sum, and 1.05n−1−ixn−1−i from the second sum, for some i so

that 0 ≤ i ≤ n − 1. (Because then the coefficients of x will add up to

n − 1, as needed.) Therefore, the coefficient of xn in the second term

of the right-hand side of (8.7) is

500

n−1
∑

i=0

1.05i = 500
1.05n − 1

1.05− 1
= 10000 · (1.05n − 1).

Therefore, the coefficient of xn on the right-hand side, and therefore,

the left-hand side of (8.7) is

an = 1000 · 1.05n + 10000 · (1.05n − 1) = 1.05n · 11000− 10000.

The following example shows how we could use the technique of gener-

ating functions to turn a recurrence relation to an explicit formula if the

recurrence relation has more terms.

Example 8.3. Let an+2 = 3an+1 − 2an if n ≥ 0, and let a0 = 0, and let

a1 = 1. Find an explicit formula for an.

Solution. Let G(x) =
∑

n=0 anx
n. Multiply both sides of the recurrence

relation by xn+2, and sum over all natural numbers n, to get
∑

n≥0

an+2x
n+2 = 3

∑

n≥0

an+1x
n+2 − 2

∑

n≥0

anx
n+2,

which is equivalent to

G(x) − x = 3xG(x) − 2x2G(x).

Expressing G(x), we get

G(x) =
x

1− 3x+ 2x2
.

The denominator of the right-hand side is again a quadratic polynomial.

Note that 1 − 3x+ 2x2 = (x− 1)(2x− 1). Therefore, we are going to find

real numbers A and B so that

G(x) =
x

1− 3x+ 2x2
=

A

x− 1
+

B

2x− 1
. (8.9)
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After rearranging (8.9), we get

x = (2A+B)x − (A+B).

Two polynomials are the same if and only if their corresponding coefficients

are the same. Therefore, it follows that 2A + B = 1, and A + B = 0. So

A = 1, and B = −1. Consequently, (8.9) yields

G(x) =
x

1− 3x+ 2x2
=
−1

1− x
+

1

1− 2x
. (8.10)

Both terms on the right-hand side are very easy to expand now. So

G(x) = −
∑

n≥0

xn +
∑

n≥0

2nxn =
∑

n≥0

(2n − 1)xn

and therefore, an = 2n − 1.

8.1.2 Products of Generating Functions

Our examples in the previous subsection showed how to use generating

functions to turn a recurrence relation into an explicit formula. However,

they only contained one generating function. Time has come for us to learn

about the combinatorial use of the product of several generating functions.

Lemma 8.4. Let {an}n≥0 and {bn}n≥0 be two sequences, and let A(x) =
∑

n≥0 anx
n, and B(x) =

∑

n≥0 bnx
n be their respective generating func-

tions. Define cn =
∑n

i=0 aibn−i, and let C(x) =
∑

n≥0 cnx
n. Then

A(x)B(x) = C(x).

In other words, the coefficient of xn in A(x)B(x) is cn =
∑n

i=0 aibn−i.

Proof. When we multiply the infinite sum A(x) = a0 + a1x+ a2x
2 + · · ·

and the sum B(x) = b0 + b1x + b2x
2 + · · · , we multiply each term of the

first sum by each term of the second sum, then add all these products. So a

typical product is of the form aix
i · bjxj . The exponent of x in this product

will be n if and only if j = n− i, and the claim follows. �

The combinatorial consequence of Lemma 8.4 is the following theorem.

Theorem 8.5. [The Product formula] Let an be the number of ways to

build a certain structure on an n-element set, and let bn be the number of

way to build another structure on an n-element set. Let cn be the number

of ways to separate n into the intervals S = {1, 2, · · · , i} and T = {i+1, i+
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2, · · · , n}, (the intervals S and T are allowed to be empty), and then to

build a structure of the first kind on S, and a structure of the second kind

on T . Let A(x), B(x), and C(x) be the respective generating functions of

the sequences {an}, {bn}, and {cn}. Then

A(x)B(x) = C(x).

Proof. There are ai ways to build a structure of the first kind on S, and

bn−i ways to build a structure of the second kind on T . This is true for all

i, as long as 0 ≤ i ≤ n. Therefore, cn =
∑n

i=0 aibn−i, and our claim follows

from Lemma 8.4. �

Example 8.6. A semester at a Technical University consists of n days. At

the beginning of each semester, the Dean of Engineering designs the term

in the following way. She splits the term into two parts. The first k days

of the term will form the theoretical part of the semester, and the second

n − k days will form the laboratory part (here 1 ≤ k ≤ n − 2). Then she

chooses one holiday in the first part, and two holidays in the second part.

In how many different ways can she design the term with these constraints?

Solution. Let fn be the number of ways the Dean can plan the semester.

It is straightforward to see that fn =
∑n−2

k=1 k
(

n−k
2

)

. Looking at this ex-

pression, however, it is not so easy to see if it has a closed form (that is, a

form without a summation sign), and if it does, what it is.

Let us separate problems of finding holidays in the two parts of the

semester. There are k ways to do it in the first part, and
(

m
2

)

ways to do it

in the second part, where m = n− k.

The generating functions of these two sequences are A(x) =
∑

k≥1 kx
k,

and B(x) =
∑

m≥2

(

m
2

)

xm. Recall from Calculus that
∑

i≥0 x
i = 1

1−x .

Taking derivatives, (see Exercise 25 of Chapter 4 for another argument)

this implies

A(x) =
x

(1− x)2
,

B(x) =
x2

(1 − x)3
.

Now let F (x) be the generating function of the sequence {fn}. Then
A(x)B(x) = F (x). Therefore,

F (x) = A(x)B(x) =
x3

(1− x)5
= x3

∑

n≥0

(

n+ 4

4

)

xn =
∑

n≥3

(

n+ 1

4

)

xn.

This shows that fn =
(

n+1
4

)

.
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Note that the solution of the previous example used the fact that (1−x)−5 =
∑

n≥0

(

n+4
4

)

xn. The reader is encouraged to find two proofs of this fact.

Example 8.7. Now let us assume that instead of holidays, the Dean

chooses some days for independent study in both parts of the semester. In

how many different ways can she plan the semester with these constraints?

Solution. Let gn be the number of ways the dean can complete this task.

Again, let us split the problem into two parts. Let C(x) be the generating

function for the number of ways to pick a set of days for independent study

in the first part. As a k-element set has 2k subsets, we have C(x) =
∑

k≥0 2
kxk = 1

1−2x . Clearly, the second part has the same generating

function, as the task at hand is the same. Therefore, we get

F (x) = C(x)C(x) =
1

(1− 2x)2
.

This shows that F (x) = 1
2C

′(x). Therefore,

F (x) =
1

2
·
∑

n≥1

n · 2nxn−1 =
∑

n≥0

(n+ 1)2nxn,

showing that gn = (n+ 1) · 2n.

A little thought shows that Theorem 8.5 can easily be generalized from

two generating functions into any fixed number of generating functions. The

following example is an application of this generalized Product formula.

Example 8.8. Find the number of ways to split an n-day semester into

three parts, choose any number of holidays in the first part, an odd number

of holidays in the second part, and an even number of holidays in the third

part.

Solution. Let gn be the number of ways the one can plan such a semester.

Let A(x), B(x), and C(x) be the generating functions for the sequences for

the three individual tasks. That is A(x) =
∑

n≥0 2
nxn = 1

1−2x since there

are 2n ways to choose an unspecified number of holidays from a set of n

days. As we have seen in Exercise 2 of Chapter 3, the number of subsets

of [n] that are of odd size is 2n−1 if n ≥ 0, and 0 if n = 0. Therefore,

B(x) =
∑

n≥1 2
n−1xn = x

1−2x . Finally, the reader is asked to prove that

the number of subsets of [n] that are of even size is 2n−1 if n ≥ 1, and 1 if

n = 0. Therefore, C(x) = 1 + x
1−2x = 1−x

1−2x .

Now let G(x) be the generating function of the sequence {gn}. Then
G(x) = A(x)B(x)C(x).
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Therefore,

G(x) = A(x)B(x)C(x) =
1

1− 2x
· x

1− 2x
· 1− x

1− 2x

=
x(1 − x)

(1 − 2x)3
.

The partial fraction decomposition leads to the equation

G(x) = −1

4
· 1

1− 2x
+

1

4
· 1

(1− 2x)3
.

Finally, using the binomial theorem, we get that

(1− 2x)−3 =
∑

n≥0

(−3
n

)

(−2x)n =
∑

n≥0

(

n+ 2

2

)

2nxn.

Therefore,

G(x) = −1

4





∑

n≥0

2nxn



+
1

4





∑

n≥0

(

n+ 2

2

)

2nxn



 .

So gn = (
(

n+2
2

)

2n − 2n)/4 = 2n−3n(n+ 3), for n ≥ 0.

Example 8.9. If p≤k(n) denotes the number of partitions of the integer n

into parts of size at most k, then

∞
∑

n≥0

p≤k(n)x
n =

k
∏

i=1

1

1− xi
(8.11)

= (1+x+x2+x3+ · · · )(1+x2+x4+x6+ · · · ) · · · (1+xk+x2k+x3k+ · · · ).

Solution. Let us determine the coefficient of xn on the right-hand side.

The right-hand side is a sum of k-term products, such that each member

comes from a different parentheses. The member from the ith parentheses

is of the form xiji , and the sum of the exponents of the k terms is n. In

other words, 1j1 + 2j2 + · · · kjk = n. If we write 1 + 1 + · · ·+ 1 (j1 copies

of 1) instead of 1j1, and in general, i + i + · · · + i (ji copies of i) instead

of iji in the previous equation, we obtain a partition of n into the sum of

parts that are at most k.

Using this procedure, each time a product on the right-hand side is equal

to xn, we obtain a partition of n into the sum of parts that are at most k.

Conversely, each partition of n into parts at most k can be associated to a

product on the right-hand side, and the statement follows.
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In Chapter 5, we proved that p≤k(n) is also the number of partitions of

n into at most k parts. Thus
∏k

i=1
1

1−xi is also the generating function of

those partitions.

You could ask what the use of all this is if the above generating function

does not yield a particularly nice closed formula for the numbers p≤k(n). A

quick answer is that any mathematics software can provide the expansion

of (8.11) up to several dozen terms, so (8.11) provides a painless way to

obtain a lot of numerical data.

A much deeper answer, and we will see examples of that soon, is that

the generating function of a sequence contains a lot of information about

the sequence, sometimes even more than an exact formula.

Example 8.10. If p(n) denotes the number of partitions of the integer n,

then
∞
∑

n≥0

p(n)xn =

∞
∏

k=1

1

1− xk
(8.12)

= (1+x+x2+x3+ · · · )(1+x2+x4+x6+ · · · )(1+x3+x6+x9+ · · · ) · · · .

Solution. Same as the proof of the previous example, just here there is

no limit on the size of the parts, and therefore, there are infinitely many

parentheses on the right-hand side.

The reader may think that such a generating function, that is, the

infinite product of sums, is not very useful. Indeed, a computer would

have a hard time to handle an infinite formula. The following example

refutes that belief. It is a stunning example of a problem that is much

easier to handle with generating functions than without them.

Example 8.11. The number podd(n) of partitions of n into odd parts is

equal to the number pd(n) of partitions of n into all distinct parts.

Solution. The crucial idea is this. It suffices to show that the generating

functions of the two sequences are equal. It is clear that

F (x) =
∑

n≥0

podd(n)x
n =

∏

i≥1

i odd

1

1− xi

and

G(x) =
∑

n≥0

pd(n)x
n =

∏

i≥1

(1 + xi) =
∏

i≥1

1− x2i

1− xi
.
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Note that after cancellations, the denominator of G(x) will contain (1−xi)

if and only if i is odd, and will therefore be the same as the denominator

of F (x). As both numerators are equal to 1, the proof follows.

8.1.2.1 The Catalan Numbers

A student moves into a new room, and upon his arrival, he puts an empty

jar on his kitchen counter. From that on, every day he either puts a dollar

coin in the jar, or takes a dollar coin out of the jar. After 2n days, the jar

is empty again. In how many different ways could this happen?

This easily defined problem leads to a very famous, and exception-

ally well-studied sequence of positive integers. Let cn be the number of

ways in which the events described in the preceding paragraph could take

place, with c0 = 1. Formally speaking, cn is the number of sequences

b1, b2, · · · , b2n so that bj = ±1 for all j, with
∑2n

j=1 bj = 0, and, crucially,

for all k ∈ [2n], the inequality
∑k

j=1 bj ≥ 0 holds. Indeed, the jar never

holds a negative number of coins. Let us call such sequences good sequences

of length 2n.

Let C(x) =
∑

n≥0 cnx
n be the ordinary generating function of the se-

quence of the numbers cn. The beauty of this example lies in the fact

that we can use the Product formula to get a functional equation for C(x).

Though it is not immediately obvious on the outset, good sequences have

a natural way of decomposing into an ordered pair of two structures, and

therefore, the Product formula is relevant here. Of further interest is the

fact that one of these structures will also have C(x) for its generating func-

tion, while the other structure will have xC(x) for its generating function.

In order to find this decomposition, note that if n > 0, and the jar is

empty after 2n days, then there had to be a first day other than the starting

day when the jar was empty. Let us say that the first such day was day

2i, for some i ∈ [n]. (The reader is asked to prove that the jar can only be

empty after an even number of days.) It is then clear that what happened

from day 2i to day 2n is equivalent to a good sequence of length 2(n− i).

However, we must be a little bit more careful when we describe what

happened during the first 2i days. There, we do not simply have a good

sequence of length 2i, but a good sequence of length 2i in which all the

partial sums
∑k

j=1 bj are positive if 0 < k < i. Let us call such sequences

very good. Indeed, this positivity is equivalent to the fact that day 2i is the

first day when the jar is empty. Note that there is a bijective correspondence

between the very good sequences B = (b1, b2, · · · , b2i) of length 2i, and the
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good sequences B′ = (b2, b3, · · · , b2i−1) of length 2(i − 1). Indeed, a very

good sequence must start with a 1 and end in a −1; removing these two

entries we get a good sequence that is two bits shorter. By the removal of

these two entries, the sums of initial segments got only one smaller, so they

are still non-negative.

In other words, if n ≥ 1, then the number of very good sequences

of length 2i is ci−1. Their number is 0 if i = 0 since there will be no

initial segments with positive sums then. So the generating function for

the numbers of very good sequences is
∑

n≥1 cn−1x
n = xC(x).

Now we are ready to use the Product formula. The above discussion

shows that each good sequence of length 2n > 0 decomposes in a natural

and unique way into a very good sequence of length 2i and a good sequence

of length 2(n− i) for some i ∈ [n]. Therefore, the Product formula implies

that

C(x) − 1 = xC(x) · C(x).

Note that we wrote C(x)− 1, and not C(x), on the left-hand side, since for

n = 0, the above decomposition does not exist.

The last displayed equation can be rearranged as

xC(x)2 − C(x) + 1 = 0, (8.13)

which is a quadratic equation for C(x). We can solve this equation using

the well-known formula for solving quadratic equations. However, there

is a last hurdle to clear. The quadratic formula implies that (8.13) has

two solutions, namely 1+
√
1−4x
2x and 1−√

1−4x
2x . How do we know which

one to choose for C(x)? In order to answer this question, note that C(x)

has constant term 1, so we have to choose the solution which also has

constant term 1. Substituting x = 0, we see that the second solution has

this property, therefore,

C(x) =
1−
√
1− 4x

2x
. (8.14)

Recall that we computed in Example 4.16 that
√
1− 4x = 1 − 2x −

2
∑

n≥2
(2n−2

n−1 )
n xn. Comparing this with (8.14), we get

C(x) =
∑

n≥0

(

2n
n

)

n+ 1
xn,

so cn =
(2nn )
n+1 .
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The numbers cn are called the Catalan numbers, named after the French

mathematician Eugene Catalan. They count at least 150 different kinds of

combinatorial objects, and we will mention a comprehensive reference for

these objects in the Notes section of this chapter. We have already seen

some of them, in Exercises 23 and 57 of Chapter 4. We will see some more

in the exercises of this chapter, and some in Chapters 14 and 16. Starting

with n = 0, the first few values of the sequence of the Catalan numbers cn
are 0, 1, 2, 5, 14, 42.

8.1.3 Compositions of Generating Functions

How could we possibly define the composition of two generating functions?

Let us, for simplicity, that F (x) = 1/(1− x) = 1 + x + x2 + x3 + · · · , and
let G(x) be any generating function. Our knowledge of the composition

of functions suggests that F (G(x)) should be defined as 1/(1 − G(x)) =

1 +G(x) + G(x)2 +G(x)3 + · · · . It is here that the problems could start.

The sum of infinitely many power series is defined only if for each n, the

coefficient of xn is zero in all but a finite number of summands. In our case,

this will happen if and only if the constant term of G(x) is 0. Indeed, in

that case G(x)n is divisible by xn, thus there are at most n− 1 summands

that contain xn−1, and this holds for all n. Therefore, F (G(x)) is defined

in this case. If F is a formal power series other than 1/(1 − x), the same

argument holds. This is the basis of the following definition.

Definition 8.12. Let F (x) =
∑

n≥0 fnx
n be a formal power series, and let

G be a formal power series with constant term 0. Then we define

F (G(x)) =
∑

n≥0

fn(G(x))n = f0 + f1G(x) + f2(G(x))2 + · · · .

The following theorem is a major application of compositions of gener-

ating functions.

Theorem 8.13. Let an be the number of ways to build a certain structure

on an n-element set, and let us assume that a0 = 0. Let hn be the number

of ways to split the set [n] into an unspecified number of disjoint non-empty

intervals, then build a structure of the given kind on each of these intervals.

Set h0 = 1. Denote A(x) =
∑

n≥0 anx
n, and H(x) =

∑

n≥0 hnx
n. Then

H(x) =
1

1−A(x)
.
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Note that unlike in Theorem 8.5, here we do not allow empty intervals.

The reason for this is that if we did, we would have infinitely many ways

to split up [n] as we could insert as many empty intervals as we like. This

problem did not arise in Theorem 8.5, because we only had a specified

number (two) of intervals there.

Proof. (of Theorem 8.13) It follows from Theorem 8.5 that A(x)k is

the generating function for the number of ways to split [n] into exactly

k intervals, then to build a structure of the given kind on each interval.

Summing over all k, we get
∑

k≥1 A(x)
k. As a0 = 0, none of the power

series A(x)k has a nonzero constant term. On the other hand, H(x) has

constant term 1 by definition. This shows

H(x) = 1 +
∑

k≥1

A(x)k =
∑

k≥0

A(x)k =
1

1−A(x)
.

�

Example 8.14. All n soldiers of a military squadron stand in a line. The

officer in charge splits the line at several places, forming smaller (non-

empty) units. Then he names one person in each unit to be the commander

of that unit. Let hn be the number of ways he can do this. Find a closed

formula for hn.

Solution. Denote by hk the number of ways the officer in charge can pro-

ceed. Let ak be the number of ways to choose a commander from a unit of

k people. Then clearly ak = k, and therefore A(x) =
∑

k≥1 kx
k = x

(1−x)2 ,

as we have computed in Example 8.6. Then Theorem 8.13 applies, and we

get that

H(x) =
1

1−A(x)
=

1

1− x
(1−x)2

= 1 +
x

1− 3x+ x2
,

where H(x) is the generating function of the sequence {hn}n≥0.

The evaluation of the fraction 1/(1− 3x+ x2) is somewhat more com-

plicated than in the earlier examples. We will use the method of partial

fractions. The roots of x2−3x+1 are α = (3+
√
5)/2, and β = (3−

√
5)/2.

Therefore, we want to obtain 1/(1− 3x+ x2) in the following form.

1

1− 3x+ x2
=

1

(x− α)(x − β)
=

A

x− α
− B

x− β
.

After cross-multiplying, we get

1 = (A−B)x−Aβ +Bα.
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Therefore, we must have A = B, and B(α − β) = B
√
5 = 1. So A = B =

1/
√
5. This yields

1

1− 3x+ x2
=

1√
5

( 1

x− α
− 1

x− β

)

.

Now note that α · β = 1. Therefore, we can multiply both the numera-

tor and the denominator of the first (respectively, second) member in the

parentheses by α (respectively, β). After routine steps, we get

1

1− 3x+ x2
=

1√
5

( α

1− αx
− β

1− βx

)

.

Therefore, the coefficient of xn in 1
1−3x+x2 is 1√

5
(αn+1 − βn+1). Thus the

coefficient of xn in H(x) is 1 if n = 0, and

hn =
1√
5
(αn − βn)

if n > 0.

Would you have guessed that our answer to this problem, that was

defined totally within the kingdom of integers, will involve powers of α =

(3 +
√
5)/2, and β = (3 −

√
5)/2? The first few values of the sequence hn

are, (starting at h1), 1, 3, 8, 21, 55. These numerical data may be helpful

in some of the exercises.

In Theorem 8.13, we first split [n] into non-empty intervals, then we

take a structure of the same kind on each of these intervals. However, we

do not take a structure on the set of the intervals. Translating this to our

example, the officer in charge did not ask the units to choose a unit on duty,

or to form a new line. The following theorem generalizes Theorem 8.13 in

that direction.

Theorem 8.15. [The Compositional formula] Let an be the number of ways

to build a certain structure on an n-element set, and assume a0 = 0. Let

bn be the number of ways to build a second structure on an n-element set,

and let b0 = 1. Let gn be the number of ways to split the set [n] into an

unspecified number of non-empty intervals, build a structure of the given

kind on each of these intervals, and then build a structure of the second

kind on the set of the intervals. Set g0 = 1. Denote by A(x), B(x), and

G(x) the generating functions of the sequences {an}, {bn}, and {gn}. Then

G(x) = B(A(x)).
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Proof. Let us assume that we split [n] into k intervals. Then there are

bk ways to take a structure of the second kind on the k-element set of these

intervals. The product formula shows that the generating function for the

number of ways to take a structure of the first kind on each interval is A(x)k.

Therefore, the contribution of this case to G(x) is bkA(x)
k. Summing over

all k, we get that G(x) =
∑

k≥0 bkA(x)
k, which was to be proved. �

Example 8.16. All n soldiers of a military squadron stand in a line. The

officer in charge splits the line at several places, forming smaller (non-

empty) units. Then he chooses a (possibly empty) subset of the newly

formed units for night duty. In how many different ways can he do this?

Solution. Let us keep the notation of Theorem 8.15. Then ak = 1 for

all k ≥ 1, as there is one way to put the trivial structure (that is to say,

no structure at all) on the individual units. Furthermore, bm = 2m as

we simply choose a subset of the set of all intervals. Therefore, A(x) =

x/(1− x), and B(x) = 1/(1− 2x). So

G(x) = B(A(x)) =
1

1− 2x
1−x

=
1− x

1− 3x
=

1

1− 3x
− x

1− 3x
,

G(x) =
∑

n≥0

3nxn −
∑

n≥1

3n−1xn = 1 +
∑

n≥1

2 · 3n−1xn.

Consequently, if n ≥ 1, the officer in charge has 2 · 3n−1 options.

8.2 Exponential Generating Functions

8.2.1 Recurrence Relations and Exponential Generating

Functions

Not all recurrence relations can be turned into a closed formula by using

an ordinary generating function. Sometimes, a closed formula may not

exist. Some other times, it could be that we have to use a different kind of

generating function.

Example 8.17. Let a0 = 1, and let an+1 = (n + 1)(an − n+ 1), if n ≥ 0.

Find a closed formula for an.

If we try to solve this recurrence relation by ordinary generating func-

tions, we run into trouble. The reason for this is that this sequence grows
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too fast, and its ordinary generating function will therefore not have a

closed form. Let us instead make the following definition.

Definition 8.18. Let {fn}n≥0 be a sequence of real numbers. Then the

formal power series F (x) =
∑

n≥0 fn
xn

n! is called the exponential generating

function of the sequence {fn}n≥0.

The word “exponential” is due to the fact that the exponential gener-

ating function of the constant sequence fn = 1 is ex. Let us use this new

kind of generating function to solve the example at hand.

Solution. (of Example 8.17) Let A(x) =
∑∞

n=0 an
xn

n! be the exponential

generating function of the sequence {an}n≥0. From this point on, we pro-

ceed in a way that is very similar to the method of the previous section.

Let us multiply both sides of our recursive formula by xn+1/(n + 1)!, and

sum over all n ≥ 0 to get

∞
∑

n=0

an+1
xn+1

(n+ 1)!
=

∞
∑

n=0

an
xn+1

n!
−

∞
∑

n=0

(n− 1)
xn+1

n!
. (8.15)

Note that the left-hand side is A(x)−1, while the first term of the right-hand

side is xA(x). This leads to

A(x)− 1 = xA(x) − x2ex + xex,

A(x) =
1

1− x
+ xex =

∑

n≥0

xn +
∑

n≥0

xn+1

n!
.

The coefficient of xn/n! in
∑

n≥0 x
n is n!, while the coefficient of xn/n!

in
∑

n≥0
xn+1

n! is n. Indeed, this second term summand the term xn/(n−1)!.
Therefore, the coefficient of xn/n! in A(n) is an = n! + n.

Example 8.19. Let f0 = 0, and let fn+1 = 2(n+ 1)fn + (n+ 1)! if n ≥ 0.

Find an explicit formula for fn.

Solution. Let F (x) =
∑

n≥0 fn
xn

n! be the exponential generating function

of the sequence fn. Let us multiply both sides of our recursive formula by

xn+1/(n+ 1)!, then sum over all n ≥ 0. We get

∑

n≥0

fn+1
xn+1

(n+ 1)!
= 2x

∑

n≥0

fn
xn

n!
+
∑

n≥0

xn+1. (8.16)
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As f0 = 0, the left-hand side of (8.16) is equal to F (x), while the first

term of the right-hand side is 2xF (x), and the second term of the right-hand

side is x/(1− x). Therefore, we get

F (x) = 2xF (x) +
x

1− x
,

F (x) =
x

(1− x)(1 − 2x)
.

Therefore,

F (x) =
∑

n≥0

(2n − 1)xn,

and so the coefficient of xn/n! in F (x) is fn = (2n − 1)n!.

8.2.2 Products of Exponential Generating Functions

Just as we have seen for ordinary generating functions, the product of two

exponential generating functions has a very natural combinatorial meaning.

Lemma 8.20. Let {ai} and {bk} be two sequences, and let A(x) =
∑

i≥0 ai
xi

i! and B(x) =
∑

k≥0 bk
xk

k! be their exponential generating func-

tions. Define cn =
∑n

i=0

(

n
i

)

aibn−i, and let C(x) be the exponential gener-

ating function of the sequence {cn}. Then

A(x)B(x) = C(x).

In other words, the coefficient of xn/n! in A(x)B(x) is cn =
∑n

i=0

(

n
i

)

aibn−i.

Proof. Just as in the proof of Lemma 8.4, multiplying A(x) by B(x)

involves multiplying each term of A(x) by each term of B(x). A general

term in this product is of the form

xi

i!
· x

j

j!
=

xi+j

i!j!
· (i + j)!

(i + j)!
=

xi+j

(i+ j)!
·
(

i+ j

i

)

.

Such a product is of degree n if and only if i + j = n, and the statement

follows. �

Theorem 8.21. [Product formula for exponential generating functions] Let

an be the number of ways to build a certain structure on an n-element set,

and let bn be the number of way to build another structure on an n-element

set. Let cn be the number of ways to separate [n] into the disjoint subsets

S and T , (S ∪ T = [n]), and then to build a structure of the first kind on
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S, and a structure of the second kind on T . Let A(x), B(x), and C(x) be

the respective exponential generating functions of the sequences {an}, {bn},
and {cn}. Then

A(x)B(x) = C(x).

Note that while Theorems 8.5 and 8.21 sound very similar, they apply

in different circumstances. Theorem 8.5 applies when [n] is split into two

parts so that one part is [i]. That is, [n] is split into intervals. Theorem 8.21

applies when [n] is split into two parts with no restrictions. In other words,

the first theorem applies when our objects are linearly ordered (like days

in a calendar, or people in a line), and we cut that linear order somewhere

to get two subsets. The second theorem applies when we are free to choose

our two subsets, that is, they do not have to be consecutive objects in a

previously ordered line.

Proof. (of Theorem 8.21) If S has i elements, then there are
(

n
i

)

ways

to choose the elements of S. Then there are ai ways to build a structure

of the first kind on S, and bn−i ways to build a structure of the second

kind on T , and this is true for all i, as long as 0 ≤ i ≤ n. Therefore,

cn =
∑n

i=0

(

n
i

)

aibn−i, and our claim follows from Lemma 8.20. �

Example 8.22. A football coach has n players to work with at today’s

practice. First he splits them into two groups, and asks the members of

each group to form a line. Then he asks each member of the first group to

take on an orange shirt, or a white shirt, or a blue shirt. Members of the

other group keep their red shirt. In how many different ways can all this

happen?

Solution. Let us assume that the coach selects k people to form the first

group. Let ak be the number of ways these k people can take on an orange

or white or blue shirt, and then form a line. Then ak = k!3k, so the

exponential generating function of the sequence {ak} is

A(x) =
∑

k≥0

k!3k
xk

k!
=

1

1− 3x
.

Similarly, assume there are m people in the second group. Let bm be the

number of ways these m people can form a line. Then bm = m!, and the

exponential generating function of the sequence {bm} is

B(x) =
∑

m≥0

m!
xm

m!
=

1

1− x
.
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Let cn be the number of ways the players can follow the instructions of the

coach, and let C(x) be the exponential generating function of the sequence

{cn}. Then the Product formula implies

C(x) = A(x)B(x) =
1

1− 3x
· 1

1− x
,

as 1
1−3x =

∑

k=0 3
kxk, and 1

1−x =
∑

m=0 x
m, it follows that the coefficient

of xn/n! in C(x) is cn = n!(3n+1 − 1)/2.

A particularly useful property of exponential generating functions is

that their derivatives are very easy to describe. Indeed,
(

xn+1

(n+1)!

)′
= xn

n! ,

and therefore
(

∑

n≥0

an
xn

n!

)′
=
∑

n≥0

an+1
xn

n!
.

The following example makes good use of this observation. Recall that the

Bell number s and the recurrence relation used in the example were proved

in Chapter 5.

Example 8.23. Let B(x) be the exponential generating function of the

Bell numbers B(n). Prove that B(x) = ee
x−1.

Solution. We know that B(n+1) =
∑n

i=0 B(i)
(

n
i

)

if n ≥ 0, and B(0) = 1.

Multiply both sides by xn/n! and sum over all n ≥ 0 to get

∑

n≥0

B(n+ 1)
xn

n!
=
∑

n≥0

n
∑

i=0

B(i)

(

n

i

)

xn

n!
.

Now note that the left-hand side is B′(x), while the right-hand side is

B(x)ex by Lemma 8.20. Therefore, we get

B′(x) = B(x)ex,

B′(x)

B(x)
= ex,

and, taking integrals,

lnB(x) = ex + C.

Setting x = 0, the left-hand side is ln 1 = 0, therefore we must choose C =

−1 on the right-hand side. Therefore, lnB(x) = ex − 1, and B(x) = ee
x−1

as claimed.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

A Function Is Worth Many Numbers. Generating Functions 171

8.2.3 Compositions of Exponential Generating Functions

The compositions of exponential generating functions can be defined in the

same circumstances, and in the same way, as those of ordinary generating

functions. In this subsection we will see that the corresponding versions of

Theorems 8.13 and 8.15 also hold.

Theorem 8.24. [The Exponential formula] Let an be the number of ways

to build a certain structure on an n-element set, and assume a0 = 0. Let hn

be the number of ways to partition the set [n] into an unspecified number of

non-empty subsets, then build a structure of the given kind on each of these

subsets. Set h0 = 1. Denote by A(x) and H(x) the exponential generating

functions of these sequences. Then

H(x) = eA(x).

Proof. Since in a set partition the order of blocks is irrelevant, it follows

from Theorem 8.21 that A(x)k/k! is the exponential generating function

for the number of ways to partition [n] into exactly k subsets, then build

a structure of the given kind on each subset. Summing over all k, we

get
∑

k≥1 A(x)
k/k!. As a0 = 0, none of the power series A(x)k/k! has a

constant term. On the other hand, H(x) has constant term 1 by definition.

This shows

H(x) = 1 +
∑

k≥1

A(x)k

k!
=
∑

k≥0

A(x)k

k!
= eA(x).

�

Example 8.25. In how many different ways can we arrange n people into

groups, and then have each group sit at a circular table?

Solution. There are (k−1)! ways for a k-member group to sit at a circular

table. Therefore, keeping the notation of Theorem 8.24, ak = (k−1)!. This

yields

A(x) =
∑

k≥1

(k − 1)! · x
k

k!
=
∑

k≥1

xk

k
= ln

(

1

1− x

)

.

Therefore, the Exponential formula implies that

H(x) = eln(
1

1−x ) =
1

1− x
=
∑

n≥0

xn =
∑

n≥0

n! · x
n

n!
.

This shows that there are hn = n! ways to arrange our n people around

circular tables.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

172 A Walk Through Combinatorics

The reader should try to find an immediate combinatorial proof of this

result.

The following is an example of combined applications of the Product

formula and the Exponential formula.

Example 8.26. Find the exponential generating function F (x) for the

sequence {fn} that denotes the number of partitions of [n] into blocks of

size three, four, and nine.

Solution. Let an, bn, and cn denote the number of partitions of [n] into

blocks of size three only, size four only, and size nine only, and let A(x),

B(x), and C(x) denote the respective exponential generating functions. We

will determine these exponential generating functions by the Exponential

formula. To that end, consider the following very simple sequence. Let tn
be the number of ways an n-element set can form a block of size three.

Obviously, t3 = 1, and tn = 0 if n 6= 3. Thus the exponential generating

function of this sequence is T (x) = x3/3!. It then follows by the Exponential

formula that

A(x) = eT (x) = ex
3/3!.

An analogous argument shows that B(x) = ex
4/4!, and C(x) = ex

9/9!.

Now let us split n into three (possibly empty) subsets, and take a par-

tition with blocks of size three on the first subset, a partition with blocks

of size four on the second subset, and a partition with blocks of size nine

on the third subset. Then the Product formula shows that

F (x) = A(x)B(x)C(x) = e
x3

3!
+ x4

4!
+ x9

9! .

Theorem 8.27. [The Compositional formula for Exponential Generating

functions] Let an be the number of ways to build a certain structure on

an n-element set, and assume a0 = 0. Let bn be the number of ways to

build a second structure on an n-element set, and let b0 = 1. Let gn be

the number of ways to partition the set [n] into an unspecified number of

non-empty subsets, then build a structure of the first given kind on each of

these subsets, then build a structure of the second kind on the set of the

subsets. Denote by A(x), B(x), and G(x) the generating functions of the

sequences {an}, {bn}, and {gn}.
Then

G(x) = B(A(x)).
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Proof. Let us assume that we partition [n] into k subsets. Then there

are bk ways to take a structure of the second kind on the k-element set

of these subsets. Therefore, it follows from Theorem 8.21 that bkA(x)
k/k!

is the exponential generating function for the number of ways to partition

[n] into exactly k subsets, then build a structure of the given kind on each

subset, and then take a structure of the second kind on the k-element set

of these subsets. As a0 = 0, none of the power series bkA(x)
k/k! has a

constant term. On the other hand, G(x) has constant term 1 by definition.

This shows

G(x) = 1 +
∑

k≥1

bk
A(x)k

k!
=
∑

k≥0

bk
A(x)k

k!
= B(A(x)).

�

Example 8.28. We have n distinct cards. We want to split their set into

non-empty subsets so that each of them contains an even number of cards.

Then we want to order the cards within each subgroup. Finally, we want to

order these subgroups into a line. Find an explicit formula for the number

of ways gn we can do this.

Solution. Keeping the notation of Theorem 8.27, we see that an = n! if

n ≥ 2 is even, and an = 0 if n is odd, or n = 0. Moreover, bn = n! for all

n ≥ 0. Therefore,

A(x) =
∑

n≥0

an
xn

n!
=

∑

n≥2

n even

xn =
x2

1− x2
,

and

B(x) =
∑

n≥0

bn
xn

n!
=
∑

n≥0

xn =
1

1− x
.

Therefore, by the Compositional formula,

G(x) = B(A(x)) =
1

1− x2

1−x2

=
1− x2

1− 2x2

= 1 +
x2

1− 2x2
= 1 + x2

∑

m≥0

(2x2)m = 1 +
∑

m≥0

2mx2m+2.

So the coefficient gn of xn/n! in G(x) is 0 if n is odd, and 2m−1(2m)! if

n = 2m. Consequently, for even n, there are gn = 2
n
2
−1 ·n! ways to proceed.
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Notes

The theory of generating functions is certainly rich enough to be the sub-

ject of several books. A classic in that area is “Generatingfunctionology” by

Herb Wilf [49]. For a far-reaching analysis of exponential generating func-

tions, we recommend “Enumerative Combinatorics” Volume 2, by Richard

Stanley [42]. Chapter 6 of that book contains a very extensive list of objects

that are counted by the Catalan numbers.

Exercises

(1) Find an explicit formula for ak if a0 = 0 and ak+1 = ak +2k for k ≥ 0.

(2) Let {an}n≥0 and {bn}n≥0 be two sequences, and let bn =
∑n

i=0 ai.

What is the relationship between the ordinary generating functions of

these sequences?

(3) Let {an}n≥0 and {bn}n≥0 be two sequences, and let A(x) and B(x)

be their respective exponential generating functions. Let us assume we

know that B(x) = A(x)/(1− x). What is the relationship between the

two sequences?

(4) A child wants to walk up a stairway. At each step, she moves up either

one or two stairs. Let f(n) be the number of ways she can reach the

nth stair. Find a closed explicit formula for f(n).

(5) Let hn be defined as in Example 8.14. Prove that if n ≥ 1, then

hn+2 = 3hn+1 − hn.

(6) If we consider the sequence of the numbers hn defined in Example 8.14,

and that of the numbers f(n) defined in Exercise 4, we note that the

equality f(2n− 1) = hn seems to hold, for all n ≥ 1.

(a) Prove this fact (by any method).

(b) (+) Give a direct bijective proof of this fact. Do not use generating

functions, or recursive formulae.

(7) Let an be the number of ways to pay n dollars using ten-dollar bills,

five-dollar bills, and one-dollar bills only. Find the ordinary generating

function A(x) =
∑

n≥0 anx
n.

(8) Find a simple, closed form for the generating function of the sequence

defined by an = n2.

(9) Let f(n) be the number of subsets of [n] in which the distance of any

two elements is at least three. Find the generating function of f(n).

(10) Find the ordinary generating function of the sequence pk(n). Recall
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that pk(n) is the number of all partitions of n into exactly k parts.

(11) [C] Use your favorite software package to find the numbers p4(n) for

n ≤ 20.

(12) Find a combinatorial proof for the result of Example 8.6.

(13) Find a combinatorial proof for the result of Example 8.7.

(14) (+) Find a combinatorial proof for the result of Example 8.16.

(15) Let an be the number of monotonic functions f from [n] to [n] such

that f(i) ≤ i for every i ∈ [n]. Find a closed formula for an.

(16) (+) Let Mn denote the number of lattice paths from (0, 0) to (n, 0)

which never dip below y = 0 and are made up only of the steps (1, 0),

(1, 1), and (1,−1). Find the ordinary generating function
∑

n≥0 Mnx
n.

The numbers Mn are called the Motzkin numbers.

(17) (+) Let fn be the number of paths with steps (1, 0), (1, 1) and (0, 1)

from (0, 0) to (n, n) that never run above the diagonal x = y. Find the

ordinary generating function F (x) =
∑

n≥0 fnx
n. The numbers fn are

called the Schröder numbers.

(18)(a) [C] Use your favorite software package to find the Motzkin numbers

of Exercise 16, for n ≤ 10.

(b) [C] Use your favorite software package to find the Schröder numbers

of Exercise 17, for n ≤ 10.

(19) (+) Let r(n) be the number of n-permutations whose square is the

identity permutation. We proved in Exercise 5 of Chapter 6 that

r(n + 2) = r(n+ 1) + (n+ 1)r(n), (8.17)

if n ≥ 0, while r(0) = r(1) = 1. Use this recurrence relation to find an

explicit formula for r(n).

(20) Find the exponential generating function F (x) for the number of n-

permutations having cycles of length a1, a2, · · · , ak only.

(21) Let H2,3(n) be the number of n-permutations in which all cycles are of

length two or three. Use the result of the previous exercise to find a

recurrence relation for H2,3(n).

(22) Let b(n) be the number of compositions of n in which each part is an

odd integer. Find a closed formula for
∑

n≥0 b(n)x
n. Express b(n) by

the numbers f(n) defined in Exercise 4.
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Supplementary Exercises

(23) (-) Find an explicit formula for an if a0 = 1 and an+1 = 3an + 2n if

n ≥ 0.

(24) (-) Find an explicit formula for an if a0 = 1, a1 = 4, and an+2 =

8an+1 − 16an for n ≥ 0.

(25) (-) A certain kind of insect population multiplies so that at the end

of each year, its size is the double of its size a year before, plus 1000

more insects. Assuming that originally we released 50 insects, how

many of them will we have at the end of the nth year?

(26) (-) A permutation is called indecomposable if it cannot be cut into

two parts so that everything before the cut is smaller than everything

after the cut. For example, 3142 is indecomposable, but 2143 is not

as you can cut it after the first two elements.

Let f(n) be the number of indecomposable permutations of length n,

and set f(0) = 0. Find the generating function F (x) =
∑

n≥0 f(n)x
n.

Note: you can give your result in terms of G(x) =
∑

n≥0 n!x
n, the

generating function of all permutations.

(27) (-) Find an explicit formula for the numbers an if an+1 = (n+1)an +

2(n+ 1)! if n ≥ 0, and a0 = 0.

(28) Let a0 = a1 = 1, and let an = nan−1 + n(n− 1)an−2 for n ≥ 2. Find

the exponential generating function of the numbers an. Compare your

result to the result of Exercise 4.

(29) Let a0 = 0, and let an+1 = (n+ 1)an + n! for n ≥ 0. Find an explicit

formula for an. In what earlier chapter did you see your answer as

the answer to a combinatorial enumeration problem? Explain the

connection.

(30) Exponential formula, permutation version Let C = {c1, c2, · · · } be a

set of positive integers. Let gC(n) be the number of n-permutations

in which each cycle length belongs to C. Set g∅(n) = 0. Prove that

GC(x) =
∑

n

gC(n)
xn

n!
= exp





∑

i≥1

xci

ci



 .

(31)(a) Explain how the result of the previous exercise is a generalization

of Example 8.25.

(b) Use the result of the previous exercise to find the exponential gen-

erating function for the number of n-permutations whose square is

the identity permutation.
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(c) Use the result of the previous exercise to provide generating func-

tion proofs of the two formulae given in Theorem 6.5.

(32) Find a closed form (no summation signs) for the generating function

G(x) =
∑

n≥0 c(n, k)
xn

n! .

(33) Find a closed form (no summation signs) for the generating function

G(x) =
∑

n≥0 S(n, k)
xn

n! .

(34) Let h0 = 1, and let hn be the number of compositions of n into parts

equal to 2 or 3. Find a closed formula for H(x) =
∑

n≥0 hnx
n.

(35) Let Hn be the number of ways to tile a 1×n rectangle with 1× 1 tiles

that are red or blue and 1 × 2 tiles that are green, yellow, or white.

Find a closed formula for H(x) =
∑

n≥0 hnx
n.

(36) Let hn be the number of sequences of length n consisting of letters A

and B in which there is no subsequence of two letters A in consecutive

positions. Find a closed formula for H(x) =
∑

n≥0 hnx
n.

(37) (+) Let podd(n) denote the number of partitions of n into an odd

number of parts, and let peven(n) denote the number of partitions of

n into an even number of parts. Prove that |peven(n) − podd(n)| is
equal to the number of partitions of n into distinct odd parts.

(38) Let gn be the number of ways of selecting a permutation of length

n, and then selecting a cycle of that permutation. Use the Compo-

sitional formula to find the exponential generating function G(x) =
∑

n≥0 gn
xn

n! , then deduce an explicit formula for gn. What earlier

result does your formula confirm?

(39) Let tn be the number of ways to arrange n books on two bookshelves

so that each shelf receives at least one book. Find a closed formula

for tn.

(40) Find the exponential generating function D(x) for the number of de-

rangements, defined in Example 7.4. Look for several different ways

to obtain D(x).

(41) Let D(n) be the number of derangements of length n. Prove that for

n ≥ 1, the equality D(n) − nD(n − 1) = (−1)n holds. Recall that

D(0) = 1 and D(1) = 0.

(42) Let De(n) (resp. Do(n)) denote the number of derangements of length

n that are even (resp. odd) permutations. Prove thatDe(n)−Do(n) =

(−1)n−1(n− 1).

(43) We divide a group of people into subgroups A, B, and C, and ask

each subgroup to form a line. We also require that A have an odd

number of people, and that B have an even number of people. How

many ways are there to do this?
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(44) We select an odd number of people from a group of n people, to serve

on a committee. Then we select an even number from this committee

to serve on a subcommittee. (Zero is an even number, too.) In how

many different ways can we do this?

(45) We have n cards. We want to split them into an even number of

non-empty subsets, form a line within each subset, then arrange the

subsets in a line. In how many different ways can we do this?

(46) Find a direct combinatorial proof for the result of the previous exer-

cise.

(47) Let f(n) be defined as in Exercise 4. Prove that for all positive integers

n,

f(n) =

[n/2]
∑

k=0

(

n− k

k

)

.

Do not use the closed formula proved in Exercise 4.

(48) (+) Generalize the result of Example 8.11.

(49)(a) Let a1, a2, · · · , ak be non-negative integers, and let a(n) be the

number of compositions of n into k parts so that ith part is not

larger than ai. Find the ordinary generating function A(x) =
∑

n≥0 a(n)x
n.

(b) Let b(n) be the number of compositions of n into k + 1 parts so

that the ith part is not larger than ai, and there is no constraint

on the last part. Find the ordinary generating function B(x) =
∑

n≥0 b(n)x
n.

(50) (+) We say that a permutation p = p1p2 · · · pn is a has an ascent in

position i if pi < pi+1. How many permutations of length n are there

in which the first ascent occurs in an even position? For the sake of

this problem only, let us say that p always has a descent in position

n. (We can justify this convention by saying that pn is followed by an

infinitely large last symbol.) What other class of n-permutations has

the same number of elements?

Solutions to Exercises

(1) Let A(x) =
∑

n≥0 akx
k. Multiplying the recurrence relation by xk+1

and summing over all k ≥ 0 we get
∑

k≥0

ak+1x
k+1 =

∑

k≥0

akx
k+1 + x

∑

k≥0

(2x)k.
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This means, in the language of generating functions,

A(x) = xA(x) +
x

1− 2x
,

A(x) =
x

(1− x)(1 − 2x)
= x(1 + x+ x2 + · · · )(1 + 2x+ 4x2 + · · · ),

so ak =
∑k−1

i=0 2i = 2k − 1.

(2) If A(x) and B(x) are the two generating functions, then we have

B(x) =
A(x)

1− x
= A(x)(1 + x+ x2 + · · · )

= (a0 + a1x+ a2x
2 + · · · )(1 + x+ x2 + · · · ).

Indeed, let us take a look at the exponent of xn in A(x)(1+x+x2+· · · ).
To get xn, we have to choose aix

i from (a0+a1x+a2x
2+ · · · ), then we

must choose xn−i from (1+ x+ x2 + · · · ). This results in the product

aix
n. We can do this for all i such that 0 ≤ i ≤ n, and, on the other

hand, this is the only way we can obtain a constant multiple of xn in

our product A(x)(1+x+x2 + · · · ). Therefore, the coefficient of xn in

(a0+a1x+a2x
2+ · · · )(1+x+x2+ · · · ) is∑n

i=0 ai, and the statement

follows.

(3) If you look at A(x) and B(x) as the ordinary generating functions

of sequences {an/n!}n≥0 and {bn/n!}n≥0, then the previous exercise

shows that

bn
n!

=
n
∑

i=0

ai
i!
,

bn =

n
∑

i=0

ai(n)i.

(4) As the child can move at most two stairs at a time, she can get to

the nth stair either from the (n − 1)st, or from the (n − 2)nd stair.

Therefore, f(n) = f(n − 1) + f(n − 2), for n ≥ 2. In other words,

f(n + 2) = f(n + 1) + f(n) for all n ≥ 0, and f(0) = f(1) = 1.

Let F (x) =
∑

n≥0 f(n)x
n be the ordinary generating function of the

numbers f(n). Multiplying both sides of the (last version of the)

recursive formula by xn+2, and summing for all n ≥ 0, we get
∑

n≥0

f(n+ 2)xn+2 =
∑

n≥0

f(n+ 1)xn+2 +
∑

n≥0

f(n)xn+2,
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which is equivalent to

F (x)− x− 1 = x(F (x) − 1) + x2F (x),

F (x) =
1

1− x− x2
.

The two roots of 1−x−x2 are α = − 1+
√
5

2 and β = − 1−
√
5

2 . Therefore,

we look for the partial fraction decomposition

1

1− x− x2
=

A

x− α
+

B

x− β
.

After rearranging, this yields

1 = (A−B)x+ αB + βA,

therefore, we must have −B = A, and thus A(α − β) = −1, which
implies A = −1√

5
and B = 1√

5
. So we have shown that

F (x) =
−1√
5
· 1

x− α
+

1√
5
· 1

x− β
.

A computation similar to that of Example 8.14 then implies

fn =
1√
5

(

1 +
√
5

2

)n+1

− 1√
5

(

1−
√
5

2

)n+1

.

The first few values of this sequence, starting at f(0) = 1, are 1, 1, 2,

3, 5, 8, 13, 21, 34, 55. This sequence is called the Fibonacci sequence.

Often, the shifted indexing is used. In that indexing, Fi = f(i − 1),

leading to F0 = 0, F1 = F2 = 1, F3 = 2, etc. Then Fn is called the

nth Fibonacci number.

(5) Let us distinguish three different cases according to the situation of

the last soldier in the line of n+2 soldiers. She can form a unit herself,

(and of course, be the commander of it), which happens in hn+1 cases.

She can be part of the last unit as a non-commander, which happens

again in hn+1 cases. Finally, she can be the commander of a unit that

has more than one person in it. If the first soldier in the line who is

in her unit is in position i + 1, then there are hi ways to arrange the

first i soldiers. Summing for i, we see that in this last case, there are
∑n

i=0 hi possibilities. This proves that

h(n+ 2) = 2h(n+ 1) +

n
∑

i=0

hi, (8.18)
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h(n+ 2)− h(n+ 1) =

n+1
∑

i=0

hi.

If we replace n by n− 1 in this last equation, we get

n
∑

i=0

hi = h(n+ 1)− h(n),

adding this to (8.18) the proof follows.

(6)(a) Induction on n. If n = 1, then hn = h1 = 1, and f2n−1 = f1 = 1,

and the initial condition holds. Let us assume that the statement

is true for all positive integers smaller than n+ 1. Then, using the

induction hypothesis, and the fact that fm = fm−1 + fm−2,

hn+1 = 3hn − hn−1 = 3f2n−1 − f2n−3 = 2f2n−1 + f2n−2

= f2n−1 + f2n = f2n+1,

and the statement is proved.

(b) Note that f2n−1 is in fact the number of all compositions of 2n− 1

into parts that are equal to 1 or 2. We are going to define a bijection

from the set of all such compositions onto that of all arrangements

the officer in charge of Example 8.14 can make. Let α be such

a composition, and say that α consists of 2k − 1 parts equal to

1, and n − k parts equal to 2. Now we start reading the string

of 1s and 2s in α, from left to right. Every time we read a 2,

we will declare the corresponding soldier in the line to be a non-

commander. Therefore, we will get n − k non-commanders. The

first time we read a 1, we declare the corresponding soldier in the

line to be a commander. The second time we read a 1, we make the

corresponding soldier (that is, the soldier who has just been named

a commander or non-commander) in the line the last soldier of his

unit by starting a new unit right after him. Then we continue

this alternating procedure, that is, when we read the third, fifth,

seventh, etc. 1, we declare the corresponding soldier in the line a

commander, and when we read the fourth, sixth, eighth, etc. 1,

we make the corresponding soldier in the line the last soldier of his

unit. This way, we create k units, and name k commanders, each

unit having a commander.

For example, if n = 8, and we have the composition α = 2 + 2 +

1 + 1 + 2 + 1 + 2 + 2 + 1 + 1 = 15, then we get a line of soldiers
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b(α) = NNC|NCNN |C, where N denotes a non-commander, C

denotes a commander, and the bars denote the end of each unit.

To see that this is a bijection, it suffices to show that for each

arrangement β of the officer, there exists a unique composition α

so that b(α) = β. This unique preimage can be constructed easily,

by replacing all the N symbols in β by 2s, and all the C symbols

and bars by 1s. This completes the proof.

(7) It would be troublesome to find a nice recurrence relation here as it

is clear that the number an of ways to pay n dollars with these bills

will strongly depend on the divisibility of n by five and ten. We will

instead obtain the ordinary generating function A(x) =
∑

n≥0 anx
n

in a different way.

Let f(n) be the number of ways to pay n dollars with ten-dollar bills

only. Then f(n) = 1 if n is divisible by 10, and f(n) = 0 otherwise.

Then F (x) =
∑

n≥0 f(n)x
n = 1 + x10 + x20 + · · · = 1

1−x10 . Similarly,

let g(n) be the number of ways to pay n dollars with five-dollar bills

only. Then g(n) = 1 if n is divisible by 5, and g(n) = 0 otherwise.

Then G(x) =
∑

n≥0 g(n)x
n = 1 + x5 + x10 + · · · = 1

1−x5 . Finally,

if h(n) is the number of ways to pay n dollars with one-dollar bills

only, then clearly h(n) = 1 for all n ≥ 0, and H(x) =
∑

n≥0 h(n)x
n =

1 + x+ x2 + · · · = 1
1−x .

It is high time we explained why we are interested in these seemingly

bland generating functions. Consider the product

F (x)G(x)H(x) =
1

(1− x10)(1− x5)(1− x)

= (1 + x10 + x20 + · · · )(1 + x5 + x10 + · · · )(1 + x+ x2 + · · · ).

Let us try to find the coefficient of, say x53 on the right-hand side. To

get a term whose coefficient is 53, we must choose a member of each

of the three sums so that their exponents sum to 53. That means, one

exponent that is divisible by ten, one that is divisible by 5, and one

last exponent, say 30+20+3. However, this provides a way to pay 53

dollars with our bills: three ten-dollar bills (to pay 30 dollars), four

five-dollar bills (to pay 20 dollars), and three one-dollar bills (to pay

3 dollars). This way we can set up an obvious bijection between ways

to pay n dollars, and ways to choose one term from each of the three

parentheses so their product is xn. So the coefficient of xn on the

right-hand side (which is precisely the number of ways we can pick
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three such terms) is exactly an. So we have proved that

A(x) = F (x)G(x)H(x) =
1

(1− x10)(1− x5)(1− x)
.

(8) Recall that 1
(1−x)3 =

∑

n≥0

(

n+2
2

)

xn. In other words,

x2

(1− x)3
=
∑

n≥0

(

n+ 2

2

)

xn+2 =
∑

n≥2

(

n

2

)

xn.

Also recall that 1
(1−x)2 =

∑

n≥1 nx
n−1, in other words, x

(1−x)2 =
∑

n≥1 nx
n. (If you need a reminder: these can be proved by either

taking the derivative of 1/(1 − x), or by considering the powers of

(1 + x+ x2 + · · · ), and the coefficient of xn there.)

Finally, note that n2 = 2
(

n
2

)

+ n, so

∑

n≥0

n2xn = 2
∑

n≥2

(

n

2

)

xn +
∑

n≥1

nxn

= 2
x2

(1 − x)3
+

x

(1− x)2
=

x(x+ 1)

(1− x)3
.

(9) Try to construct such a subset. If n is part of the subset, then we

cannot have n − 1 or n − 2 in the subset, so we have f(n − 3) ways

to choose such a subset. Indeed, we can append n to the end of any

good subset of [n−3]. If n is not part of our subset, then we obviously

have f(n− 1) choices. So f(n) = f(n− 1) + f(n− 3), for all integers

n ≥ 3. Moreover, f(0) = 1, f(1) = 2, and f(2) = 3.

Let F (x) =
∑

n≥0 f(n)x
n. Multiplying the recurrence relation by xn

and summing over n ≥ 3, we get
∑

n≥3

f(n)xn = x
∑

n≥3

f(n− 1)xn−1 + x3
∑

n≥3

f(n− 3)xn−3.

In other words,

F (x)− 3x2 − 2x− 1 = x(F (x) − 2x− 1) + x3F (x),

from where we get

F (x) =
1 + x+ x2

1− x− x3
.

(10) It follows from Exercises 6 and 7 of Chapter 5 that we always have

pk(n) = p≤k(n− k). Therefore,
∞
∑

n≥0

pk(n)x
n = xk

∞
∑

n≥0

p≤k(n)x
n =

xk

(1 − x)(1 − x2) · · · (1− xk)
.
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(11) The previous exercise shows that
∞
∑

n≥0

pk(n)x
n =

xk

(1 − x)(1 − x2) · · · (1− xk)
.

Therefore, the numbers p4(n) are the coefficients of the above power

series, with k = 4. To get the first 20 coefficients, type the following

in the software package Mathematica.

Series[x^4/((1-x)(1-x^2)(1-x^3)(1-x^4)),{x,0,20}],

then press Shift Return. (Do not type the last comma.) You will see

that the numbers p4(n) are, starting with p4(4), 1, 1, 2, 3, 5, 6, 9, 11,

15, 18, 23, 27, 34, 39, 47, 54, 64.

(12) We need to choose three holidays, and the last day of the first part of

the semester. These four days will completely determine the structure

of the term. Out of these four days, the first holiday may be the same

as the last day of the first part of the semester, but there cannot

be any other coincidences. Thus we have to choose positive integers

a, b, c, d so that 1 ≤ a ≤ b < c < d ≤ n. This is equivalent to choosing

non-negative integers 0 ≤ a − 1 < b < c < d ≤ n, and that can be

done in
(

n+1
4

)

ways.

(13) We have to choose the set of all holidays, which can be done in 2n

ways, then the last day of the first part of the semester, which can be

done in n + 1 ways as 0 is a choice, too. Thus the total number of

choices is (n+ 1) · 2n.
(14) Each soldier can be either the first soldier of a unit chosen for night

duty, the first soldier of a unit not chosen for night duty, or not the

first soldier of any unit. The only exception is the soldier who is at the

top of the line as he only has the first two possibilities. This proves

that the number of all arrangements is 2 · 3n−1.

(15) Let f be such a function, and let i be the largest number in [n] so that

f(i) = i. There is always such a number, as f(1) = 1. Then we have, of

course, ai−1 possibilities for the restriction of f to [i]. The restriction

of f to {i+1, i+2, · · · , n} is a slightly different function as f(j) = j is

not allowed there. In particular, we must have f(i+1) = i. In general,

f satisfies the criteria on this interval if and only if f(i+ 1) = i, and

i+ 1 ≤ f(i+ 2) + 1 ≤ f(i+ 3) + 1 · · · ≤ f(n) + 1 ≤ n,

or, in other words, f(i+ 1)− (i − 1) = 1, and

1 ≤ f(i+2)− (i−1) ≤ f(i+3)− (i−1) ≤ · · · ≤ f(n)− (i−1) ≤ n− i.
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If we set g(j) = f(j+i)−(i−1), we see that the latter clearly happens

in an−i cases. Therefore, we proved that if n ≥ 1, then

an =

n
∑

i=1

ai−1an−i, (8.19)

with a0 = 1. Now let C(x) =
∑

n≥0 anx
n, and note that (8.19) is

equivalent to (8.13). Therefore an = cn =
(

2n
n

)

/(n+ 1), and we have

found another occurrence of the Catalan numbers.

(16) If your first step is horizontal, then you clearly have Mn−1 ways to

complete your path. If not, then let us say that you will first touch the

line y = 0 at (k, 0). Then, to go from (k, 0) to (n, 0), you have Mn−k

ways to go. How many ways do you have to go from (0, 0) to (k, 0)

without touching the y = 0 line? Clearly, your first step will be to

(1, 1), and the last one will be from (k−1, 1) to (k, 0). So the question

is the number of ways to get from (1, 1) to (k − 1, 1) without dipping

below the y = 1 line, and that is clearly Mk−2. So M0 = M1 = 1 and

for n ≥ 2,

Mn = Mn−1 +

n
∑

k=2

Mk−2Mn−k.

Now let M(x) =
∑

n≥0 Mnx
n. Multiply both sides of the previous

equation by xn, and sum for all non-negative n to get

M(x) = xM(x) + 1 + x2M2(x).

Therefore,

M(x) =
1− x−

√
1− 2x− 3x2

2x2
.

(17) Let us first find a recursive formula for fn. If our first step is (1, 1),

then we clearly have fn−1 ways to complete our path, from (1, 1) to

(n, n). Otherwise, let (i, i) be the first point (other than the origin) on

the diagonal (x, x) that our path touches. Then there are fn−i ways

to complete this path, from (i, i) to (n, n). Moreover, the number of

ways we could go from (0, 0) to (i, i) without touching the diagonal

is fi−1. Indeed, we had to start with a (1, 0) step, and with a (0, 1)

step, and never go above the diagonal (x, x − 1) that is spanned by

the points (1, 0) and (i, i− 1).

Therefore, we proved that fn = fn−1 +
∑n

i=1 fi−1fn−i if n ≥ 1, while

f0 = 1. Multiplying both sides by xn and summing over n ≥ 1, we

get

F (x)− 1− xF (x) = xF (x)2, (8.20)
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which yields

F (x) =
1− x−

√
x2 − 6x+ 1

2x
.

Again, (8.20) has two solutions, so we had to choose the one in which

the constant term is 1.

(18)(a) We computed the generating function M(x) of the Motzkin num-

bers in Exercise 16. The numbers Mn are the coefficients of M(x).

We can expand this M(x) by typing

Series[(1-x-Sqrt[1-2x-3x^2])/(2x^2),{x,0,10}]

in Mathematica, and then hitting Shift Return. We get that the

Motzkin numbers are, starting at M0, 1, 1, 2, 4, 9, 21, 51, 127, 323,

835, 2188.

(b) Using the result of Exercise 17, type

Series[(1-x-Sqrt[1-6x+x^2])/(2x),{x,0,10}]

in Mathematica. You get that the numbers we were looking for are,

starting with f0, 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098,

1037718.

(19) We define R(x) =
∑

n≥0 r(n)
xn

n! , the exponential generating function

of the numbers r(n). Let us multiply both sides of equation (8.17) by

xn/n!, then sum over all positive integers n, to get
∑

n≥0

r(n+ 2)
xn

n!
=
∑

n≥0

r(n + 1)
xn

n!
+
∑

n≥0

(n+ 1)r(n)
xn

n!
.

Now note that the left-hand side is R′′(x), and the first member of the

right-hand side is R′(x). The second member of the right-hand side is

somewhat harder to recognize, but with a little practice, one can see

that it is in fact (xR(x))′. Therefore, we get

R′′(x) = R′(x) + (xR(x))′ = R′(x) + xR′(x) +R(x).

Solving this, we get R(x) = ex+x2/2.

(20) This is very similar to Example 8.26. The only difference is in the

definition of tn. Let tn be the number of ways an n-element set can

be arranged in an a1-cycle. Then ta1
= (a1 − 1)!, and tn = 0 if n 6=

a1. Therefore, the exponential generating function of that sequence

is T (x) = xa1/a1. Then the same application of the Exponential

formula, and then the Product formula shows that

F (x) = exp

(

k
∑

i=1

xai

ai

)

.
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(21) The previous exercise shows that the exponential generating function

of the sequence {H2,3(n)}n≥0 is H(x) = exp(x
2

2 + x3

3 ). Therefore,

H ′(x) = (x + x2)H(x). This implies that the coefficient of xn/n! on

the left-hand side is H2,3(n+ 1), while the coefficient of xn/n! on the

right-hand side is nH2,3(n − 1) + n(n − 1)H2,3(n − 2). Therefore,

H2,3(n + 1) = nH2,3(n − 1) + n(n − 1)H2,3(n − 2), when n ≥ 4, and

H2,3(n) = 0 if n = 0, or n = 1, H2,3(2) = 1, and H2,3(3) = 2.

(22) A composition of n into odd parts is equivalent to splitting up [n] into

an unspecified number of nonempty intervals, and covering each inter-

val by a single tile of odd length. The number of ways of covering an

interval that way is one if the interval has odd length and 0 otherwise.

The generating function of these numbers is A(x) = x+x3+x5+ · · · =
x/(1− x2), and hence the generating function of the combined task is

B(x) = 1/(1−A(x)) =
1− x2

1− x− x2

by Theorem 8.13. Comparing this to the result of Exercise 4, we see

that b(n) = f(n) − f(n − 2) = f(n − 1). In other words, b(n) is

the difference of two Fibonacci numbers, and so b(n) is a Fibonacci

number itself.
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Chapter 9

Dots and Lines. The Origins of Graph

Theory

In the eighteenth century, the city of Königsberg consisted of islands where

two branches of the river Pregel joined. (Today the city is called Kalin-

ingrad, and is in Russia, on the Baltic Sea.) Seven bridges connected vari-

ous islands as shown in Figure 9.1. Mathematics for centuries to come was

greatly enhanced by this innocent fact. In 1736, the most prolific mathe-

matician of all times, Leonhard Euler, became interested in the following

question. Is it possible to walk through town, starting and ending at the

same place, so that we use each bridge exactly once?

River

River

River

A

B C

D

Fig. 9.1 A map of Königsberg.

9.1 The Notion of Graphs. Eulerian Trails

Euler understood that the shape of the islands and the river does not in-

fluence the answer to this question. He recognized that the only relevant

pieces of information here are those of connectivity, that is, the number of

189
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bridges between any two islands. Therefore, instead of using the map of

Königsberg, he used the simple diagram shown in Figure 9.2.

A

B C

D

Fig. 9.2 The graph of the Königsberg bridges.

Here the dots represent the land masses, and the lines represent the

bridges between them. It is clear that a trail Euler was looking for exists if

and only if you can draw the diagram of Figure 9.2 so that you never lift

your pencil, you go through each line exactly once, and you start and end

at the same point.

Such a diagram, made up from points, and lines connecting some pairs

of those points, is called a graph. The dots are called the vertices of the

graph, and the lines are called the edges of the graph. In this book, we will

only discuss graphs with a finite number of vertices, and a finite number of

edges. The number of edges connected to vertex A is called the degree of

A.

This simple model proves to be incredibly useful. The theory of graphs

is a very extensive part of combinatorics as there are plenty of problems

of various nature that can be solved by this simple model. (Recall that

we have in fact used graphs in a surprisingly powerful way to solve the

problem of Example 1.7.) In our Walk through Combinatorics, we would

like to emphasize the diversity of these problems. First, however, we need

to introduce some basic terminology.

It is possible that in a graph, there are multiple edges joining the same



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Dots and Lines. The Origins of Graph Theory 191

pair of points, or there are edges that start and end in the same vertex (such

edges are called loops). If a graphG has no loops, and has no multiple edges,

then we will say that G is a simple graph.

A sequence of distinct edges e1e2 · · · ek is called a trail if we can take a

continuous walk in our graph, first walking through the edge e1, then the

edge e2, and so on. In other words, the endpoint of ei is the starting point

of ei+1. Note that this happens if and only if we can draw the set of edges

e1e2 · · · ek so that we never lift our pencil from the paper, and we first draw

e1, then e2, and so on. A walk is like a trail, except that all edges do not

need to be disjoint.

If, in addition, we start the drawing at the same vertex where we end

it, then we say that e1e2 · · · ek is a closed trail. If a trail uses all edges of G,

then we call it an Eulerian trail. If a trail does not touch any vertex twice,

then we call it a path.

If we put two or more graphs next to each other, we can certainly call

the union obtained this way a graph. Still, it is natural to think that this

new graph is not quite as good as the original graphs. For instance, there are

pairs of vertices so that you cannot get from one vertex to another through

a path. This is a very important difference, and motivates the following

definition.

Definition 9.1. If the graph G has the property that for any two vertices

x and y, one can find a path from x to y, then we say that G is a connected

graph.

If G is not connected, then let k be the smallest integer so that G can

be obtained as the union of k connected graphs. Then we say that G has

k connected components. We also say that vertices u and v are in the same

connected component if there is a path from u to v. In other words, the

connected components are the maximal connected subgraphs of G, that is,

connected subgraphs to which we cannot add any new vertex of G without

forcing them to lose the connected property. Now we are in a position to

state and prove Euler’s theorem.

Theorem 9.2. A connected graph G has a closed Eulerian trail if and only

if all vertices of G have even degree.

Proof. First we prove the “only if” part, that is, we show that if G has a

closed Eulerian trail, then all vertices of G must have even degree. Indeed,

when we take the closed Eulerian trail W , we visit each vertex a certain
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number of times. Let A be a vertex that was not where W started, and

assume we visited A exactly a times. This means we entered A exactly a

times, and we left A exactly a times. As we assumed W was a trail, we

had to do this using different edges, so we used 2a edges. On the other

hand, W contains all edges of G, so A cannot have any additional edges,

therefore the degree of A is 2a. This shows that the degree of any vertex

other than the starting point S of W is even. Finally, note that S is not

only the starting point of W , but also the endpoint, so if we visit S exactly

t times between the start and the end of W , then we use 1+2t+1 = 2(t+1)

edges. Therefore, the degree of S is 2(t+ 1), and our claim is proved.

Now assume all vertices of G have even degree and prove that G has a

closed Eulerian trail. Take any vertex S, and start walking along an edge

e1, to the other endpoint A1 of that edge, then walk along any new edge e2
that starts in A1. Continue this way, using new (previously unused) edges

at each step, until a closed trail C1 is formed. As G is finite, such a closed

trail will always be formed. The first closed trail will be formed when we

first revisit a vertex already visited. We cannot get stuck at some vertex

before completing a closed trail as each vertex has even degree, so each time

we enter a vertex, we can also leave it, except possibly the initial vertex. If

C1 = G, then we are done. If not, then choose a vertex V in C1 so that C1

does not contain all edges adjacent to V .

The alert reader can ask now how do we know that there is such a vertex

V . Let us assume that there is not. As C1 contains less edges than G, and

supposedly C1 contains all edges adjacent to all vertices it contains, there

must be a vertex A that is not in C1. However, G is a connected graph, so

there must be a path connecting A to any vertex in C1. Start walking on

this path from A to any given vertex of C1. When you reach C1 the first

time, you will reach it in a vertex V that is in C1, but not all the edges

adjacent to it are in C1. Indeed, the one that has just ended in V is not.

This proves by contradiction that such a vertex V always exists. Figure 9.3

illustrates this situation.

Let us now omit all edges of C1 from G. We get a graph in which again

all vertices have even degree. Starting at V , let us take another closed

trail C2 in the remaining graph. We can then unite C1 and C2 into one

closed trail in G. Indeed, if we start walking by C1, we can stop at V , walk

through C2, then complete our trail by using the remaining part of C1. If

the new trail C1 ∪C2 contains all edges of G, we are done. If not, then let

us omit C1 ∪ C2 from G, and find a new closed trail C3 in the remaining

graph.
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1C

V

A

Fig. 9.3 The cycle C1 does not contain all edges adjacent to V .

As G has a finite number of edges, this procedure has to stop after a

finite number of steps. Therefore, after a finite number of steps, C1 ∪C2 ∪
· · · ∪ Ck will be a closed trail containing all edges of G. �

This proves that we cannot walk through all bridges of Königsberg so

that we end where we started, and use each bridge exactly once. Indeed,

the graph shown in Figure 9.2 has four vertices of odd degree.

What happens if we relinquish the requirement that our trail start and

end at the same place? The answer to this question is a direct consequence

of Theorem 9.2.

Corollary 9.3. Let G be a connected graph. Then G has an Eulerian trail

starting at vertex S and ending at a different vertex T if and only if S and

T have odd degree, and all other vertices of G have even degree.

Proof. Add a new edge joining S and T , and call the new graph obtained

H . Then H has a closed Eulerian trail if and only if G has an Eulerian trail

from S to T , so the claim follows from Theorem 9.2. �

We have seen that the parity of the degrees is an important property of

a graph. The following theorem shows a basic fact about these parities.

Theorem 9.4. In a graph G without loops, the number of vertices of odd

degree is even.

Proof. Take such a graph with e edges. Let d1, d2, · · · , dn be the degrees

of the n vertices of G. We claim that

d1 + d2 + · · ·+ dn = 2e.
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Indeed, each edge contributes one to the degree of exactly two vertices,

namely its two endpoints. So a total of e edges will result in a total of

2e in the sum of degrees. Therefore, the sum of degrees is 2e, which is an

even number. This implies that there has to be an even number of odd

summands in d1 + d2 + · · ·+ dn. �

9.2 Hamiltonian Cycles

A cycle in a graph is a closed trail that does not touch any vertex twice,

except, of course the initial vertex, that must also be the ending vertex.

This implies that if a cycle has k vertices, then it has k edges. A cycle

that includes all vertices of a graph is called a Hamiltonian cycle, whereas

a path that includes all vertices of a graph is called a Hamiltonian path.

A real-life scenario in which Hamiltonian cycles are relevant is the fol-

lowing. Suppose many people are invited to a party, and they will all be

seated around a circular table. Is it possible to find seating arrangements

so that each guest knows both people seated next to him?

In this scenario, we can define a graph in which people are represented

by vertices, and two vertices are connected by an edge if the corresponding

people know each other. Then a Hamiltonian cycle in this graph, if it exists,

provides an appropriate seating.

Whether a Hamiltonian cycle exists in this graph depends, of course,

on the graph itself. For example, if there is a person who does not know

anyone, then it is clear that there is no Hamiltonian cycle. If there is no

such person, but the graph is not connected, there will not be a Hamiltonian

cycle either. If everyone knows everyone, then of course, there will be a

Hamiltonian cycle.

These were all very special situations. What can be said about the

general case, though? That is, given a simple graph G, how can we quickly

decide whether it has a Hamiltonian cycle or not?

The answer to this question is that we cannot. It is easy to prove that an

appropriate seating exists (when it exists). Indeed, you can prove that by

simply exhibiting one. There is, however, no quick way known to prove that

no appropriate seating exists (when it does not). By “quick way” we mean

an algorithm that uses only f(n) steps, where n is the number of guests,

and f(n) is a polynomial function of n, such as n3, or n7 + 3n5 + 6n+ 3.

We can certainly prove that no good seating exists by verifying all (n− 1)!

possible seating arrangements, and concluding that none of them are good,
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but that takes too long. The function g(n) = (n− 1)! is not a polynomial

function of n.

This problem is interesting on its own, but it is also related to a vast

array of very important problems of an exciting area in Theoretical Com-

puter Science, called Complexity Theory, which is the topic of Chapter 20

of this book. (So it is well worth reading the book till the very end!) It

can be proved that the problem of deciding whether a given simple graph

has a Hamiltonian cycle is equivalent to about 5000 other problems, which

are all very different at first sight. By “equivalent”, we mean that if a

polynomial-time algorithm were found for the Hamiltonian cycle problem,

then that would provide a polynomial-time algorithm for any of those 5000

problems, and vice versa. The set of all these equivalent problems is called

NP -complete problems. It is believed by most, but not all, researchers,

that such polynomial-time algorithm does not exist. You can try to find

one, but do not try too hard...

There are nevertheless some nontrivial theorems about the existence of

Hamiltonian cycles.

Theorem 9.5. Let n ≥ 3, let G be a simple graph on n vertices, and let

us assume that all vertices in G are of degree at least n/2. Then G has a

Hamiltonian cycle.

Proof. Let us assume that G does not have a Hamiltonian cycle. Let

us add new edges to G as long as we can without creating a Hamiltonian

cycle. When we stop, we have a graph G′ in which all vertices have degree

at least n/2, there is no Hamiltonian cycle, but adding any new edge would

create a Hamiltonian cycle.

Let x and y be two vertices in G′ that are not connected by an edge.

As adding the edge xy would create a Hamiltonian cycle, it follows that

G′ has a Hamiltonian path P that starts at x and ends in y. Let x =

z1, z2, z3, · · · , zn−1, zn = y be the vertices of this path, from x to y. Vertices

x and y together have at least n neighbors. Therefore, the pigeon-hole

principle implies that there must be an index i so that 2 ≤ i ≤ n − 1,

while xzi is an edge, and also, zi−1y is an edge. (Otherwise the set of

neighbors of y and the set of vertices that immediately precede a neighbor

of x on the xy-path would be disjoint, which is impossible since these sets

are too large.) This is a contradiction, however, for this would mean that

xz2 · · · zi−1yzn−1 · · · zi is a Hamiltonian cycle as shown in Figure 9.4. �

There are several additional results proving that a simple graph in which
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x yizz2 z n-1i-1
z

Fig. 9.4 The cycle xz2 · · · zi−1yzn−1 · · · zi is a Hamiltonian cycle.

the degrees are, in some sense, large, has a Hamiltonian cycle. We will see

some of these results in the Exercises.

9.3 Directed Graphs

In the previous section, the edges of a graph were not assigned a direction.

We could walk through them in both ways. As anyone with big city driving

experience knows, this is not always the case in real life, that is, there are

one way streets, too. A graph in which each edge is assigned a direction,

such as in Figure 9.5, is called a directed graph.

Fig. 9.5 A directed graph.

It is natural to wonder under what conditions does a directed graph

have a closed Eulerian trail. Of course, a trail in a directed graph must

contain all edges in the right direction, that is, we can only walk through

an edge from its “tail” to its “head”. Paths and closed trails are defined in

an analogous way.
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Clearly, in this case it is not enough to require that all vertices have an

even number of edges adjacent to them. For example, if no edge starts in

a given vertex, then there will be no Eulerian trail in that graph.

In order to answer this question, we introduce some new definitions.

We say that a directed graph G is strongly connected if for all vertices a

and b of G, there is a directed path from a to b. The in-degree of a vertex

of a directed graph is the number of edges that end at that vertex. The

out-degree of a vertex is the number of edges that start at that vertex. A

directed graph H is called balanced if for each vertex V of H , the equality

indegree(V ) = outdegree(V ) holds.

Theorem 9.6. A directed graph G has a closed Eulerian trail if and only

if it is balanced and strongly connected.

Proof. First we prove that these conditions are necessary. As a closed

Eulerian trail W leaves each vertex as many times as it enters that vertex,

G must be balanced. Similarly, W provides a trail from any vertex to any

vertex, so G is strongly connected.

These two conditions are sufficient. To see this, copy the proof of The-

orem 9.2, replacing edges by directed edges. �

A simple undirected graph is called complete if there is an edge between

every pair of distinct vertices. Thus a complete graph on n vertices has
(

n
2

)

edges. If we direct each edge of a complete graph, then the resulting

directed graph is called a tournament. The reason for this name is the

following. If n players participate at a round robin tennis tournament, and

we define a directed graph in which the vertices represent the players, and

ij is an edge if i has beaten j, then we get a tournament. We have met

tournaments before, in Exercises 2 and 3 of Chapter 2.

Hamiltonian paths and cycles can be defined in directed graphs, too, in

the obvious way. While it is trivial that all complete (undirected) graphs

have Hamiltonian paths, the corresponding statement for directed graphs

is not that obvious. This is not surprising; while there is only one com-

plete undirected graph on n vertices, there are many, (in some sense, 2(
n
2))

tournaments. Nevertheless, they all have Hamiltonian paths. This is the

content of the next theorem.

Theorem 9.7. All tournaments have a Hamiltonian path.

Proof. We prove the claim by induction on n, the number of vertices of

our tournament T . If T has one, or two vertices, then the statement is
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clearly true. Now assume that we know the statement for all tournaments

having n − 1 vertices. Let T be any tournament on n vertices. Separate

any vertex V , and call the remaining graph on n − 1 vertices T ′. By the

induction hypothesis, T ′ has a Hamiltonian path h = h1h2 · · ·hn−1. The

question is how we can insert V into h. If there is an index i so that hiV is

an edge and V hi+1 is an edge, then we can insert V between hi and hi+1.

If no such i exists, then there must exist an index k so that 0 ≤ k ≤ n−1,
and for all j ≤ k, V hj is an edge, and for all j > k, hjV is an edge.

Therefore, either V h1 is an edge, or hn−1V is an edge. So we can affix V

either to the front, or to the end of h. �

What can we say about the existence of Hamiltonian cycles in tour-

naments? Clearly, not all tournaments will contain them. For example,

if T has a vertex that has in-degree 0, or out-degree 0, then T does not

have a Hamiltonian cycle. It turns out that it is fairly easy to describe the

tournaments that do have Hamiltonian cycles.

Theorem 9.8. A tournament T has a Hamiltonian cycle if and only if it

is strongly connected.

Proof. If T has a Hamiltonian cycle, then that cycle provides a directed

path from any vertex to any vertex, so G is strongly connected.

Now assume that T is strongly connected, and let E(T ) denote the set

of edges of T . First we prove that T does contain a cycle. Indeed, if it

did not, then xy ∈ E(T ) and yz ∈ E(T ) would imply xz ∈ E(T ), so T

would be a transitive tournament. In such a tournament, the vertices can

be listed from left-to-right so that ij ∈ E(T ) if and only if j is on the right

of i. However, such a tournament is not strongly connected as no paths go

to the right. So T does have a cycle.

Let C = y1y2 · · · yk be a cycle of maximal length in T , and assume C is

not a Hamiltonian cycle. As T is strongly connected, it contains an edge

from C to some vertex x that is not in C. We can assume without loss of

generality that this edge is y1x. If xy2 were an edge, then y1xy2y3 · · · yk
would be a cycle having more vertices than C. Therefore, y2x has to be an

edge, and then similarly, y3x, y4x, · · · , ykx must all be edges.

Let Z be the set of all vertices z so that y1z ∈ E(T ). Then yiz ∈ E(T )

for all z ∈ Z and all i ∈ [k] by the same argument as the one we applied

for yix in the previous paragraph. Let zt be an edge, with z ∈ Z, and

t /∈ Z. Such an edge exists as T is strongly connected. Then t /∈ C, and

therefore t /∈ Z implies that ty1 ∈ E(T ). Then, however, zty1y2y3 · · · yk is a
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longer cycle than C. Figure 9.6 shows our construction. This contradiction

completes the proof.

y

x

z
t

y

y
2

1

k

C

Z

Fig. 9.6 Constructing a cycle that is larger than C.

�

9.4 The Notion of Isomorphisms

When are two graphs considered the same? This question can be answered

in several different ways. For the time being, we will only discuss two of

them.

We will say that the two graphs shown in Figure 9.7 are identical because

for any pair of vertices X and Y , the number of edges between X and Y is

the same in both graphs.

The fact that the two graphs are not drawn the same way does not

matter here. What matters is that exactly the same pairs of vertices have

edges between them.

Now consider Figure 9.8. The two graphs shown there are certainly not

identical. Indeed, the first one contains the edge AB, and the second one

does not.

However, we certainly get the impression that these two graphs are not

completely unrelated either. For instance, if we omit all labels from the

vertices, then we get the two graphs shown in Figure 9.9, that surely look

the same.
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A

B C

D D

C

B

A

Fig. 9.7 Two identical graphs with labeled vertices.

A

B C

D G

H

E F

Fig. 9.8 Two isomorphic graphs with labeled vertices.

Fig. 9.9 These two unlabeled graphs are identical.

We will express this by saying that the two graphs shown in Figure 9.8

are identical as unlabeled graphs, or, in one word, isomorphic. Let us make

this definition more precise.

Definition 9.9. We say that graphs G and H are isomorphic if there is a

bijection f from the vertex set of G onto that of H so that the number of
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edges between any pair of vertices X and Y of G is equal to the number of

edges between vertices f(X) and f(Y ) of H . The bijection f is called an

isomorphism.

Example 9.10. Let G and H be the graphs shown in Figure 9.8. Then

the map f defined by f(A) = H , f(B) = E, f(C) = F , f(D) = G is an

isomorphism, and therefore, the two graphs are isomorphic.

Note that an isomorphism maps a pair of connected vertices into a

pair of connected vertices. In particular, if the degree of A is d, then the

degree of f(A) is d, for all isomorphisms f . Therefore, two graphs can be

isomorphic only if the multisets of their degrees are the same. Exercise 21

shows that this condition is not sufficient for isomorphism, indeed, there

are graphs with the same multiset of degrees that are not isomorphic.

In order to prove that two graphs are isomorphic, we have to exhibit an

isomorphism between them. To prove that two graphs are not isomorphic

is a more difficult issue. In certain cases we get lucky. If the two graphs do

not have the same number of vertices, or the same multiset of degrees, or

they do not have the same number of cycles, or the same number of paths

of length k, and so on, then it is clear that they are not isomorphic. Indeed,

isomorphisms preserve all these parameters. (You should think about this

for a while.)

There is no general way, however, to test whether two graphs are iso-

morphic. Unless, that is, you verify all n! bijections from G to H , where n is

the number of vertices of each graph. It is not known whether this problem

belongs to the class of NP -complete problems, the class of problems that

we mentioned when we discussed the problem of deciding whether a graph

has a Hamiltonian cycle.

To summarize, we have seen two different answers to the question of

when two graphs are different. In one of them, the vertices were distin-

guishable (labeled), in the other one, they were indistinguishable (unla-

beled). The way the graph was drawn did not matter in either case. We

will see situations, in Chapters 12 and 14, when that will matter.

Notes

Graph Theory is the subject of Chapters 9–12 of this book. If the reader

wants a book-length treatment of the topic, an obvious place to start is

“Introduction to Graph Theory” by Douglas West [47].
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We will return to graphs in several later chapters as well, essentially in

all chapters following the Graph Theory part of the book. This shows how

omnipresent graphs are in combinatorics.

Exercise 18 contains the definition of graphical partitions. Let g(n) be

the number of all graphical partitions of the even integer n. Paul Erdős

conjectured that limn→∞
g(n)
p(n) = 0. This conjecture was open for twenty

years, and has only been recently proved by Boris Pittel [33], who used

sophisticated techniques from Probability Theory in proving it.

Exercises

(1) Let G be a loopless undirected graph. Prove that the edges of G can

be directed so that no directed cycle is formed. (To put this into a

real-life context, it is possible to make all the streets of a city one-way

so that you can never return to a point you have left. This seems

rather likely, by experience....)

(2) Is it true that if a graph has a closed Eulerian trail, then it has an

even number of edges?

(3) Let G be a simple graph on 10 vertices and 28 edges. Prove that G

contains a cycle of length 4.

(4) Let G be a simple graph on 9 vertices, and assume we know that the

sum of all degrees in G is at least 27. Is it true that G has a vertex of

degree at least four?

(5) Let G be a graph. We say that H is an induced subgraph of G if the

vertex set of H is a subset of that of G, and if x and y are two vertices

of H , then xy is an edge in H if and only if xy is an edge in G.

Let G be a simple graph that has 10 vertices and 38 edges. Prove that

G contains K4 (the complete graph on four vertices) as an induced

subgraph.

Remark. The word induced in the name of induced subgraph is

important. The notion of subgraphs is different from that of induced

subgraphs. If G is a graph, we say that J is a subgraph of G if the

vertex set of J is a subset of that of G, and if x and y are two vertices

of J , then xy is an edge in J only if xy is an edge in G. In other

words, a subgraph of G does not necessarily contain all the edges of G

that connect two of its vertices, while an induced subgraph of G does.

(6) Let G be a simple graph in which all vertices have degree four. Prove
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that it is possible to color the edges of G orange or blue so that each

vertex is adjacent to two orange edges and two blue edges.

(7) How many different simple graphs are there on the vertex set [n]?

(8) An automorphism of a graph G is an isomorphism between G and

G itself. That is, the permutation f of the vertex set of G is an

automorphism of G if for any two vertices x and y of G, the number

of edges between x and y is equal to the number of edges between

f(x) and f(y). How many automorphisms do the following (labeled)

graphs have?

(a) The complete graph Kn on n vertices.

(b) The cycle Cn on n vertices.

(c) The path Pn on n vertices.

(d) The star Sn on n vertices. (This graph has one vertex of degree

n− 1, and n− 1 vertices of degree 1.)

(9) Prove that there are more than 6600, pairwise non-isomorphic graphs

on eight labeled vertices.

(10) Is it true that the number of people currently living on our planet and

having an odd number of siblings is even?

(11) Is it true that

(a) if a simple graph has a closed Eulerian trail, then it has a Hamil-

tonian cycle?

(b) if a simple graph has a Hamiltonian cycle, then it has a closed

Eulerian trail?

(12) A simple graph is called regular if all its vertices have the same degree.

Let G be a connected regular graph with 22 edges. How many vertices

can G have?

(13) The previous exercise defines a regular graph as a simple graph in

which each vertex has the same number of neighbors. Is it true that

in such a graph, each vertex will have the same number of second

neighbors? (The vertex X is a second neighbor of a vertex Y if XY

is not an edge, and there is a path of length 2 joining X and Y .)

(14) The graph shown in Figure 9.10 is called the Petersen graph. Does

this graph have a Hamiltonian cycle?

(15) Find all ways to omit edges from the Petersen graph shown in Figure

9.10 so that the remaining graph, that still has ten vertices, has a

closed Eulerian trail.

(16) The ordered degree sequence of a graph is the list of the degrees of its

vertices in non-increasing order. So if a graph G has e edges, then
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Fig. 9.10 The Petersen graph.

the positive members of its degree sequence form a partition Π(G) of

the integer 2n. Prove that if G is a simple graph, then Π(G) is never

self-conjugate.

(17) Is there a simple graph on 6 vertices with ordered degree sequence 4,

4, 4, 2, 1, 1?

(18) Let p be a partition of the integer 2n. We say that p is graphical if there

exists a simple graph G (necessarily with n edges) that has ordered

degree sequence p. Prove that p = (4, 4, 3, 2, 1) is not graphical.

(19) (+) How many automorphisms does the graph shown in Figure 9.11

have?

A B

CD

E F

GH

Fig. 9.11 Find the number of automorphisms of this graph.
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(20) (+) How many automorphisms does the graph shown in Figure 9.12

have?

A B

C

E

F

D

Fig. 9.12 Find the number of automorphisms of this graph.

(21) Two graphs have the same ordered degree sequence. Show that they

are not necessarily isomorphic.

(22) Let c(n) be the number of connected graphs on the vertex set [n], and

let C(x) be the exponential generating function of the sequence {c(n)}.
Find C(x). Do not look for a closed form. Look for a functional

equation that enables us to compute the values c(n).

Supplementary Exercises

(23) (-)

(a) How many simple directed graphs are there on vertex set [n]?

(b) How many tournaments are there on vertex set [n]?

(24) (-) A tournament is called transitive if the fact that there is an edge

from i to j and an edge from j to k implies the fact that there is

an edge from i to k. How many transitive tournaments are there on

vertex set [n]?

(25) (-) Prove that a tournament is transitive if and only if it has only one

Hamiltonian path.

(26) (-) Is it true that a directed graph with a finite number of vertices

and with no directed cycles has at least one vertex whose outdegree
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is zero?

(27) (-) Prove that for any integers n ≥ 1, there exists a set S of
(

n
2

)

+ 1

graphs on vertex set [n] so that no two elements of S are isomorphic.

(28) Prove that if in a simple graph G, there is a trail or walk from vertex

A to vertex B, then there is also a path from A to B.

(29) (+) A high school has 90 alumni, each of whom has ten friends among

the other alumni. Prove that each alumni can invite three people for

lunch so that each of the four people at the lunch table will know at

least two of the other three.

(30) Prove that in any simple graph, there are two vertices with the same

degree.

(31) There are several people in a classroom; some of them know each

other. It is true that if two people know the same number of people

in the classroom, then there is nobody in the classroom both of these

people know. Prove that there in someone in the classroom who knows

exactly one other person in the classroom.

(32) Prove that the number of people who have shaken hands at an odd

number of times (in their life so far) is even.

(33) Ten players participate at a chess tournament. Eleven games have

already been played. Prove that there is a player who has played at

least three games.

(34) Find all non-isomorphic simple graphs on four vertices.

(35) Find a simple graph G on n vertices so that G has no non-trivial auto-

morphisms, n > 1, but otherwise n is minimal under these conditions.

Explain how your answer changes if we drop the requirement that G

be simple.

(36) Let G be the union of k disjoint cycles of length r. How many auto-

morphisms does G have?

(37) (+) At most how many edges can a simple graph G on n vertices have

if G is not to have a Hamiltonian cycle?

(38) For what values of n can Kn be decomposed into a union of edge-

disjoint Hamiltonian cycles?

Note: In the following several exercises, we will ask how many Hamil-

tonian cycles various graphs have. All these graphs have labeled ver-

tices, and two Hamiltonian cycles are considered distinct if their set

of (undirected) edges are different.

(39) How many Hamiltonian cycles does Kn have?

(40) Let Km,n be the simple graph whose vertex set consists of the m-

element vertex set A, and the n-element vertex set B, and which has
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a total of mn edges, each between a vertex in A and a vertex in B.

Find the number of Hamiltonian cycles of Km,n. Note that in the

special case of m = n, the answer will differ from the other cases.

We point out that Km,n is called a complete bipartite graph.

(41) For graph theoretical purposes, the n-dimensional hypercube Qn is a

simple graph whose vertices are the 2n points (x1, x2, · · · , xn) ∈ Rn

so that for each i ∈ [n], either xi = 0 or xi = 1, and in which two

vertices are adjacent if they agree in exactly n− 1 coordinates.

Prove that if n ≥ 2, then Qn has a Hamiltonian cycle.

(42) Prove that if n ≥ 2, then Qn has at least n!/2 Hamiltonian cycles.

(43) Find the number of Hamiltonian cycles of Q3 (the regular, three-

dimensional cube).

(44) Is there a simple graph G on seven vertices such that it is not con-

nected, and each vertex of G has degree at least three?

(45) Each vertex of a simple graph G has degree k. Prove that G contains

a cycle of length at least k + 1.

(46) Prove that if G is a simple graph on n vertices, and for any two vertices

X and Y of G, it is true that dx + dz ≥ n, then G has a Hamiltonian

cycle. (Here dz denotes the degree of the vertex z.)

(47) Prove that the statement of the previous exercise is not true if we only

assume that dx + dz ≥ n− 1.

(48) Let G be a simple graph on vertex set [n] in which each vertex has

degree two.

(a) Prove that G is a union of disjoint cycles.

(b) Let g(n) be the number of graphs described above, and set g(0) = 1.

Prove that
∑

n≥0

g(n)
xn

n!
=

e−
x
2
− x2

4√
1− x

.

(c) Explain why the generating function computed in part (b) is dif-

ferent from the exponential generating function
∑

n≥0 n!
xn

n! = 1
1−x

of the numbers of n-permutations, when permutations are in fact

also unions of disjoint cycles on the set [n].

(49) Let h(n) be the number of simple graphs G on vertex set [n] in which

no vertex has degree more than two. Find the exponential generating

function
∑

n≥0 h(n)
xn

n! .

(50) Let z(n) be the number of simple graphs G on vertex set [n] in which

no connected component has more than three vertices. Find the ex-

ponential generating function
∑

n≥0 z(n)
xn

n! .
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Solutions to Exercises

(1) Label the vertices of G by the integers 1, 2, · · · , |G| using each integer

once. Then orient the edges so that the arrow on the edge ij points to

j if and only if i < j. This way, the labels increase along any directed

path, so no directed cycle can exist.

(2) No, that is not true. A triangle is a counterexample.

(3) The sum of all degrees of G is 56. Therefore, G has two vertices so that

the sum of their degrees is at least 12, by the pigeon-hole principle. Let

X and Y be these two vertices. They may be connected by an edge,

but even then, they are connected to ten other vertices. However, G

has only eight other vertices, so there must be at least two vertices,

C and D, that are connected to both A and B. Therefore, ACBD is

a cycle of length four.

(4) Yes, that is true. The sum of all degrees of a graph is always an even

number. Therefore, if this sum is at least 27, then it is at least 28,

and the statement follows by the pigeon-hole principle.

(5) There are
(

10
4

)

= 210 four-element vertex sets in G. Denote by

a1, a2, · · · , a210 the number of edges in the subgraphs induced by each

of them. Then we have

a1 + a2 + · · ·+ a210
28

= 38

as the numerator of the left-hand side counts each edge 28 times.

Indeed, the edge xy is counted 28 times there, as there are
(

8
2

)

= 28

ways to add two vertices to xy, and obtain a four-element vertex set.

So a1+a2+· · ·+a210 = 28·38 = 1064. This implies, by the Pigeon-hole

Principle, that the largest of the ai must be at least 1064/210 = 5.07.

As the ai are all integers, this means that the largest ai is in fact at

least 6, which means that the corresponding induced subgraph is K4.

(6) Theorem 9.2 shows that G has a closed Eulerian trail W . Go through

C edge by edge, and color its first edge orange, the second one blue,

the third one orange again, the fourth one blue again, and so on. AsW

leaves a vertex right after entering it, the statement follows. Indeed,

each time W passes through a vertex, it contributes one orange edge

and one blue edge to that vertex. As W passes through each vertex

twice, the statement follows.

The only exception to this is the starting (and ending) vertex V . The

trail W passes through V only once, but it starts and ends in V , too.

To see that the starting and ending edges of W have different colors,
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we must prove that W , and therefore, G, has an even number of edges.

We know from the proof of Theorem 9.4 that in any loop-less graph,

e = 1
2

∑n
i=1 di. In our case, di = 4 for all i, therefore e = 1

24n = 2n,

which is indeed an even number. This completes the proof.

(7) There are
(

n
2

)

pairs of vertices in such a graph, and each of them

is connected by either 0 edges, or by 1 edge. Thus for each pair of

vertices, we have to make a choice of two possibilities. Therefore, the

total number of simple graphs on [n] is 2(
n
2).

(8)(a) As any bijection from the vertex set of G onto itself is an automor-

phism, the answer is n!.

(b) Let us first assume that n ≥ 3. Let A and B be two adjacent

vertices of G, and let f be an automorphism of G. Then f(A) and

f(B) have to be adjacent vertices, and they completely determine

f . Indeed, if C is the other neighbor of B in G, then f(C) must be

the other neighbor of f(B) in G, and so on. If we choose f(A) first,

then f(B), then we have n choices for f(A), and then 2 choices for

f(B). Therefore, we have 2n possibilities for f .

If n = 1, or n = 2, then there are only n automorphisms. (In these

cases, we are only free to choose the image of one vertex.)

(c) If E and F are the two endpoints of Pn, then an automorphism ei-

ther leaves them fixed, or interchanges them. Indeed, these are the

only vertices of degree one in Pn, and any automorphism preserves

degree. Once we know f(E) and f(F ), the rest of f is determined.

Therefore, Pn has two automorphisms.

(d) If C is the center (the only vertex of degree n− 1) of Sn, then it is

clear that in any automorphism f of Sn, we must have f(A) = A.

There is no restriction on the other vertices; f can permute them

in any way. Thus Sn has (n− 1)! automorphisms.

(9) As we saw in Exercise 7, the number of all simple graphs on [8] is

2(
8

2) = 228 = 268435456. On the other hand, the number of bijections

from [8] onto [8] is 8!. Therefore, any labeled graph on eight vertices

can be isomorphic to at most 8! = 40320 other graphs. It then follows

from the pigeon-hole principle that the number of isomorphism classes

must be at least 268435456/40320 = 6657.625.

(10) Yes, consider the graph whose vertices are all people currently living

on our planet, and two vertices are joined by an edge if and only if

the corresponding people are siblings.

(11)(a) No. A counterexample is shown in Figure 9.13.
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Fig. 9.13 A graph with no Hamiltonian cycle.

(b) No. A counterexample is a complete graph on 2n vertices, for

n ≥ 2.

(12) Let d be the common degree of the vertices of G, and let v be the

number of vertices of G. Then we have 44 = v · d. So v must be a

divisor of 44, that is, it cannot be anything other than 1, 2, 4, 11,

22 or 44. As G is simple, it cannot have more edges than Kn, which

excludes the three smallest divisors of 44. If v = 22, then d = 2, and

this is indeed possible if G is a cycle of 22 vertices. If v = 11, then

we must have d = 4, and this is indeed possible. Simply take a cycle

on 11 vertices, then join each vertex to both of its second neighbors

by an edge. Finally, v = 44 is not possible, because that would mean

d = 1, so G would consist of vertex-disjoint edges, and thus it would

not be connected.

(13) No, that is not necessarily true. Figure 9.14 shows a regular graph

in which each vertex has three neighbors. However, vertices B,D, F

and H have four second neighbors, while vertices A,C,E, and G have

three.

(14) No, it does not. Call the five edges joining an outer vertex to an inner

vertex sticks. Then any Hamiltonian cycle would have to contain a

positive even number of sticks, that is, two or four of them. Two sticks

are impossible as then the Hamiltonian cycle would have to contain

four outer edges and four inner edges, that is, there would be a path of

length four between the two outer endpoints of the two sticks, and a

path of length four between their two inner endpoints. That is clearly

impossible. Four sticks are also impossible. Indeed, if AB is the only

stick that is not in our purported Hamiltonian cycle h, then both the
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A B

C

D

E

H

G

F

Fig. 9.14 A regular graph.

four non-stick edges adjacent to A and B must all be part of h. Indeed,

all vertices have degree two in h. If we continue reconstructing h using

this observation, we quickly run into a contradiction by obtaining a

cycle with less than ten vertices.

(15) It is not possible to omit edges so that the obtained graph has a

closed Eulerian trail. Indeed, for that, we would have to make all the

degrees even, which means two in this case. That, however, would

mean that our closed Eulerian trail is a Hamiltonian cycle, and the

previous exercise shows that the Petersen graph has no Hamiltonian

cycle.

(16) If G has n vertices, then G(Π) will have k ≤ n parts, where k is the

number of vertices attached to at least one edge. On the other hand,

the largest part of G(Π) is at most k−1 as G is simple, so each vertex

can be connected to each other vertex at most once. So the number of

parts and the size of the largest part is not the same, therefore G(Π)

fails the first test of self-conjugacy.

(17) No, there is not. Let us assume that G is such a graph, and let S be

the set of vertices of G that have degree 4. Then S has three elements,

so there can be at most three edges that join two vertices of S. This

forces each vertex of S to be connected to at least two vertices of

G − S. That, however, would mean that there are at least six edges

between S and G − S, which is more than the sum of all degrees in

G− S. We reached a contradiction, so no such graph G can exist.

(18) Let us assume that G has degree sequence p = (4, 4, 3, 2, 1). Then G

has five vertices and seven edges. In particular, there are two vertices,
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say A and B, that are connected to all other vertices. That, however,

would mean that all vertices have degree at least two as they are

connected to both A and B.

(19) Note that this graph is in fact the graph of a cube. Therefore, we will

talk about it as such. A cube has six faces. Once we know the image

of the vertices of one face by an automorphism f , we know the entire

automorphism. Indeed, assume that we know what f(A), f(B), f(C),

and f(D) are. Then these four vertices must form a face. Moreover,

f(E) must be the only unused vertex adjacent to f(A), f(F ) must

be the only unused vertex adjacent to f(B), and so on. The question

is, therefore, how many different possibilities are there for the images

f(A), f(B), f(C), and f(D). First count those automorphisms in

which the orientation of the cube does not change. In this case, there

are six faces into which the face ABCD can be mapped, and then

there are four ways the images f(A), f(B), f(C), and f(D) can be

rotated on each face. So there are 24 automorphisms that preserve

the orientation of the cube. After each of these, we can perform a

reflection through a plane that bisects the cube. This provides 24

automorphisms that reverse the orientation of the cube. Therefore,

the graph of the cube has altogether 48 automorphisms.

(20) Note that this graph is in fact the graph of an octahedron. We can

get an octahedron by taking the center of each face of a cube (these

will be the vertices), and adding an edge between two vertices if the

corresponding cube-faces are adjacent. We can get a cube from an

octahedron the very same way.

This implies that there is a bijection between the automorphisms of a

cube and the automorphisms of an octahedron. The previous exercise

shows that the cube has 48 automorphisms, therefore the octahedron

also has 48 automorphisms.

(21) The ordered degree sequences of both graphs shown in Figure 9.15

are (3, 3, 2, 2, 2). However, they are not isomorphic. Indeed, if they

were, then any isomorphism f would have to map the set {A,B} of

vertices of the first graph onto the set {A,B} of vertices of the second
graph. (Isomorphisms preserve degree, and these are the only vertices

of degree three in our graphs.) However, there is an edge between A

and B in the first graph, but not in the second one, contradicting the

definition of isomorphism.

(22) Let g(n) be the number of all simple graphs on [n], and let G(x) be

the exponential generating function of the sequence {g(n)}. Then



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Dots and Lines. The Origins of Graph Theory 213

A B

A
B

Fig. 9.15 Two non-isomorphic graphs with the same degree sequence.

g(n) = 2(
n
2), and therefore,

G(x) =
∑

n≥0

2(
n
2)x

n

n!
.

Thus G(x) = 1+x+2x2+8x3+64x4+1024x5+ · · · . The exponential
formula (Chapter 8, Section 2) implies that

G(x) = eC(x),

C(x) = lnG(x).

Note that the power series lnG(x) is defined using the identity

ln(1 + x) =
∑

n≥1

(−1)nx
n

n
.
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Chapter 10

Staying Connected. Trees

Being or not being connected is a crucial property of graphs, as any telecom-

munications company, airline, or railroad will tell you. It is certainly de-

sirable to be able to create a connected network with relatively few edges,

but one can intuitively feel that he will not be able to decrease the num-

ber of edges too much. For example, one edge will certainly not do if the

graph has more than two vertices. This chapter is devoted to the study of

minimally connected graphs, which we will call trees.

10.1 Minimally Connected Graphs

Theorem 10.1. Let G be a connected simple graph on n vertices. Then

the following are equivalent.

(1) G is minimally connected, that is, if we remove any edge of G, then

the obtained graph G′ will not be connected.

(2) G does not contain a cycle.

Before proving the theorem, let us give a name to this extremely useful

class of graphs.

Definition 10.2. A connected simple graph G satisfying either, and there-

fore, both, criteria of Theorem 10.1 is called a tree.

Proof. (of Theorem 10.1)

(1)⇒ (2) Let us assume that G is minimally connected, but it contains a cycle

C. Remove the edge ab of C. We claim that G is still connected.

Indeed, let x and y be two vertices in G. As G was connected, G

215
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contained a path p from x to y. If p did not contain the edge ab, then

it still connects x and y. If p did contain ab, then let us replace ab

by the other (longer) arc ab, to get a new walk from x to y. As there

is a walk from x to y in G′, there must also be a path, as we saw

in Exercise 28 of Chapter 9. Therefore, G′ is connected, which is a

contradiction.

(2)⇒(1) We prove that the opposite of (1) implies the opposite of (2). That

will suffice, because it will imply that if (2) holds, the opposite of (1)

cannot hold as that would imply the opposite of (2), therefore (1) has

to hold. So “(2) implies (1)” will follow.

Let us assume that G is not minimally connected. That means that

there is an edge inG, sayAB, so thatG′ = G−{AB} is still connected.
Then there is a path P from B to A in G′. However, AB ∪ P must

then be a cycle in G as it defines a path that starts in A and ends in

A. So G contains a cycle.
�

Corollary 10.3. A connected graph H is a tree if and only if for each pair

of vertices (x, y), there is exactly one path joining x and y.

Proof. If for each pair of vertices (x, y), there is exactly one path joining

x and y, then H is minimally connected. Indeed, suppose you can omit

edge rs from H and get a connected graph. Then in the original graph H ,

there were at least two paths from r to s, namely the edge rs, and the path

that joins them in the new graph.

Conversely, supposeH is a tree, but there are two paths P and Q joining

vertices x and y. Now take the symmetric difference of P and Q, that is,

the edges that are part of exactly one of P and Q. It is straightforward to

see (why?) that this symmetric difference will be a union of cycles, which

is impossible in a tree. �

So trees are connected graphs that do not contain a cycle. An easy way

to obtain a tree on n vertices is to take a full (n-vertex) cycle on it, then to

delete one edge. This will be a tree with n− 1 edges. We can experiment

for a while and draw trees of very different structures, Some of these are

shown in Figure 10.1. After some time, we start suspecting that all trees on

n vertices have n − 1 edges. The following theorem shows that even more

is true.

Theorem 10.4. All trees on n vertices have n − 1 edges. Conversely, all

connected graphs on n vertices with exactly n− 1 edges are trees.
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Fig. 10.1 Trees on six vertices.

In the proof of Theorem 10.4, we will need the following lemma.

Lemma 10.5. Let T be a tree on n vertices, where n ≥ 2. Then T has at

least two vertices whose degree is 1.

Proof. Take any path p of maximum length in T . The endpoints of p

must then be leaves. Indeed, if one of them, say a, were not a leaf, then

p could be extended by one of the edges that are adjacent to a but not

currently part of p. �

Vertices of trees that have degree one are called leaves. Now we are

ready to prove Theorem 10.4.

Proof. (of Theorem 10.4) We use induction on n. If n = 1, the statement

is trivially true as a 1-vertex cycle-free graph has no edges. Let us assume

that the statement is true for trees on n vertices. Let T be a tree on n+ 1

vertices. Find a leaf l in T (the previous lemma ensures the existence of

two leaves), then delete l and the only edge e adjacent to it from T , to

get a new tree T ′. (Note that T ′ is always a tree as it is connected and

cycle-free.) This new tree T ′ has n vertices, so by the induction hypothesis,
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it has n − 1 edges. But then T = T ′ ∪ e has n edges, and the Theorem is

proved. �

Just as in nature, a set of trees is called a forest. So a forest is a graph

in which each connected component is a tree. This hopefully explains the

cover page illustration of this book. Some of the following theorems might

explain the wondering/lost facial expression of the person shown in that

picture as he is walking through the woods.

Proposition 10.6. Let F be a forest on n vertices with k connected com-

ponents. Then F has n− k edges.

Proof. By Theorem 10.4, the number of vertices exceeds that of edges

by one in each connected component, and the proof follows. �

How many trees are there on n vertices? After reading Section 9.3,

we know that there are at least two ways to interpret this question. One

is when the vertices are indistinguishable, and then the two trees shown

in Figure 10.2 are considered the same (we will return to this question in

Chapter 18), and the other is when the vertices are distinguishable. In this

case we can say that we are counting all trees with vertex set [n]. In this

case, the two trees in Figure 10.2 are considered different.

1 2

3

4

5 6

6
5

4

3

1 2

Fig. 10.2 Two isomorphic trees.

Trying the first few values of n, one sees that there is one tree on [1],

one tree on [2], there are three trees on [3], and 16 trees on [4]. After this,
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we might find enumerating all trees on [n] by hand cumbersome. These

scarce data suggest that there are nn−2 trees on [n], but the reader may

think that this was far too little data, and that it is very unlikely that

such an incredibly nice closed formula would exist for the number of things

as diverse as all trees on [n]. In most cases, the reader would be right to

make such an argument. The dreaded “Law of Small Numbers” says that

if you know just a few elements of a sequence, and those elements are small

numbers, then you can always find a nice formula that is verified by those

first few elements, but is incorrect in general. This case, however, is the

exception.

Theorem 10.7. [Cayley’s formula] For any positive integer n, the number

of all trees with vertex set [n] is An = nn−2.

This beautiful result has received its fair share of attention and has at

least 16 known proofs. Many of them require additional knowledge. Here

we cover what may be the shortest proof on the books, and is due to André

Joyal. Several other proofs will be included in the Exercises.

While reading the proof, the reader is encouraged to study the example

immediately following it.

Proof. (of Theorem 10.7) Take all An trees on [n], and in each of them,

choose two vertices, which do not have to be different, and call one of them

Start, and the other one End. Do this in all possible n2 ways for each tree.

Call the n2An objects obtained this way doubly rooted trees.

We are going to show that the number of doubly rooted trees on [n] is

nn by constructing a bijection from the set of all functions from [n] to [n]

to that of doubly rooted trees on [n]. This will prove our Theorem.

Let f be a function from [n] to [n]. Let C ⊆ [n] be the subset of elements

x ∈ [n] which are part of a cycle under the action of f , that is, for which

there is a positive integer i so that f i(x) = x. Let C = {c1 < c2 < · · · < ck}.
Now let di = f(ci), and write the integers d1, d2, · · · , dk in this order to the

nodes of a tree consisting of one line of k vertices. In other words, we write

down the elements of C in the order given by the permutation that is the

product of the cycles on C. Also, we mark d1 by Start, and dk by End.

Finally, if j ∈ [n], but j /∈ C, then join the vertex j to the vertex f(j)

by an edge. This way we always get a tree. Indeed, we get a connected

graph as the Start-End line is connected to all vertices, and we get a cycle-

free graph as the only cycles created by f involved vertices from C, and

C corresponds to a single line. The tree is doubly rooted, as the vertices
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Start and End are marked.

To see that this is a bijection, take a doubly rooted tree on [n]. For

vertices j not on the Start-End line, define f(j) to be the first neighbor of

j on the unique path from j to the Start-End line. For the vertices on the

Start-End line, define f so that the image of the ith smallest of them is the

one that is in the ith position from Start.

This shows that there is exactly one function f : [n]→ [n] corresponding

to each doubly rooted tree, and our theorem is proved. �

Example 10.8. Let n = 8, and let f : [8] → [8] be the function defined

by f(1) = 3, f(2) = 4, f(3) = 1, f(4) = 5, f(5) = 5, f(6) = 7, f(7) = 8,

f(8) = 6. Then the action of f is shown in Figure 10.3.

1 3

2 4

5

6

7 8

Fig. 10.3 The action of f .

The function f creates the cycles (13), (5), and (678). Therefore, C =

{1, 3, 5, 6, 7, 8}, and d1 = 3, d2 = 1, d3 = 5, d4 = 7, d5 = 8, and d6 = 6.

Therefore, our Start-End line will contain the integers 3, 1, 5, 7, 8, and 6,

in this order. As f(2) = 4, and f(4) = 5, we connect the vertex 2 to 4, and

the vertex 4 to 5. The obtained doubly rooted tree is shown in Figure 10.4.

To the analogy of doubly rooted trees, we can define rooted trees, which

are trees with one vertex called the root. So the number of rooted trees on

[n] is nn−1. A rooted forest is a forest in which each component is a rooted

tree.

Corollary 10.9. For all positive integers n, the number of rooted forests

on [n] is (n+ 1)n−1.

Proof. Take a rooted forest on [n], and join all roots to the new vertex

n+1 by an edge. This transforms the original rooted forest to an unrooted
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3 687

2

4

51

Start End

Fig. 10.4 The doubly rooted tree of f .

tree on [n + 1]. This map is a bijection: given a tree on [n + 1], we can

simply mark all neighbors of n+ 1 as roots, then delete all edges adjacent

to n+ 1, to get the original rooted forest on [n] back.

So the set of all rooted forests on [n] is in bijection with that of all trees

on [n+1], therefore they are equinumerous. Theorem 10.7 then shows that

each of them has (n+ 1)n−1 elements. �

There are several other structures that are in bijection with trees or

forests. See Exercises 6 and 7 for some examples.

10.2 Minimum-weight Spanning Trees. Kruskal’s Greedy

Algorithm

Let us return to the applications of trees. If G is a connected graph, we

say that T is a spanning tree of G if G and T have the same vertex set, and

each edge of T is also an edge of G.

Clearly, any connected graph G will have at least one spanning tree.

Indeed, if G is a tree, then G is its own spanning tree; if not, then G is not

a minimally connected graph, so we can omit an edge from G so that we

get a connected graph G′. If G′ is still not a tree, then we can continue

this same procedure. We will only have to stop when we get a minimally

connected graph, that is, a tree.

In general, a connected graph will have many spanning trees. Theorem

10.7 shows for example that Kn has nn−2 spanning trees. Sometimes it can

be quite difficult to find the number of all spanning trees of a connected

graph.

Spanning trees have a plethora of practical applications, especially in
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graphs with weighted edges. A classic example is the following.

A railroad wants to expand into a 20-city area where presently they

have no lines. They thoroughly analyzed the relevant data, and for each

of the
(

20
2

)

= 190 pairs of cities they know the exact amount they would

have to spend to build a direct link between those two cities. The railroad

wants to build a connected network, that is every city should be reachable

from every city, but they want no redundant lines. How can they find the

cheapest possible network?

A graph theoretical description of this problem is the following.

Example 10.10. Let G be a connected simple graph. Let w : E(G)→ R+

be a function. Find the spanning tree T of G so that
∑

e∈T w(e) is minimal.

The function w is usually called the weight function or cost function of

G, and w(e) is called the weight or cost of e, while
∑

e∈T w(e) is called the

weight of T . It is common practice to write the weights of the edges on the

edges, as shown in Figure 10.5. If G has only a few edges, then we might

try to find its minimum-weight spanning tree by examining all spanning

trees. For only slightly larger graphs, however, this approach would take

too long. Indeed, if n = 20 and G = Kn as in the railroad example, then

we would have to compute the total weight of 2018 > 2.5 · 1023 spanning

trees. If our computer could handle one billion spanning trees per second,

it would still need 2.5 · 1014 seconds, or more than 91 years to do it!

3

2

1

6

8

2

4

2
1

3

5

Fig. 10.5 A graph and its weight function.

Therefore, the quest for a general method to find the minimum weight
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spanning tree is undoubtedly well motivated. How would we start building

up such a tree T ? One can try the greedy way. That is, take the edge with

the smallest weight (or one of the edges with the smallest weight, if there

are several), and put it in T . Second, look for the edge that has the smallest

weight among those not in T , and add it to T . In the third step, and all

subsequent steps, we must be a little more careful. We have to make sure

that by adding the new edge, we will not create a cycle.

In general, in the ith step of this greedy algorithm we look for the edge

ei that has the following properties.

(i) The edge ei is not yet in T , and

(ii) if we add ei to T , the obtained graph does not contain a cycle, and

(iii) the weight of ei is minimal among all edges that have properties (i) and

(ii).

When we found this edge ei, we add it to T . It is clear that we can continue

this procedure until T has n − 1 edges, as a graph on n vertices and less

than n − 1 edges cannot be connected. However, G is connected, so if T

has less than n − 2 edges, we can find an edge of G that lies between two

connected components of T , and can therefore be added to T .

The alert reader could note that the graph T that we obtain this way

after i steps is not necessarily connected; all we know is that T is a cycle-

free graph, that is, a forest. However, if we continue this algorithm up to

step n− 1, then T will be a forest with n− 1 edges, that is, a tree.

Will the greedy algorithm give us the minimum weight spanning tree?

The answer to this question is not obvious. There are problems for which

the greedy algorithm does give the good answer, such as finding the three-

element subset with the largest sum in any finite set of integers. There are

also problems, however, for which the greedy algorithm does not give the

correct answer, because greedy steps at the beginning adversely influences

our choices later. An example for this is finding two vertex-disjoint edges

with minimum total weight in the graph shown in Figure 10.6.

Here the greedy algorithm results in a pair of disjoint edges with total

weight 11, though the correct answer is clearly 4. This problem, called the

minimum-weight matching problem is another very important problem. We

will learn about matchings in the next chapter.

For the task at hand, however, that is, for finding a minimum-weight

spanning tree, the greedy algorithm works. To prove this, we will need the

following interesting property of forests.
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1 2 2 10

Fig. 10.6 2 + 2 < 1 + 10.

Lemma 10.11. Let F and F ′ be two forests on the same vertex set V , and

let F have less edges than F ′. Then F ′ has an edge e that can be added to

F so that the obtained graph F ∪ e is still a forest.

Proof. Assume that there is no such edge e ∈ F ′. Then adding any edge

of F ′ to F would create a cycle in F . So all edges of F ′ are between two

vertices of the same component of F . Therefore, F ′ has at least as many

components as F . This is a contradiction, however, as we know that a

forest on n vertices and with k components has n − k edges, so if F ′ has
more edges than F , it must have less components. �

Now we are in a position to prove the main result of this section.

Theorem 10.12. The greedy algorithm always finds the minimum-weight

spanning tree.

Proof. Again, we use an indirect argument. Assume the greedy algo-

rithm gives us the spanning tree T , whereas our graph G has a spanning

tree H whose total weight is less than that of T . Let h1, h2, · · · , hn−1 be

the edges of H so that w(h1) ≤ w(h2) ≤ · · · ≤ w(hn−1) holds. Similarly,

let t1, t2, · · · , tn−1 be the edges of T so that w(t1) ≤ w(t2) ≤ · · · ≤ w(tn−1)

holds.

Let i be the step at which H first “beats” T . That is, let i be the

smallest integer so that
∑i

j=1 w(hj) <
∑i

j=1 w(tj). Such an index i exist

as at the end of the entire selection procedure H beats T , so there has to

be a time H takes the lead. It is also clear that i > 1 as w(t1) is minimal

among all the edge-weights of G.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Staying Connected. Trees 225

As i is the first index at which H took the lead, the inequality w(hi) <

w(ti) must hold. Indeed, this is the only way
i
∑

j=1

w(hj) <

i
∑

j=1

w(tj)

and
i−1
∑

j=1

w(hj) ≥
i−1
∑

j=1

w(tj)

can both hold.

We will deduce a contradiction from this, that is, we will prove that with

w(hi) < w(ti) holding, the greedy algorithm could not possibly choose ti
at step i. Let Ti−1 be the forest the greedy algorithm produced in i − 1

steps, that is, the union of the edges t1, t2, · · · , ti−1, and let Hi be the forest

formed by the edges h1, h2, · · · , hi. Applying Lemma 10.11 to Ti−1 and Hi,

we see that there is an edge hj (for some j ≤ i) that can be added to Ti−1

without forming a cycle. However, our definitions show that hj ≤ hi < ti,

so at step i, the greedy algorithm could not add ti to Ti−1 as ti did not

have minimum weight among the edges that could be added to Ti−1 without

forming a cycle.

This proves by contradiction that no spanning tree H can have a smaller

total weight than T , the tree obtained by the greedy algorithm. �

We would like to point out that there are several ways to attack the

problem of finding a minimum-weight spanning tree with a greedy algo-

rithm. We could for instance insist on keeping the graph we are building

connected in each step. The particular algorithm we covered in this sec-

tion is called Kruskal’s algorithm, or the Kruskal algorithm, named after

his inventor, the American mathematician Joseph Kruskal.

10.3 Graphs and Matrices

There are several ways to associate a matrix to a graph. These matrices are

often useful for enumerating graphs. Perhaps the most widely used such

matrix is the adjacency matrix of a graph.

10.3.1 Adjacency Matrices of Graphs

Definition 10.13. Let G be an undirected graph on n labeled vertices,

and define an n× n matrix A = AG by setting Ai,j equal to the number of
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edges between vertices i and j. Then A is called the adjacency matrix of

G.

Example 10.14. If G is the graph shown in Figure 10.7, then

AG =









0 1 1 1

1 0 0 1

1 0 0 0

1 1 0 0









.

A

B

C

D

Fig. 10.7 The graph whose adjacency matrix is AG.

If G is directed, then we can define its adjacency matrix by setting Ai,j

equal to the number of edges from i to j. Thus the adjacency matrix of

a directed graph is not necessarily symmetric, while that of an undirected

graph is.

Example 10.15. If H is the directed graph shown in Figure 10.8, then

AH =









0 1 1 0

0 0 0 1

0 0 0 0

1 0 0 0









.

The adjacency matrix of a graph comprises almost all properties of that

graph. There are several situations when it is actually easier to solve an

enumeration problem working with AG than working with G. A basic result

in that direction is the following.

Theorem 10.16. Let G be a graph on labeled vertices, let A be its adjacency

matrix, and let k be a positive integer. Then Ak
i,j is equal to the number of

walks from i to j that are of length k.
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A

B

C

D

Fig. 10.8 The directed graph whose adjacency matrix is AH .

Proof. By induction on k. For k = 1, the statement is true as a walk of

length one is an edge. Now assume that the statement is true for k, and

prove it for k+1. Let z be any vertex of G. If there are bi,z walks of length

k from i to z, and there are az,j walks of length one (in other words, edges)

from z to j, then there are bi,zaz,j walks of length k + 1 from i to j whose

next-to-last vertex is z. Therefore, the number of all walks of length k + 1

from i to j is

c(i, j) =
∑

z∈G

bi,zaz,j.

It follows from the induction hypothesis that the matrix B defined by Bi,j =

bi,j fulfills B = Ak. It is immediate from the definition of the adjacency

matrix A of G that Ai,j = ai,j .

Therefore, it follows from the definition of matrix multiplication that

c(i, j) =
∑

z∈G bi,zaz,j is in fact the (i, j)-entry of BA = Ak+1, (indeed, it

is the scalar product of the ith row of B and the jth column of A), and our

claim is proved. �

The adjacency matrix of a graph provides a quick way of testing whether

the matrix has certain properties. We will discuss testing of connectivity

here.

Theorem 10.17. Let G be a simple graph on n vertices, and let A be the

adjacency matrix of G. Then G is connected if and only if (I + A)n−1

consists of strictly positive entries.

Proof. We know from Exercise 28 of Chapter 9 that if there is a walk

from i to j in G, then there is a path, too. The length of a path in G is at
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most n−1. Therefore, G is connected if and only if, for any pair of distinct

vertices i and j, there is a positive integer k ≤ n− 1 so that Ak
i,j > 0. As

(I +A)n−1 =
n−1
∑

k=0

(

n− 1

k

)

Ak,

the statement follows. �

10.4 The Number of Spanning Trees of a Graph

The adjacency matrix of a graph, surprisingly, can be used to compute the

number of all spanning trees of that graph. To see this, we first need to

extend our investigation to directed graphs. If G is a directed graph, then

we say that H is a spanning tree of G if H is a subgraph of G, and if we

remove the orientations of all edges, obtaining the undirected graphs G1

and H1, then H1 is a spanning tree of G1. We need one additional definition

before we can enumerate spanning trees.

Definition 10.18. Let G be a directed graph without loops. Let

{v1, v2, · · · , vn} denote the vertices of G, and let {e1, e2, · · · , em} denote

the edges of G. Then the incidence matrix of G is the n × m matrix A

defined by

• ai,j = 1 if vi is the head of ej,

• ai,j = −1 if vi is the tail of ej , and

• ai,j = 0 otherwise.

Theorem 10.19. Let G be a directed graph without loops, and let A be

the incidence matrix of G. Remove any row from A, and let A0 be the

remaining matrix. Then the number of spanning trees of G is detA0A
T
0 .

This is very surprising. At first sight, it is not even obvious why

detA0A
T
0 will always be the same, no matter which row we remove, let

alone have such a nice combinatorial meaning.

Proof. Let us assume, without loss of generality, that the last row of A

was omitted. Let B be an (n− 1)× (n− 1) submatrix of A0. (If m < n− 1,

then G cannot be connected, and it has no spanning trees.) We claim that

| detB| = 1 if and only if the subgraph G′ corresponding to the columns of

B is a spanning tree, and detB = 0 otherwise.

We prove this claim by induction on n.
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(a) Let us first assume that there is a vertex vi (i 6= n) of degree one in

G′. (The degree of a vertex in an undirected graph is the number of all

edges adjacent to that vertex.) Then the ith row of B contains exactly

one nonzero element, and that element is 1 or −1. Expanding detB by

this row, and using the induction hypothesis, the claim follows. Indeed,

G′ is a spanning tree of G if and only if G′ − vi is a spanning tree of

G− vi.

(b) Now let us assume that G′ has no vertices of degree one (except possibly
vn, the vertex associated to the deleted last row). Then G′ is not a

spanning tree. Moreover, as G′ has n− 1 edges, and is not a spanning

tree, there must be a vertex in G′ that has degree zero. If this vertex

is not vn, then B has a zero row, and detB = 0. If this vertex is vn,

then each column of B contains one 1, and one −1 as each edge has a

head and a tail. Therefore, the sum of all rows of B is 0, so the rows

of B are linearly dependent, and detB = 0.

So we have proved that indeed, | detB| = 1 exactly if the subgraph G′ cor-
responding to the columns of B is a spanning tree, and detB = 0 otherwise.

Now we can finish the proof of Theorem 10.19. The Binet–Cauchy

formula, that can be found in most Linear Algebra textbooks, says that

detA0A
T
0 =

∑

(detB)2,

where the sum ranges over all (n − 1) × (n − 1) submatrices B of A0.

However, we have just seen that (detB)2 = 1 if and only if B corresponds

to a spanning tree of A, and (detB)2 = 0 otherwise. Therefore, we have

proved Theorem 10.19. �

You could have several remarks at this point. First, you could say, “fair

enough, but it could take a long time to compute detA0A
T
0 , or even A0A

T
0

for a given graph”. More generally, you could say, “what about undirected

graphs?” These concerns will be simultaneously alleviated by the following

theorem.

Theorem 10.20. [Matrix-Tree theorem] Let U be a simple undirected

graph. Let {v1, v2, · · · , vn} be the vertices of U . Define the (n−1)× (n−1)

matrix L0 by

li,j =







the degree of vi if i = j,

−1 if i 6= j, and vi and vj are connected, and

0 otherwise,

where 1 ≤ i, j ≤ n− 1. Then U has exactly detL0 spanning trees.
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Note that while U has n vertices, L0 is an (n−1)× (n−1) matrix, since

it does not contain the row and column that would belong to vn. This

does not mean that L0 does not contain information about vn. Indeed,

if a vertex vi is connected to vn, then the edge between vi and vn counts

towards the degree of vi, hence towards the entry li,i. Therefore, if we are

given L0, we can find out which vertices of U are adjacent to vn.

Proof. (of Theorem 10.20) First we turn U into a directed graph G by

replacing each edge of U by a pair of directed edges, one edge going in each

direction.

Let A0 be the incidence matrix of G. We claim that A0A
T
0 = 2L0. The

entry of A0A
T
0 in position (i, j) is the scalar product of the ith and jth row

of A0. If i = j, then every edge that starts or ends at vi contributes 1 to

this inner product. Therefore, the entry of A0A
T
0 in position (i, i) is the

degree of vi in G, or, in other words, twice the degree of vi in U .

If i 6= j, then every edge that starts at vi and ends at vj , and every

edge that starts at vj and ends at vi contributes −1 to this inner product.

Recall that U was simple, so there is either 0 or 1 edge from vi to vj in G.

Thus the entry of A0A
T
0 in position (i, j) is −2 if vivj is an edge of U , and

0 otherwise. This proves that indeed, A0A
T
0 = 2L0.

This implies that 2n−1 detL0 = det(A0A
T
0 ). Note that each spanning

tree of U can be turned into 2n−1 different spanning trees of G by orienting

its n−1 edges. Therefore, our statement immediately follows from Theorem

10.19. �

Let us use our fresh knowledge for our classic example, the number of

all trees on [n].

Example 10.21. The number of spanning trees of Kn is nn−2.

Solution. The matrix L0 associated to Kn will have the following simple

structure








n− 1 −1 · · · −1
−1 n− 1 · · · −1
· · ·
−1 −1 · · · n− 1









.

To compute this determinant, add all rows to the first, to get








1 1 · · · 1

−1 n− 1 · · · −1
· · ·
−1 −1 · · · n− 1









.
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Now add the first row to all other rows to get the triangular matrix








1 1 · · · 1
0 n · · · 0
· · ·
0 0 · · · n









.

This shows that detL0 = nn−2 as claimed.

Theorem 10.20 is a powerful tool. Let us use it to compute the number

of spanning trees of some interesting graphs.

Example 10.22. Let A be a set of m vertices, and let B be a set of n

vertices. Connect each vertex of A to each vertex of B by an edge. Denote

this graph by Km,n. Find the number of spanning trees of Km,n.

The graph Km,n is called a complete bipartite graph. We will learn more

about these graphs in the next chapter. For now, note that there is no edge

within A or within B in Km,n.

Solution. (of Example 10.22) The matrix L0 associated to Km,n has the

following block structure


















n · · · 0 −1 · · · −1
· · ·
0 · · · n −1 · · · −1
−1 · · · −1 m · · · 0

· · ·
−1 · · · −1 0 · · · m



















,

that is, the first m rows look “similar”, then the last n − 1 rows look

“similar”. The same is true for columns.

To compute this determinant, use the same trick as in the proof of

Theorem 10.20. That is, add all rows to the first one to get a row of the

form (1, 1, · · · 1, 0, · · · , 0), then add this row to each of the last n− 1 rows,

to get


















1 · · · 1 0 · · · 0

· · ·
0 · · · n −1 · · · −1
0 · · · 0 m · · · 0

· · ·
0 · · · 0 0 · · · m



















.

This shows that detL0 = nm−1mn−1.
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Your sense of symmetry might be slightly disturbed by our disregarding

the vertex vn. You may be thinking that in situations when our graph

has many vertices of different degree, it may not be obvious which vertex

should be chosen for the role of vn. Of course, Theorem 10.20 is true with

any choice of vn, but the computation of detL0 may become more complex

if we do not make the right choice.

One way of getting around this is to use the following alternative form

of the Matrix-tree theorem.

Theorem 10.23. [Matrix-Tree theorem, eigenvalue version] Let U be a

graph as in Theorem 10.20, and let L be defined the same way as L0 in

Theorem 10.20, except that let L be an n×n matrix. Denote λ1, λ2, · · · , λn

the eigenvalues of L, with λn = 0. Then the number of spanning trees of U

is
1

n
λ1 · λ2 · · · · · λn−1.

Remarks. By now, you should be asking “how do we know that 0 is

always an eigenvalue of L?” The answer is that the rows of L sum to a

zero row, and therefore, they are linearly dependent. So detL = 0, which

implies that 0 is an eigenvalue of L. The matrix L is called the Laplacian

of U .

We do not prove Theorem 10.23 here. It can be proved from Theorem

10.20 by algebraic manipulations that do not involve additional combina-

torics.

In order to be able to use Theorem 10.23, we have to be able to find the

eigenvalues of L. You may remember from your studies in Linear Algebra

that there is no universal method for this if L is larger than 4 × 4. For

nice graphs, however, that is, for graphs that have a lot of automorphisms,

we can find these eigenvalues by some clever tricks, and then use Theorem

10.23 to compute the number of spanning trees of U . We will see examples

for this in the Exercises.

For now, let us discuss one particular situation. If U is a regular graph,

that is, all vertices of U have degree d, then we see that dI − A = L,

where A is the adjacency matrix of U . Therefore, if α1, α2, · · · , αn are

the eigenvalues of A, then d − α1, d − α2, · · · , d − αn are the eigenvalues

of A. This means that to find the eigenvalues of L, it suffices to find the

eigenvalues of A.

Example 10.24. Let U = Kn. Then the eigenvalues of the adjacency

matrix A of U are n− 1,−1,−1, · · · − 1, therefore the eigenvalues of L are
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n, n, · · · , n, 0, showing again that Kn has nn−2 spanning trees.

Solution. Note that A + I = J , the matrix whose entries are all equal

to 1. This matrix is obviously of rank 1, therefore n − 1 of its eigenvalues

are equal to 0. As the trace of J is n, and we know that the trace of any

matrix is equal to the sum of its eigenvalues, the remaining eigenvalue must

be n. However, A = J − I, so the eigenvalues of A are the eigenvalues of J

decreased by 1, and the statement is proved.

Notes

A more general discussion of the Matrix-Tree theorem, as well as a survey

of results connecting the number of spanning trees of a graph to the num-

ber of certain Eulerian cycles can be found in Enumerative Combinatorics,

Volume 2, by Richard Stanley [42]. Additional proofs of Cayley’s formula

can be found in Combinatorial Problems and Exercises by László Lovász

[27], which is a comprehensive source of difficult exercises in graph theory

anyway.

An introductory text about graphical enumeration is Chapter 5 of In-

troduction to Enumerative Combinatorics [7]. A book-length treatment is

“Graphical Enumeration”, by F. Harary and E. M. Palmer [23].

Structures for which the greedy algorithm works are so important in

Combinatorics (and other fields) that they have their own name, and are

the subject of several books on their own. They are called matroids. The

reason for this name is that in some sense, matroids are generalizations of

matrices. The interested reader is encouraged to consult [34].

Exercises

(1) Let n ≥ 2 be an integer, and let a1 ≥ a2 ≥ · · · ≥ an be a sequence of

positive integers satisfying a1+a2+ · · ·+an = 2n−2. Prove that there

exists a tree T on n vertices so that the ordered degree sequence of T

is a1, a2, · · · , an.
(2) A complete k-ary tree is a rooted tree in which every vertex has either

k or 0 descendants. Let T be such a tree with m non-leaf vertices. How

many leaves does T have?

(3) Prove that for all n ≥ 3, the number tn of non-isomorphic trees on n

vertices is at least p(n− 2).
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(4) Prove that if n is sufficiently large, then there exists a lower bound for

tn that is better than that of the previous exercise. Find such a lower

bound.

(5) Let T be a tree on [n], with n ≥ 3. Cut off the leaf of T that has the

smallest label, and write down its single neighbor. Then continue this

same procedure on the remaining tree until there are only two vertices

(and one edge) left. This procedure results in a sequence of elements

of [n] that has length n− 2, called the Prüfer sequence, or Prüfer code

of T .

Prove that this algorithm defines a bijection from the set of all trees

on [n] onto that of sequences of length n − 2 with elements from [n].

Deduce Theorem 10.7.

(6) A function f : [n] → [n] is called acyclic if there are no cycles longer

than one under its action on [n]. Prove that the number of acyclic

functions on n is (n+ 1)n−1.

(7) There are n parking spots 1, 2, · · · , n on a one-way street. Cars

1, 2, · · · , n arrive in this order. Each car i has a favorite parking spot

f(i). When a car arrives, it first goes to its favorite spot. If the spot is

free, the car will take it, if not, it goes to the next spot. Again, if that

spot is free, the car will take it, if not, the car goes to the next spot. If

a car had to leave even the last spot and did not find the space, then

its parking attempt has been unsuccessful.

If, at the end of this procedure, all cars have a parking spot, we say

that f is a parking function on [n]. Prove that the number of parking

functions on [n] is (n+ 1)n−1.

(8) How many parking functions are there on [n] without like consecutive

elements? That is, we want to enumerate all parking functions on [n]

in which there is no i ∈ [n] so that f(i) 6= f(i+ 1).

(9) Prove that if G is a simple graph on [n], then at least one of G and

its complement is connected. Show an example when they are both

connected. The complement Ḡ of G has the same vertex set as G and

xy is an edge in Ḡ if and only if it is not an edge in G.

(10) How many edges can a simple graphG on [n] have if it is not connected?

(11) Let H be a simple graph on n vertices that has m edges. Prove that

H contains at least m− n+ 1 cycles.

(12) Let F be a rooted forest on n vertices, and view F as a directed graph,

in which all edges are directed away from the root. If F ′ is another

rooted forest, then we say that F contains F ′ if F contains F ′ as a

directed graph. Clearly, in that case F has less components than F ′.
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We say that F1, F2, · · · , Fk is a refining sequence if, for all i ∈ [k], Fi is

a rooted forest on [n] having i components, and Fi contains Fi+1. Now

fix Fk.

(a) Find the number N∗(Fk) of refining sequences ending in Fk.

(b) Find the number N(Fk) of rooted trees containing Fk.

(c) Deduce Cayley’s formula.

This proof of Cayley’s formula is due to James Pitman.

(13) Find a formula for the number of rooted forests on [n] having k com-

ponents.

(14) Let G be a simple graph, and let A be the adjacency matrix of G.

Decide whether the following statements are true or false.

(a) A has only real eigenvalues.

(b) The sum of the eigenvalues of A is 0.

(c) The determinant of A is always positive.

(15) Let G be a graph on n > 1 vertices having no isolated vertices, and let

A be the incidence matrix of G. Prove the following statements.

(a) For all i, we have (A4)i,i > 0.

(b) If both (A5)i,j and (A6)i,j are positive for some fixed indices i < j,

then G contains a cycle of odd length.

(c) Let i < j be two fixed indices. If (Ak)i,j = 0 for all k ≤ n− 1, then

(Ak)i,j = 0 for all k.

(16) Let G be the complete bipartite graph of Example 10.22, and let A be

the adjacency matrix of G. For any positive integer m, explain which

entries of Am have to be equal to 0.

(17) A complete tripartite graph is a simple graph defined as follows. The

vertices are split into three subsets, A, B, and C, and there is an edge

between two vertices if and only if they belong to different subsets.

This graph is denoted K|A|,|B|,|C|. Find a formula for the number of

spanning trees of the complete tripartite graph Km,m,n.

(18)(a) Find the eigenvalues of the adjacency matrix A1 of the two-vertex

tree.

(b) Find the eigenvalues of the adjacency matrix A2 of the square (cycle

of four edges).

(c) Find the eigenvalues of the adjacency matrix A3 of the cube.

(d) Find the eigenvalues of the adjacency matrix An of the n-

dimensional cube. (The n-dimensional cube is obtained by taking

two copies of the (n − 1)-dimensional cube, and then joining the
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corresponding vertices.)

(19) Find the exponential generating function F (x) for the numbers fn of

forests on vertex set [n] having components of size at most three.

(20) Let G(x) be the exponential generating function for the numbers gn of

all rooted trees on vertex set [n]. Prove that G(x) = xeG(x).

Supplementary Exercises

(21) (-) Find a simple combinatorial proof showing that the number of

forests on vertex set [n] is at least the Bell number B(n).

(22) (-) Let us call a vertex v of the graph G a cut vertex if the removal

of v and the edges adjacent to it from G increases the number of

components of G. Prove that any graph with at least two vertices has

at least two vertices that are not cut vertices.

(23) (-) How many different labeled trees are there on [n] that have no

vertices with degree more than 2?

(24) (-) How many non-isomorphic forests are there on vertex set [5]?

(25) (-) Prove that the number of non-isomorphic labeled forests on vertex

set [n] is at least p(n) (the number of partitions of the integer n).

(26) Prove that in any tree T , any two longest paths cross each other.

(27) Prove that in any tree T , all longest paths cross one another in one

vertex.

(28) A unicycle is a simple graph that contains exactly one cycle. Let un

be the number of unicycles on vertex set [n]. Find a formula for un.

Your formula may contain one summation sign.

(29) The distance d(x, y) between two vertices x and y of the graph G is

defined as the number of edges in the shortest path from x to y. For

every vertex v ∈ G, let us define

td(v) =
∑

w∈G

d(v, w).

In other words, td(v) measures the total distance of v from all vertices

of G. Now define the center of G as the set of vertices v for which td(v)

is minimal. Prove that if G is a tree, then the center of G consists of

either a vertex, or two adjacent vertices.

(30) Show an example for a tree on vertex set [n] that has more than 2n−1

induced subgraphs that are trees. Try to find an example that works

for all n ≥ 1.
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(31) Find the smallest tree that has at least one edge and has no non-trivial

automorphisms.

(32) Let a be any positive real number so that a < e. Prove that there

exists a natural number N so that if n > N , then there exist at least

an non-isomorphic trees on n vertices.

(33) How many non-isomorphic trees are there on seven vertices?

(34) Let T be a tree on 101 vertices so that the largest degree in T is ten.

Is it true that T contains a path of length five?

(35) Prove that a tree always has more leaves than vertices of degree at

least three.

(36) Find two non-isomorphic trees with the same ordered degree sequence.

(37) At most how many automorphisms can a tree with n vertices have?

(38) Prove that if n is large enough, then the following statement is true.

For all graphs G on n vertices, at least one of G and Ḡ contains a

cycle. How large must n be for this to hold?

(39) Decide whether the following statements are true or false.

(a) If G is a connected simple graph and e is an edge of G, then there

is a spanning tree of G that contains e.

(b) If G is a connected simple graph and e and f are edges of G, then

there is a spanning tree of G that contains e and f .

(c) If G is a connected simple graph and e, f and g are edges of G,

then there is a spanning tree of G that contains e, f and g.

(d) If G is a connected simple graph and F is a cycle-free set of edges

in G, then there is a spanning tree of G that contains F .

(40) Let G be a connected graph, and let T1 and T2 be two of its spanning

trees. Prove that T1 can be transformed into T2 through a sequence

of intermediate trees, each arising from the previous one and adding

another.

(41) (+) (Knowledge of linear algebra required.) Let T be a tournament

on n vertices. Prove that the adjacency matrix of T is either of rank

n or of rank n− 1. Give an example for both.

(42) (++) (Knowledge of linear algebra required.) Prove that for any undi-

rected graph G, the number of different eigenvalues of A(G) is larger

than the diameter of G. The diameter of G is given by

max
x,y∈G

d(x, y),

where d(x, y) is the distance between x and y as defined in Exercise

29.
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(43) Let A be the graph obtained from Kn by deleting an edge. Find a

formula for the number of spanning trees of A.

(44) Let G be a regular graph, that is, let all vertices of G have degree d.

Express the eigenvalues of L(G) by the eigenvalues of A(G).

(45) Use the result of the previous exercise to find the number of all span-

ning trees for each graph of Exercise 18.

Solutions to Exercises

(1) We use induction on n. For n = 2, the statement is trivially true.

Now let us assume the statement is true for n. Take the sequence

a1 ≥ a2 ≥ · · · ≥ an+1 satisfying a1 + a2 + · · ·+ an+1 = 2n. The last

two elements, an and an+1 must be equal to one, otherwise the sum

of all the ai would be at least 2n + 1. So we have an+1 = 1. Delete

an+1. Let j be the largest index so that aj > 1. (There must be

such an index as long as n > 2, otherwise the sum of the ai is only

n+1 < 2n.) Decrease aj by one. This way we obtain a new sequence

S which has only n elements, and sums to 2n− 2.

Therefore, the induction hypothesis applies, so there is a tree T whose

ordered degree sequence is S. Now add a new leaf to T by joining

it to the vertex corresponding to aj . This new tree T ′ will have the

desired ordered degree sequence.

(2) After trying a few specific trees, one can easily conjecture that T will

have (k − 1)m + 1 leaves. This can be proved by induction on m as

follows. If m = 1, then T has k leaves, and the claim is true. Now

let us assume that the claim is true for m. Let T have m+1 non-leaf

vertices. Pick a non-leaf vertex V that has k successors, and all of

them are leaves. (As T is finite, there is always such a vertex.) Omit

all the k successors of V , to get a new tree T ′. This new tree T ′ has
m non-leaf vertices (as V has just become a leaf), so by the induction

hypothesis, it must have (k − 1)m + 1 leaves. Since T had k leaves

more than T ′, it is indeed true that T had km + 1 leaves, and the

proof is complete.

(3) By Exercise 1, it suffices to show that there are p(n − 2) ordered

degree sequences d1 ≥ d2 ≥ · · · ≥ dn so that
∑n

i=1 di = 2n − 2, and

dn−1 = dn = 1. The number of these sequences is clearly the same as

that of the number of ordered sequences d1 ≥ d2 ≥ · · · ≥ dn−2 whose
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sum is 2n− 4. Now let ci = di − 1, then the positive numbers ci form

a partition of (2n− 4)− (n− 2) = n− 2. Conversely, if (c1, c2, · · · , ck)
is a partition of n − 2, then k ≤ n − 2. Add zeros to the end of

(c1, c2, · · · , ck) if necessary to have n−2 entries, then add 1 to each of

them to get d1 ≥ d2 ≥ · · · ≥ dn−2 back. This shows that the number

of valid ordered degree sequences is exactly p(n − 2). As trees with

different ordered degree sequences are non-isomorphic, the statement

follows.

(4) There are nn−2 labeled trees, and no isomorphism class can contain

more than n! of them. Therefore, the number of non-isomorphic trees

is at least nn−2/n!, which is larger than en

n2 , if n is large enough.

Formula (3.1) shows that this is a much larger number than the p(n−2)
we got in the previous exercise.

(5) We show that for each such sequence S = {s1, s2, · · · , sn−2}, there
exists a unique tree T whose Prüfer code is s. Take S, and note that

the elements of [n] that do not occur in S must precisely be the leaves

of the purported tree T . Indeed, if j ∈ S, then there was a leaf that

was cut off from j, so j is not a leaf. If j is not a leaf, then there are

two possibilities. Either j is cut off from the tree at some point, but

then at some point of time before that j had to be made a leaf, and

that was made by cutting off one of the neighbors of j, and therefore,

by putting j into S. Or, j is one of the two vertices that are never

cut off. However, in this case, the degree of j in the final, 2-element

tree is one, while its degree in the original tree T was at least two as

j was not a leaf. So again, at some point a vertex was cut off from j,

putting j into S.

So S tells us what the leaves of the original tree were; denote them

by b1, b2, · · · , bk in increasing order. We know that first we have cut

off the leaf with the smallest label (in what follows, the smallest leaf).

Therefore, we must start reconstructing the tree by joining b1 to a1,

as a1, by definition, is the single neighbor of the smallest leaf. We

must continue this way, but carefully. It could be that after cutting

off b1 from T , the smallest leaf of the new tree T ′ was not b2 but a1,

that might have become a leaf after b1 was cut off. How do we know

whether a1 became a leaf after that first step? If and only if it did,

it does not occur in S any additional times, as in that case nothing

else can be cut off from it. So if the integer a1 occurs in S after the

first position, then in the second step of our reconstruction, we join

min(a1, b2) to a2 by an edge. Otherwise, we simply join b2 to a2 by
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an edge.

In general, in the ith step of recovering T , we have to find the minimal

element bj that has not yet been assigned to any edge (then necessarily

j ≤ i), and the minimal element ak that has not been assigned to any

edge yet, and does not occur in S anywhere after position ai−1. Then

we join min(ak, bj) to ai by an edge. This is the only thing we can do

as the ith step of the Prüfer coding algorithm has cut off the smallest

leaf of the tree that remained after i − 1 steps, and this is precisely

what we are reversing here.

So we have shown that for any S, the set of leaves of any tree with

Prüfer sequence S is unique. Then we showed that there was a unique

sequence of edges that could lead to S, so there was a unique tree with

Prüfer sequence S. So these two sets are in bijection. As the number of

Prüfer sequences is clearly nn−2, we have reproved Cayley’s theorem.

(6) Take any acyclic function on [n], and for all i ∈ [n], draw an arrow

from i to f(i). This way we get a graph G whose edges are directed.

As f is acyclic, the connected components of G will be tree-like graphs

except that each of them will have a one-element cycle (loop) at one

of its vertices. Mark these vertices as roots, and delete all the loops,

and delete the arrows from the edges. Then G will become a rooted

forest on [n].

To see that this is a bijection, take a rooted forest on [n] and define f

by f(i) = i if i is a root and f(i) = j if j is the parent of i (the first

vertex on the unique path from i to the root of its component).

So there are as many acyclic functions as rooted forests, and the state-

ment follows from Corollary 10.9.

(7) Let us assume that instead of a linear street, the cars arrive at a

circular street with n + 1 parking spots. The parking procedure is

the same, except that if a car leaves spot n + 1, it does not give up,

but goes to spot 1, and keeps trying. There are still n cars, but their

favorite spots can be anything from 1 to n+ 1.

At the end of this procedure, all cars will always have a spot (as

nobody is ever forced to give up), and one spot will be left empty.

The crucial observation is that if that one spot is spot n+1, then that

spot has never been used in the procedure, (indeed, cars do not leave

a spot that they have already taken), so the procedure would have

worked without spot n+ 1, that is, in the original linear street. So f

is a parking function on [n] if and only if n + 1 is the empty spot at

the end.
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On the other hand, all spots have the same chance to remain empty

for symmetry reasons. Indeed, adding 1 to the parking preference of

each car shifts the empty spot by one. Therefore, spot n+1 will be left

empty in exactly 1/(n+1) of all cases, that is in (n+1)n

n+1 = (n+1)n−1

cases.

(8) Same argument as in Exercise 7, except that only the first car can

have n + 1 parking preferences. The other cars can have only n,

as they cannot have the same one as the previous car. Therefore,

the number of parking functions without like consecutive elements is
(n+1)nn−1

n+1 = nn−1.

(9) Let us assume G is not connected. Let G1, G2, · · · , Gk be its con-

nected components. Then in the complement of G, all vertices of Gi

are connected to all vertices of Gj (if i 6= j) by an edge. So in the

complement of G, any vertex is reachable from any vertex, either by a

path of length one (if the two vertices are in two different components

of G), or by a path of length two (if not, the path can go through any

vertex of a different component).

For an example when both G and its complement are connected, take

a pentagon and its complement (which is another pentagon). For an

example on four vertices, take a tree that consists of a single path and

its complement.

(10) If a vertex of G has degree 0, then G is certainly not connected, even

if the remaining n − 1 vertices form a complete subgraph. So G can

certainly have
(

n−1
2

)

edges without being connected.

We are going to show that this is the maximum number of edges that

will not cause G to be connected. In other words, we prove that if G

has
(

n−1
2

)

+ 1 edges, then G must be connected.

We proceed by induction on n. For n = 2, the statement is true. Now

let us assume that the statement is true for n, and prove it for n+ 1.

Take a graph G on [n+ 1] with
(

n
2

)

+ 1 edges. It is clear that G has

no isolated vertices, otherwise it could not have that many edges. If

G has a vertex of degree n, then we are done, since there is a path

of length at most two from every vertex to every vertex, through G.

Otherwise, take any vertex V , and remove it from G, together will all

edges adjacent to V . This leaves a graph G′ that has n vertices, and

at least
(

n−1
2

)

+1 edges, since at most n− 1 edges were removed with

V . So the induction hypothesis applies to G′, and G′ is connected.

Therefore, G is connected since V is connected to at least one vertex

in G′.
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(11) We prove the statement by induction on m, the number of edges. If

m ≤ n − 1, then the statement is trivial. Therefore, we can restrict

our attention to the case when m ≥ n. Now assume that we know the

statement for m, and prove it for m + 1. Let H have m + 1 edges.

As m ≥ n, there is at least one cycle C in H . Let e be an edge of

this cycle. Remove e, then the remaining graph H ′ has m edges, and,

by the induction hypothesis, it contains at least m − n − 1 cycles.

However, H contains C as well, therefore, H contains at least m− n

cycles.

(12)(a) Let us build the refining sequence from Fk up. First, we need to

choose Fk−1 by adding one edge e to Fk. The starting vertex of

e can be any of our n vertices. The ending vertex of e, however,

must be the root of one of the components of Fk not containing e.

Therefore, we have n(k−1) choices for e, and thus we have n(k−1)

choices for Fk−1. Repeating this argument, we have n(k−2) choices
for Fk−2 (for each choice of Fk−1), and so on. Therefore, repeating

this argument k − 1 times, we get N∗(Fk) = nk−1(k − 1)!.

(b) If F1 is a rooted tree containing Fk, then F1 has k − 1 more edges

than Fk. We can remove these k−1 edges in (k−1)! different ways,

showing

N∗(Fk) = (k − 1)!N(Fk), (10.1)

and comparing this to the result of part a, we see that N(Fk) =

nk−1.

(c) Choose k = n, then Fk is the empty forest (n isolated vertices), and

all rooted trees contain Fk. Then (10.1) shows that N(Fk) = nn−1,

so this is the number of all rooted trees on [n]. The number of

unrooted trees on [n] is therefore nn−2.

(13) Keeping the notation of the previous exercise, N∗(Fn) = nn−1(n− 1)!

as a special case of (10.1). Now let N∗∗(Fk) be the number of those

refining sequences F1, F2, · · · , Fn whose kth term is Fk. There are

N∗(Fk) choices for the part F1, F2, · · · , Fk of such a sequence, then

there are (n−k)! different orders to remove the remaining n−k edges.

This shows that

N∗∗(Fk) = N∗(Fk)(n− k)! = nk−1(k − 1)!(n− k)!,

using (10.1). This number does not depend on the choice of Fk. On

the other hand, each refining sequence F1, F2, · · · , Fn contains ex-

actly one rooted forest of k components. Therefore, the number of
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rooted forests on [n] with k components is the number of all refining

sequences divided by the number of refining sequences each of these

rooted forests with k components occur, that is,

nn−1(n− 1)!

nk−1(k − 1)!(n− k)!
=

(

n

k

)

knn−1−k.

(14)(a) True as A is always symmetric.

(b) True that the trace of A is always zero as G has no loops.

(c) False. For example, if G is the only tree on two vertices, then A

has determinant −1.
(15)(a) As there are no isolated vertices, each vertex is adjacent to at least

one edge. Therefore, there is a walk of length four from i to i as

we can walk back and forth twice on any edge adjacent to i.

(b) Let W andW ′ be two walks from i to j that are of length 5, resp. 6.

Then the symmetric difference ofW andW ′ (that is, the edges that
are contained in exactly one of W and W ′) is a set of cycles, that

have altogether an odd number of edges. Indeed, they altogether

have 11 − 2e edges, where e = |W ∩W ′|. Therefore, one of these

cycles must consist of an odd number of edges.

(c) The claim says that if there is a walk from i to j, then there is also

a walk from i to j that is of length at most n − 1. This is true as

we know from Exercise 28 of Chapter 9 that if there is a walk from

i to j, then there is a path from i to j, and that has at most n− 1

edges in it.

(16) The answer depends on the parity of m. Note that there is no walk

of even length from A to B or vice versa, and there is no walk of odd

length that starts in A and ends in A, or starts in B and ends in B.

(17) We will use the eigenvalue version of the Matrix-Tree theorem. The

Laplacian L of this graph has an obvious block structure, the diagonal

blocks being (m+ n)Im, (m+ n)Im, and 2mIn, and the other blocks

consisting of −1s only. This means that L − (m+ n)I2m+n has a set

of m rows that are equal, and another set of m rows that are equal.

Therefore, its rank is at most 2m+n− (2m−2), and so it has at least

2m−2 eigenvalues equal to zero. Similarly, L−2mIn has n equal rows,

and therefore, n − 1 eigenvalues equal to zero. Thus L has 2m − 2

eigenvalues equal to m+ n, and n− 1 eigenvalues equal to 2m. One

eigenvalue of L is certainly 0, so we are still missing two eigenvalues.

Note that the vector (1, 1, · · · , 1,−1,−1, · · · ,−1, 0, 0, · · · , 0), consist-
ing of m entries equal to 1, then m entries equal to −1, then n entries
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equal to 0, is an eigenvector of L− (m+ n)I2m+n with eigenvalue m.

Thus 2m + n is an eigenvalue of L. Therefore, the last eigenvalue of

L must also be 2m+ n, to fulfill the trace condition.

This yields that the number of all spanning trees is

(m+ n)2m−2 · (2m)n−1 · (2m+ n)2

2m+ n

= (m+ n)2m−2 · (2m)n−1 · (2m+ n).

(18)(a) We know that A1 =

(

0 1

1 0

)

. Therefore, it follows from elementary

linear algebra that the eigenvalues are λ1 = 1, and λ2 = −1. The

corresponding eigenvectors are v1 =

(

1

1

)

, and v2 =

(

1

−1

)

. Note

that multiplying a vector x by A simply interchanges the coordi-

nates of x.

(b) We know that A2 =









0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0









. Note that this is in fact four

copies of A1, arranged in a block. As the square is a regular graph

in which each vertex is of degree 2, we have λ1 = 2. As A2 has only

two linearly independent rows, the rank of A2 is 2, and therefore

we have λ2 = 0, and λ3 = 0. As the trace of A2 is 0, it follows that

λ4 = −2. Knowing all this, it is a routine linear algebra exercise

to find the eigenvectors. They are v1 =









1

1

1

1









, v2 =









1

0

−1
0









,

v3 =









0

1

0

−1









, and v4 =









1

−1
1

−1









. Note the similarities between

this answer and that of part (a)

(c) and (d) We answer part (d)first. Let Qn be the n-dimensional cube. The

adjacency matrix An of Qn can be obtained by putting two copies

of A2n−1 in the diagonal, and two identity matrices of size 2n−1 in

the remaining two corners. In other words, An is obtained from A1

by replacing the diagonal elements by An−1, and replacing the 1’s

by copies of I2n−1 . Thus the characteristic polynomial of An arises
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from that of A1 by replacing the −1s by −I2n−1 , and replacing the

λ’s by λI −An−1.

A little computation then yields that the characteristic polynomial

of An is

2
∏

i=1

2n−1

∏

j=1

(λ− λi − µj),

where the λ’s are the eigenvalues of A1 and the µ’s are those of

A2n−1 . So the eigenvalues of An are the sums of these.

The eigenvalues of A1 are +1 and −1. To get those of An, you

can use induction, or you can note that Qn can be obtained by

multiplying Q1 by itself n times. So the eigenvalues of An are all the

numbers that can be obtained by choosing one of +1 and −1 from

each component, then adding them. Therefore, the eigenvalues are

n, n− 2, n− 4, · · · ,−n, and the multiplicity of n− 2k is
(

n
k

)

. So for

A3, we get 3, 1, 1, 1,−1,−1,−1,−3.
(19) There is one tree on one labeled vertex, one tree on two labeled ver-

tices, and three trees on three labeled vertices. Now any forest in which

the connected components have size at most three partition our set

[n] into three subsets in a natural way: for each i ∈ [3], vertices that

are part of a component of size i will be in the same block. Let Ei(x)

be the exponential generating function for the number of graphs that

are possible on the ith block, that is, that have components of size

exactly i only.

It is easy to find the generating function Ei(x) by the exponential

formula. Indeed, Ei(x) counts forests in which each component has

size exactly i. That is, we first partition our set into blocks, then put

one of fi(j) different structures on each block, where fi(j) = 0 if j 6= i.

If i = j, then fi(j) equals the number of trees on i vertices, that is,

1,1, and 3, respectively. Then it follows by the exponential formula

that Ei(x) = expEfi(x). Finally, by the product formula,

F (x) =

3
∏

i=1

Ei(x) = exp

(

x+
x2

2
+

x3

2

)

.

(20) If we cut off the root r of a rooted tree, we get two different structures,

one of which is the root itself, and the other is a rooted forest, in

which the vertices that were adjacent to r became the roots of their

respective components.
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Therefore, to get a rooted tree on n, we first split n into two parts.

One part will have only one vertex r, and that will be the root of the

tree; the other part will have n − 1 vertices, and will be the vertex

set of a rooted forest. These two parts completely determine a rooted

tree as the root of each tree in the forest is to be connected to r. The

exponential generating function of the first part is obviously x, and

that of the second part is eG(x) by the exponential formula. Therefore,

the product formula implies G(x) = xeG(x).
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Chapter 11

Finding A Good Match. Coloring and

Matching

11.1 Introduction

A cellular phone company provides service on three different frequencies.

They expand into a new area, and they plan to build ten communication

towers there, at locations already selected. Each tower will broadcast sig-

nals on one frequency only. The company has to make sure that the distance

between any two towers broadcasting on the same frequency is more than

50 miles. Let us decide (knowing the exact locations of the towers) if this is

possible, in other words, whether a proper assignment of frequencies exist.

How can we translate this problem into the language of combina-

torics? The reader probably conjectures that we will somehow find a graph-

theoretical representation for this problem, otherwise we would not have

brought it up in this chapter. The natural candidates for the vertices of

the graph G representing a given set of towers are the towers themselves.

And when should two vertices be connected by an edge? There are only

two kinds of pairs of towers for the purposes of this problem: those whose

distance from each other is at most 50 miles (such pairs of towers cannot

broadcast on the same frequency), and those whose distance from each

other is more than 50 miles (such pairs of towers can do so). Therefore, it

is plausible to define the edge set of G by requiring that there be an edge

between A and B if and only if the distance between the corresponding two

towers is at most 50 miles.

Fine, you could say, we figured out how to express all relevant informa-

tion about the distances between our towers by a graph G. However, does

this help us decide whether the frequencies can be assigned to the towers in

a proper way? After all, G does not contain any information about different

frequencies, not even their number.

247
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This is a valid concern. So that we could incorporate more information

into G, we will color its vertices. If frequency 1 gets assigned to a tower,

we will color the corresponding vertex red, if frequency 2 gets assigned

to a tower, we will color the corresponding vertex blue, if frequency 3 gets

assigned to a tower, we will color the corresponding vertex green, and finally

if frequency 4 gets assigned to a tower, we will color the corresponding

vertex yellow.

Now the following Proposition is a direct consequence of the definition

of our graph G.

Proposition 11.1. Let C be any set of ten towers, and let G be the graph

defined by C as described above. Then one can assign the four frequencies

to the ten towers of C if and only if it is possible to color the vertices of G

with four colors so that there are no two monochromatic vertices that are

adjacent.

The following definition provides a simple way to describe how diffi-

cult it is to color the vertices of a given graph without creating adjacent

monochromatic pairs.

Definition 11.2. The chromatic number of a graph H , denoted by χ(H),

is the smallest integer k for which the vertices of H can be colored by k

colors so that adjacent vertices are colored by different colors.

If the vertices of a graph can be colored by k colors so that there are no

adjacent monochromatic vertices, then that graph is called k-colorable.

Example 11.3. The chromatic number of the pentagon is three. Indeed,

two colors do not suffice, while three colors do as shown in Figure 11.1.

All graphs in the remainder of this chapter are assumed to be con-

nected. This will not result in any loss of generality as colorings of different

connected components of an unconnected graph are certainly independent

from each other. Similarly, we can assume that our graphs are simple, as

adding one or more new edges between the same pair of adjacent vertices

does not impose any new restriction on those two vertices (they could not

be the same color anyway).
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Red

Red
Blue

Blue

Green

Fig. 11.1 The pentagon is 3-colorable.

11.2 Bipartite Graphs

The most important special case of k-colorable graphs is when k = 2. This

case is so omnipresent in combinatorics that it has its own name.

Definition 11.4. A 2-colorable graph is called bipartite. Equivalently, G

is bipartite if the vertex set of G can be split into the disjoint sets A and

B (the color classes) so that each edge of G is adjacent to one vertex of A

and one vertex of B.

A generic example of a bipartite graph is shown in Figure 11.2. Note

that there are no edges within either color class.

For example, all trees are bipartite as one can start at any given vertex,

color it red, then color all its neighbors blue, then color all the second

neighbors red, and so on. This coloring algorithm works as there is no

cycle in the tree, so we will never get back to a vertex that has already been

colored. Another example of a bipartite graph is, say, a square, hexagon,

or octogon, where we can color vertices alternatingly.

An easy example of a graph that is not bipartite is a triangle. Indeed,

if a triangle has a red vertex A, then one of the two neighbors of A can be

colored blue, but the third vertex of the triangle cannot be properly colored.

It is also clear that no graph that contains a triangle can be bipartite (as

not even that triangle could be 2-colored, let alone the whole graph).

Is it true that if a graph does not contain a triangle, then it is bipartite?

As we can see in Figure 11.1, this is not true as the pentagon provides

a counterexample. There is nothing magic about the pentagon here, the
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B

A

Fig. 11.2 A generic bipartite graph.

reader can easily see that no cycle of odd length can be 2-colored, and

therefore no graph containing an odd cycle can be 2-colored.

The following Theorem shows that with this we have completely char-

acterized bipartite graphs.

Theorem 11.5. A graph G is bipartite if and only if it does not contain a

cycle of an odd length.

Proof. As we have mentioned, the “only if” part is easy. Suppose G

contains the odd cycle A1A2 · · ·A2m+1. Let us assume without loss of

generality that A1 is red. Then A2 must be blue, therefore A3 must be red,

A4 must be blue, and so on, and at the end, A2m+1 must be red, too. This

is not allowed, however, as A1A2m+1 is an edge.

To prove the “if” part, let G be a graph with no odd cycles. Let V be

a vertex of G, and color V red. Define the color of any other vertex W

as follows. If the shortest path from V to W has even length, then let W

be red, and if the shortest path from V to W has odd length, then let W

be blue. We show that this is a good coloring, that is, there are no two

adjacent vertices that are the same color.

Let us assume the contrary, by first assuming that P and Q are two red

vertices that are joined by an edge. Let the shortest path from V to P be

p, and let the shortest path from V to Q be q. Then p and q both have

an even number of edges, so walking from V through p to P , then through
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PQ, then back from Q through q to V , we get a closed walk C with an odd

number of edges. Taking away edges that were used both by p and q, this

walk C splits into the union of edge-disjoint cycles. As the total number of

edges in these cycles is still odd, there has to be at least one cycle with an

odd number of edges, which is a contradiction.

If we assumed instead that both P and Q were blue, the same proof

would work as the sum of two odd numbers is still even, so C would still

have an odd number of edges. �

How many edges can a simple bipartite graph G on n vertices have? The

alert reader should have an intuition at this point that the answer to this

question will be some kind of an upper bound. Indeed, it is not difficult to

create bipartite graphs with few edges. For example, forests have no cycles

at all, so they cannot have odd cycles either. Thus all forests are bipartite.

We could think, however, that if we keep adding new edges, without adding

new vertices, then sooner or later an odd cycle will be formed. In fact, the

complete graph Kn certainly has an odd cycle if n ≥ 3.

So where is the threshold? How many edges can we have in G without

having an odd cycle? The forests only allow us to go to n− 1 edges. Will

the final answer be some linear function of n, or maybe around nα, where

1 ≤ α < 2, or will it be just a constant factor below
(

n
2

)

, the number of

edges in the complete graph? The following theorem shows that the answer

to this question is closer to the maximum.

Theorem 11.6. Let G be a simple bipartite graph on n vertices. Then G

has at most n2/4 edges if n is even, and at most (n2 − 1)/4 edges, if n is

odd.

Proof. Choose G so that no other simple bipartite graph on n vertices

has more edges than G. Denote by a and b the sizes of the two color classes

of G. It is clear that each vertex of one color class is connected to each

vertex of the other color class in G. Indeed, if there was a missing edge

between the two color classes, we could add it to G, contradicting to our

assumption. So G has ab = a(n − a) edges, and the proof follows from

elementary calculus. (One simply has to find the integer a ∈ [1, n] for

which the number f(a) = a(n− a) is maximal.) �

The class of bipartite graphs we used in this proof, that is, bipartite

graphs in which each vertex of one color class is connected to each vertex

of the other color class, is an important one, therefore, such graphs have a

name. They will be called complete bipartite graphs. These graphs played
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a role in several exercises of earlier chapters. If a complete bipartite graph

has color classes of size a and b, then we will denote that graph by Ka,b.

So bipartite graphs can have a lot more edges than trees. We will see

that accordingly, they have a much richer structure, too. To start, let us

take a closer look at the consequences of Theorem 11.6. Let H be a simple

graph on 2m vertices. If H has only m2 edges, then H can be bipartite;

indeed, H can be Km,m. If H has more than m2 edges, then Theorem 11.6

implies that H is not bipartite, in other words, H has an odd cycle. The

following Lemma shows that more is true.

Lemma 11.7. Let H be a simple graph on 2m vertices (m ≥ 2) and at

least m2 + 1 edges. Then H contains a triangle.

Proof. We prove our statement by induction on m. If m = 2, then H

is a subgraph of K4 with at least five edges. Theorem 11.6 shows that H

is not bipartite, so it must have an odd cycle. This odd cycle must be a

triangle as H has only four vertices.

Now assume we know that the statement is true for all integers that are

smaller than m, and are at least 2. Let H be as in the statement of the

Theorem, and let F and G be two adjacent vertices in H . If the sum of the

degrees of F and G is more than 2m, then they have a common neighbor

T , and so FGT is a triangle. If, on the other hand, the sum of the degrees

of F and G is at most 2m, then deleting F , G, and all the edges adjacent

to them from H will decrease the number of edges in our graph by at most

2m− 1. (Note that the edge FG is contained twice in the sum of the two

degrees.) Therefore, after the deletion of these vertices and edges, we are

left with a graph of 2m − 2 vertices, and at least m2 + 1 − (2m − 1) =

m2− 2m+2 = (m− 1)2+1 edges. Such a graph contains a triangle by the

induction hypothesis, so our claim is proved. �

Thus we know that graph on 2m vertices with just one more edge than

what is possible in bipartite graphs does not simply have an odd cycle,

but also has a triangle, the shortest odd cycle possible. The real surprise,

however, comes now.

Theorem 11.8. Let H be a simple graph on 2m vertices (m ≥ 2) and at

least m2 + 1 edges. Then H contains at least m triangles.

So if H has m2 edges, it may not have any odd cycles at all, but with

only one more edge, H must have at least m triangles! Note that there is

nothing similar that would be true for trees on m vertices. A connected
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graph on m vertices and m−1 edges is a tree. Adding an extra edge we get

a cycle (in fact, exactly one cycle), but that cycle can be of many different

lengths depending on the tree.

Proof. Clearly, we can assume that H has exactly m2 +1 edges as addi-

tional edges will not destroy any triangles.

We prove our statement by induction on m. If m = 2, then our graph

has four vertices and five edges, so it is K4 with an edge missing, and

therefore does contain two triangles.

Now assume the statement is true for all positive integers smaller than

m, but at least 2. Let H be as in the statement of the theorem. Lemma

11.7 shows that H contains at least one triangle ABC. We have to find

m− 1 other triangles.

We will distinguish three cases based on the number of edges connecting

outside vertices to the vertices of the triangle ABC. We claim that if the

number of all these edges is 2m − 3 + x for some x ≥ 1, then there are x

triangles formed by two vertices of the triangle ABC, and a third vertex

that comes from outside that triangle. Indeed, if such an outside vertex is

connected to two vertices of ABC, then it forms a triangle with them. As

there are 2m−3 outside vertices, our claim follows by pigeon-hole principle.

The outline of the proof will be this. If there are many edges between

ABC and the outside vertices, then there are many triangles spanned by

two vertices of ABC and an outside vertex. If, on the other hand, there are

only a few such edges, then there have to be so many edges among outside

vertices that we can apply the induction hypothesis for their subgraph (and

an extra vertex).

(1) If x ≥ m−1, then we are done as we found our missing m−1 triangles.
(2) If 1 ≤ x < m − 1, then the total number of edges between ABC

and the outside vertices is at most (2m − 3) + (m − 2) = 3m − 5.

As ABC itself contains three edges, it follows that there are at least

m2 + 1 − (3m − 5) − 3 = m2 − 3m + 3 = (m − 1)(m − 2) + 1 edges

within the subgraph R spanned by all 2m− 3 outside vertices. If we

omit the vertex of R which has the smallest degree in R, it follows by

the Pigeon-hole Principle that we get a graph R′ on 2m− 4 vertices

that still has more than

(m− 1)(m− 2) · 2m− 4

2m− 3
= (m− 2)2 · 2m− 2

2m− 3
> (m− 2)2

edges. So R′ has strictly more than (m− 2)2 edges, that is, it has at

least (m − 2)2 + 1 of them. Therefore, by the induction hypothesis,
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there are at least m−2 triangles within R′. As we said in the previous

paragraph, there are x triangles spanned by two vertices of ABC and

an outside vertex. In our case, x ≥ 1, so we have again found the

m− 1 needed triangles.

(3) Finally, consider the case when the number of edges connecting outside

vertices to ABC is not more than 2m− 3. Note that we can assume

that there is at least one such edge, otherwise R has m2 − 2 edges, so

adding any vertex of ABC to R creates a graph on 2m − 2 vertices

and m2 − 2 ≥ (m − 1)2 + 1 vertices, and the proof follows by the

induction hypothesis. That said, the number of edges within R is at

least m2 + 1 − (2m − 3) − 3 = (m − 1)2. Adding a vertex of ABC

that is adjacent to at least one outside vertex to R creates a graph

with 2m− 2 vertices and at least (m − 1)2 + 1 edges, and again, the

induction hypothesis shows that such a graph must contain at least

m− 1 triangles.
�

In other words, if we start with the empty graph on 2m vertices, and

keep adding edges to it at random, then as soon as we can be sure (without

looking) that our graph has one triangle, we can also be sure that it has m

triangles!

11.3 Matchings in Bipartite Graphs

Bipartite graphs abound in real life. Consider for example m job openings

and n applicants for these jobs. Define the graph G on m + n vertices

as follows. The first m vertices correspond to the jobs, and the second

n vertices correspond to the applicants, and two vertices are connected

by an edge if and only if the corresponding applicant is qualified for the

corresponding job. Then G is certainly bipartite as edges are only possible

between the sets of the first m and last n vertices, not within these sets.

Figure 11.3 shows an example for such a graph.

We have to fill each job opening by hiring exactly one qualified person

for that opening. How can we translate this problem to the language of

graph theory? Just as in Section 11.1, we will refine our existing model

so that it can encode more information. If we fill a given opening A by

hiring applicant a, then we will represent this by changing the edge aA of

G to a bold edge. Then, if we fill another opening B by hiring the qualified

candidate B, then we will represent this by changing the edge bB to a bold



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Finding A Good Match. Coloring and Matching 255

JOBS

APPLICANTS

Fig. 11.3 Try to fill all jobs with qualified applicants.

edge, and so on. As the hiring procedure goes ahead, we will have more

and more bold edges. The crucial property of the set of bold edges is that

at any point of time throughout the hiring process it will always consist of

vertex-disjoint edges. Indeed, no job opening can be filled by more than

one person, and no person can accept more than one job offer.

If the hiring process is complete, and we filled all m positions, there will

be m bold edges. If we filled less than m positions, but cannot find any

qualified candidates for any of the remaining openings, then that means

that we cannot change any non-bold edge to a bold edge so that all bold

edges are still pairwise vertex disjoint. Therefore, the following Proposition

is immediate.

Proposition 11.9. Let S be an instance of the hiring problem, that is, a

set of m job openings and n applicants, and all the relevant information

about the qualifications of each applicant. We can simultaneously fill all m

job openings in S if and only if, in the graph G defined above, we can find

m vertex-disjoint edges.

In our running example, the graph shown in Figure 11.3, we can fill all

openings, as shown in Figure 11.4.

We see that for a set of edges in a graph, it can be an important ques-

tion whether they are pairwise vertex-disjoint or not. This warrants the

following definition.

Definition 11.10. Let G be any graph, and let S be a set of edges in G

so that no two edges in G have a vertex in common. Then we say that S
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JOBS

APPLICANTS

Fig. 11.4 A maximal set of vertex-disjoint edges.

is a matching in G. If each vertex in G is covered by an edge in S, then we

call S a perfect matching.

A matching is also called an independent set of edges in certain contexts.

Note that the above definition does not require that G be a bipartite graph.

For the time being, however, we will restrict our discussion to matchings in

bipartite graphs, which are very useful in the practice.

Definition 11.11. Let G = (X,Y ) be a bipartite graph. If S is a matching

in G that covers all vertices of X , then we say that S is a perfect matching

of X into Y .

If we are not particularly interested in the matching S, just the fact

that there is a perfect matching of X into Y , then we will say that X has

a matching into Y or X can be matched into Y .

Let G = (X,Y ) be a bipartite graph. At least two questions are in

order. Does X have a perfect matching into Y ? (In the language of the

previous discussion this is the question whether all job openings can be

filled at the same time.) How do we find the largest matching of G?

First let us try to decide if X has a perfect matching into Y . Let us look

for necessary conditions first; for properties G certainly must have if it is to

have a perfect matching. For one thing, |X | ≤ |Y | is a necessary condition

as all edges in our purported matching S would have to have a vertex in

X , and one in Y , setting up an injection from X to Y . For another trivial

observation, if there are two vertices a and b of X that are both of degree
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1, and they are both connected to the same vertex y ∈ Y , then we are in

trouble. Indeed, X cannot have a perfect matching into Y as we cannot

even match the two vertices a and b into Y . One of them can be matched

into y, by an edge e, but that would leave no possibility to find any edge

starting at the other one that is vertex-disjoint from e.

It is not hard to generalize these easy necessary conditions. If T ⊆ X is

a subset of vertices in X , then let N(T ) denote the set of all neighbors of

the vertices in T . In other words, y ∈ Y is an element of N(T ) if and only

if there is a vertex x ∈ T so that xy is an edge. The neighbor set N(T )

is relevant to matchings because if we just want to match T into Y , then

we can certainly restrict our attention to the bipartite graph (T,N(T )).

Indeed, N(T ) contains all possible Y -endpoints of the edges of a matching

of T into Y .

If there is a danger of confusion as to in which graph we count the

neighbors of a vertex set, we use the notation NG(T ) to identify the graph.

Proposition 11.12. Let G = (X,Y ) be a bipartite graph. Then X has a

perfect matching into Y only if for all T ⊆ X, the inequality |T | ≤ |N(T )|
holds.

Proof. Let us assume that there is a T ⊆ X so that |T | > |N(T )|. Then
T certainly cannot be matched to N(T ) as T has more vertices than N(T ).

However, this means that T cannot be matched into Y either as any such

matching would match T into N(T ). Finally, this means that X cannot be

matched into Y as any such matching would obviously contain a matching

of T into Y . �

This Proposition was, after all, not too surprising. It basically said

that if, among our job openings, there are k for which we only have k − 1

qualified applicants, then we cannot fill all positions. This is pretty clear.

What is much more interesting is that the converse of Proposition 11.12 is

also true. This remarkable result is known as Philip Hall’s theorem.

Theorem 11.13. [Philip Hall’s theorem] Let G = (X,Y ) be a bipartite

graph. Then X has a perfect matching into Y if and only if for all T ⊆ X,

the inequality |T | ≤ |N(T )| holds.

Proof. As we provided a proof of the “only if” part when we proved

Proposition 11.12, we only have to prove the “if” part. The proof we

present is due to Halmos and Vaughn, dated 1950.
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We prove the statement by induction on |X |, the initial case being

trivial. Now assume we know the statement for all nonnegative integers

less than |X |, and prove it for |X |. Let us assume that for all T ⊆ X , the

inequality |T | ≤ |NG(T )| holds. We distinguish two cases.

(1) First let us assume that for each subset T ⊂ X , even the strict in-

equality |T | < |NG(T )| holds. Let x and y be adjacent vertices, with

x ∈ X . Let G′ = G − x − y, and let A be any nonempty subset of

X − x. Our assumption then shows that |A| < |NG(A)|, therefore

|NG′(A)| ≥ |NG(A)|− 1 ≥ |A|. Consequently, the induction hypothesis

implies that X − x can be matched into Y − y in G′. Adding the edge

xy to this matching, we get a perfect matching of X into Y .

(2) Now assume there is a subset B ⊂ X so that |B| = |NG(B)| holds.
We split G into two smaller subgraphs G1 and G2, and then show that

each of these subgraphs satisfies the induction hypothesis separately.

Let G1 be the subgraph induced by B∪N(B), and let G2 be the graph

obtained from G by deleting all vertices that belong to B ∪N(B).

To see that G1 satisfies the induction hypothesis, choose any subset

T ⊆ B. Then NG(T ) ⊆ NG(B), and therefore, NG1
(T ) = NG(T ), (all

neighbors of T are within G1), and therefore, |NG1
(T )| = |NG(T )| ≥

|T |.
To see that G2 satisfies the induction hypothesis, choose any subset

U ⊆ X − B. Then NG(U ∪ B) = NG2
(U) ∪ NG(B), and because

this is a union of disjoint sets, |NG2
(U)| = |NG(U ∪ B)| − |NG(B)| ≥

|U ∪B| − |B| = |U |.
If we apply the induction hypothesis to both G1 and G2, we see that

B can be matched into (and therefore, onto), NG(B), and X − B can

be matched into Y −NG(B). Therefore, X can be matched into Y as

claimed.
�

This theorem has many interesting applications to problems that look

unrelated at first. Exercise 9 is one of them.

While Theorem 11.13 is undoubtedly useful, it does not answer all our

questions. It does not tell us how to find a perfect matching if there is one,

or how to find a maximum matching in any given graph.

The last sentence brings up an important issue in our terminology.

Henceforth, the words maximal and maximum will have different mean-

ings. In a graph G, a matching M is called maximal if we cannot extend

M by adding a new edge to it. A matching N is called maximum if no
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matchings of G contain more edges than N .

At this point, the reader should test her understanding of this subtle

difference by showing that a maximum matching is always maximal, but a

maximal matching is not always maximum. After doing that, the reader

can find one example for the latter in Figure 11.5.

Fig. 11.5 A maximal, but not maximum, matching.

Let G be a bipartite graph, and let M be a matching in G. A path

P = v1v2 · · · vr is called an M -alternating path if vivi+1 is in M if and only

if vi+1vi+2 is not in M . In other words, every other edge of P belongs to

M . If, in addition, P starts and ends at vertices that are not adjacent to

any edge of M , then M is clearly not a maximum matching. Indeed, we

get a larger matching if we discard the edges in P ∩M and replace them by

the edges P −M . Therefore, if this happens, we call P an M -augmenting

path. See Figure 11.6 for an example. The bold lines are the edges of M ,

and the dotted lines are the edges of P −M .

Fig. 11.6 Extending a matching by an augmenting path.
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Note that we have not used the fact that G is bipartite, so all we said

about alternating and augmenting paths holds for all simple graphs.

The non-existence of augmenting paths actually characterizes maximum

matchings.

Theorem 11.14. Let G be any simple graph, and let M be a matching in

G. Then M is maximum if and only if G has no M -augmenting paths.

Proof. We have already shown the “only if” part in our discussion pre-

ceding Figure 11.6.

To prove the “if” part, assume there is no M -augmenting path in G,

and let M ′ 6= M be any maximum matching in G. Consider M ⊕M ′, the
set of edges that are part of exactly one of M and M ′. As M and M ′ are
both matchings, the connected components of M ⊕M ′ can only be even

cycles or alternating paths. However, M ′ is maximum, and there is no M -

augmenting path, therefore all these alternating paths are of even length.

This implies |M | = |M ′|, and our claim is proved. �

11.4 More Than Two Colors

We have seen in Theorem 11.6 that a bipartite graph cannot have too many

edges. We have also seen that if we want the bipartite graph on n vertices

that has the largest number of edges, we have to take the bipartite graph

in which the numbers of vertices in the two color classes are equal (if n is

even), or differ by 1 (if n is odd).

Let us generalize this question into k-colorable graphs instead of bipar-

tite (2-colorable) graphs. Is it still true that the best strategy to maximize

the number of edges is to split the vertices among the color classes as equally

as possible? The following famous theorem of Pál Turán shows that this is

indeed the case.

To prepare the statement and proof of Turán’s theorem, let n = tk+ r,

with 0 ≤ r ≤ k − 1, and divide the n vertices into k subsets, r of them of

size t+ 1, and the rest of size t. In other words, we divided the n vertices

into k blocks, whose sizes are “as equal as possible”. Let two vertices be

joined by an edge if and only if they are in different subsets. The graph

H obtained is a complete k-partite graph. The number of its edges (see

Exercise 1) is

T (n, k) =
k − 1

2k
· n2 − r(k − r)

2k
. (11.1)
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It goes without saying that H is k-colorable as we can assign color 1 to

the vertices of the first subset, color 2 to the vertices of the second subset,

and so on. Now we are going to show that no k-colorable simple graph on

n vertices can have more edges than H .

Theorem 11.15. Let G be a simple graph on n vertices that contains more

than T (n, k) edges. Then G contains a Kk+1 subgraph. In particular, G is

not k-colorable.

Proof. Let G have n vertices, let G contain no Kk+1, and let it have the

maximum number of edges possible with these conditions. We will prove

that G can contain at most T (n, k) edges.

We will proceed by induction on t, where t has been defined in the

paragraph preceding the Theorem. If t = 0, then the statement is obvious.

Now assume we know that the statement is true for t− 1. Our conditions

imply that adding any edge to G would create a Kk+1 subgraph. Therefore,

G must contain a Kk subgraph, say S.

Now we will count how many edges G can have. The edges of G can be

• within S, or

• between a vertex of S and a vertex of G− S, or

• within G− S.

There are
(

k
2

)

edges within S. Each of the vertices of G − S can be

connected to at most k− 1 of the vertices of S. Finally, G− S has n− k =

(t− 1)k + r vertices, so the induction hypothesis implies that there are at

most T (n− k, k) edges within G− S. Therefore, the number of edges in G

is at most
(

k

2

)

+ (n− k)(k − 1) + T (n− k, k) = T (n, k). (11.2)

This shows that if G has more than T (n, k) edges, it must contain a Kk+1,

and therefore, it cannot be k-colorable. �

We admit that we swept two technicalities under the rug here. One was

the computation of the number T (n, k) of edges in our complete k-partite

graph H . The other is the proof of equality (11.2). See Exercises 1 and 2

for these details.

Theorem 11.15 proved in a rather strong way that certain graphs are

not k-colorable. Indeed, it proved that graphs containing too many edges

will always contain a Kk+1-subgraph, and therefore are not k-colorable.
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We certainly know that a graph does not have to contain Kk+1 in order

to have chromatic number at least k + 1. Indeed, if G is an odd cycle of

length more than three, then it does not contain K3 and still has chromatic

number three. What is interesting is that in some sense, odd cycles and

complete graphs are alone in forcing high chromatic numbers. This is the

content of the following theorem of Brooks that we state without proof.

Theorem 11.16. Let G be a graph which is not an odd cycle, and not a

complete graph, and let d ≥ 3 be a positive integer, so that each vertex of

G has degree at most d. Then χ(G) ≤ d.

On the other hand, note that for all n, there exists a graph that contains

no triangles, but has chromatic number n. This is the content of Exercise

6. In other words, if a graph has a high chromatic number, then it has a

vertex with a high degree, but it may or may not have a large complete

subgraph.

11.5 Matchings in Graphs That Are Not Bipartite

There are many real-life situations when finding a matching (a set of vertex-

disjoint edges) in a non-bipartite graph is needed. Let us assume for ex-

ample that a big company wants to form pairs of employees for certain

assignments, and wants to do it in a way that the two employees within

each pair know each other. Or take a set of football teams, and find pairings

for this week-end so that teams that have played each other within the last

two years do not play each other again.

In these examples, we have a graph that is not necessarily bipartite, but

we still want to find a set of vertex-disjoint edges in it. Fortunately, there

is a sufficient and necessary condition for a perfect matching to exist. If

G is a graph, and S is a subset of the vertex-set of G, then let G − S be

the graph obtained from G by deleting the elements of S, and all the edges

that are adjacent to them. Let co(G− S) be the number of components of

G− S that have an odd number of vertices.

Theorem 11.17. [Tutte’s theorem] A graph G has a perfect matching if

and only if, for all subsets S of the vertex set of G, the inequality co(G−S) ≤
|S| holds.

There are several proofs of this theorem. We will present one that is

due to Gábor Hetyei Sr. (1972) and László Lovász (1975). We will need
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some tools for the proof of the “if” part. The “only if” part, however, is

trivial. Indeed, if there is an S violating the conditions, then no perfect

matching could exist. In order to see this, let us assume that M is a perfect

matching, then each odd component of G − S must contain at least one

vertex M matches with a vertex of S. This would imply co(G − S) ≤ |S|,
contradicting our assumption.

Let us call the graph G saturated non-factorizable if G has no perfect

matching, but added any new edge, the resulting graph does. To prove the

“if” part of Tutte’s theorem, we need the following, somewhat technical,

Lemma.

Lemma 11.18. If the graph G is saturated non-factorizable, and if S is

the set of vertices of G that are joined to every other point of G, (that is,

the set of vertices of degree |G| − 1), then the components of G − S are

complete graphs.

Proof. Let ab and bc be two adjacent edges in G − S. To prove our

statement, it suffices to show that a and c are adjacent vertices. Let us

assume the contrary, that is, that a and c are not adjacent. Then there

must be a vertex d in G so that bd is not an edge. Indeed, otherwise b

would be in S.

As G is saturated non-factorizable, G ∪ ac has a perfect matching F1.

Since G itself does not have a perfect matching, this implies that ac ∈ F1.

Similarly, G ∪ bd has a perfect matching F2. As G itself does not have

a perfect matching, F2 contains bd. Just as we did in proofs concerning

matchings in bipartite graphs, let us take the symmetric difference of F1

and F2. This consists of alternating, (and therefore, even) cycles. Let C1

be the cycle containing ac, and let C2 be the cycle containing bd. We

distinguish between two cases.

(a) First let us assume that C1 6= C2. In this case, form the symmetric

difference F3 = F1

⊕

C1. Then we claim that F3 is a perfect matching

of G. Indeed, ac ∈ (F1 ∩ C1), so ac /∈ F1

⊕

C1. On the other hand,

F3 has the same number of edges of F1, and is a matching, so it is

a perfect matching of G. This is a contradiction as G is saturated

non-factorizable, and as such, has no perfect matching.

(b) Now let us assume that C1 = C2. Traverse C1 starting at b through d,

until one of a and c, say a, is reached. Let the path from b to a just

traversed be P . Recall that ab ∈ G, and note that therefore, P ∪ ab

is an alternating path (in fact, a cycle), for F2. Form the symmetric
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difference F4 = F2

⊕

(P ∪ ab). Then we claim that F4 is a perfect

matching for G. Indeed, F4 contains the same number of edges as F2,

but does not contain bd as bd ∈ (F2 ∩ (P ∪ ab)). This shows that F4 is

a perfect matching of G, which is a contradiction.

Therefore, if ab and bc are edges in G−S, then so is ac, and the components

of G− S are complete graphs. �

The following theorem will characterize saturated non-factorizable

graphs.

Theorem 11.19. A graph G is saturated non-factorizable if and only if it

has the following structure.

(a) Either G has an odd number of vertices, and is complete, or

(b) G has an even number of vertices and consists of vertex-disjoint com-

plete subgraphs S0, G1, G2, · · · , Gk so that k = |S0|+2, each Gi has an

odd number of vertices, and each vertex of each Gi is connected to each

vertex of S0.

Proof. If G has an odd number of vertices, then it does not have a perfect

matching. Therefore, only the complete graph satisfies the requirement of

saturated non-factorizability as that is the only graph to which no edge can

be added.

If G has an even number of vertices, then let S be defined as in Lemma

11.18. Let us set S0 = S. Let G1, G2, · · · , Gk be the connected components

of G− S. Lemma 11.18 shows that all the Gi are complete graphs, and so

is S, and by definition, each vertex of S is connected to each vertex of each

Gi.

Recall that G has no perfect matching. Therefore, the number of Gi

with odd components must be more than |S|. In fact, as G has an even

number of vertices, the number of Gi with odd components must be at

least |S + 2|. On the other hand, G cannot have more than |S + 2| odd
components, otherwise we could add a new edge connecting two of them.

That would lead to a contradiction, because the resulting graph G1 would

satisfy co(G1 − S) > |S|, and would therefore have no perfect matching.

Therefore, G has exactly |S + 2| odd components. Finally, G has no even

components, otherwise we could again add an edge connecting that com-

ponent to another component without creating a perfect matching. �

Now we are in a position to prove Tutte’s theorem.
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Proof. (of Tutte’s theorem) All we have left to do is to prove the “if”

part. Assume that G satisfies the criteria but has no perfect matching. Add

new edges to G until a graph with perfect matching is obtained. Let G′ be
the saturated non-factorizable graph that was created by this procedure.

If G has an odd number of vertices, then choosing S = ∅ we see that

G does not satisfy the criteria. Thus we can assume that G has an even

number of vertices. Let S′ be the set of vertices of G′ that are adjacent

to any other vertex of G′. Theorem 11.19 then describes the structure of

G′ − S′. Let H ′ be the set of vertices of this graph. Then H is not empty

as G was not complete (it did not have a perfect matching). Moreover,

H ′ = G1 ∪G2 ∪ · · · ∪Gk,

where the Gi are vertex-disjoint complete subgraphs, and k = |S′|+ 2.

Our last sentence shows that G′−S′ has more than |S′| (in fact, |S′|+2)

components. Remove all the edges of G′−G that we inserted to our original

graph G. Then some of our components may split, but each of these odd

components will give rise to at least one odd component of G − S′. This

shows that co(G−S′) > |S′|, so G violates the condition. This contradiction

completes the proof. �

Notes

If you want to know more about matchings, you should seeMatching Theory

by László Lovász and Michael D. Plummer [28] for an extensive text.

One way to generalize our results concerning k-colorability is to ask the

following question. Let G be a given graph on n vertices. At most how

many edges can a graph H on n vertices have so that it does not contain

a subgraph that is isomorphic to G? This leads to the area of Extremal

Graph Theory, and you can read more about that field in the identically

titled book of Béla Bollobás [6]. For an introductory treatment to Extremal

Combinatorics, you may consult Chapter 6 of Introduction to Enumerative

Combinatorics [7].

In Exercise 5, we define the chromatic polynomial of a graph. This

polynomial tells us the number of ways the properly n-color the vertices

of a given graph G. At first sight, it seems unlikely that p(−1) has some

direct combinatorial meaning, but amazingly, it does. In fact, p(−1) is the
number of acyclic orientations of G, that is, the number of ways to turn G

into a directed graph so that no directed cycles are formed. For details, see

[40] or Chapter 5 of [7].
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Exercises

(1) Prove formula (11.1).

(2) Prove formula (11.2).

(3) A round robin football tournament has 2n participating teams. Two

rounds have been played so far. Prove that we can still split the teams

into two groups of n teams each so that no teams of the same group

have played each other yet.

(4) Let G = (X,Y ) be a bipartite graph in which any vertex of X has

degree at least as large as the degree of any vertex of Y . Prove that X

has a perfect matching into Y .

(5) Let G be any simple graph with labeled vertices, and let p(n) be the

number of ways to properly n-color G. Prove that p is a polynomial

function of n. What is the degree of that polynomial? We note that

p(n) is called the chromatic polynomial of G.

(6) (+) Prove that for all positive integers n, there exists a graph that does

not contain any triangles and whose chromatic number is n.

(7) Prove that the number of ways to properly color an n-vertex cycle with

x colors is

(a) (x− 1)[(x− 1)n−1 + 1] if n is even.

(b) (x− 1)[(x− 1)n−1 − 1] if n is odd.

(8) Let G be a bipartite graph. Prove that G has a perfect matching if

and only if for all subsets X of the vertex set of G, the inequality

|X | ≤ |N(X)| holds. Note that unlike in Philip Hall’s Theorem, here

we do not require that X be a subset of one color class.

(9) Let A be a square matrix with nonnegative integer entries in which the

sum of each line, that is, each row and column, is the same positive

integer r. Such a matrix is called a doubly stochastic matrix or magic

square. Prove that A is a sum of permutation matrices.

(10) Let A be an n × n× n “magic cube” with line sum 2. That is, A is a

3-dimensional matrix with nonnegative integer entries so that each line

has sum 2. Is it true that A = B + C where B and C are both magic

cubes of line sum 1?

(11) Explain why the results of Exercise 9 and Exercise 10 are not exactly

the same. Try to predict what happens in higher dimensions.

(12) Let G be a regular bipartite graph. Prove that G has a perfect match-

ing.

(13) There are n children and n toys in a room. Each child wants to play
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with r specific toys, and for each toy, there are r children who want
to play with that toy. Prove that we can organize r playing rounds so
that in each of them, each child plays with a toy he wanted to, and
no child plays with the same toy twice? (Contradicting real life a little
bit, but not much, we assume that only one child can play with a toy
at any one time.)

(14) (-) A graph G is called factor-critical if G−v has a perfect matching for
any vertex v of G. Prove that a bipartite graph is never factor-critical.

(15) Let Gn be the bipartite graph whose color classes consist of the vertices
A1, A2, · · · , An and B1, B2, · · · , Bn, and in which AiBj is an edge if and
only if i + j ≤ n + 1. How many matchings does Gn have? (Note that
the question is not the number of perfect matchings, but the number
of matchings of any size.)

(16) (Knowledge of Linear Algebra required.) Let G(A, B) be a bipartite
graph with A = {A1, A2, · · · , An} and B = {B1, B2, · · · , Bn}. Let M

be the n × n matrix defined by the rule Mi,j = 1 if AiBj is an edge
of G, and Mi,j = 0 otherwise. Prove that if detM �= 0, then G has a
perfect matching.

Supplementary Exercises

(17) (-) What is the chromatic number of a tree?
(18) (-) What is the chromatic polynomial of a tree?
(19) A graph is called color-critical if it has chromatic number k, but if we

delete any vertex of the graph, we get a graph of chromatic number
k− 1. Show an example of a color-critical graph of chromatic number
three and of a color-critical graph of chromatic number four. Do not
use complete graphs as examples.

(20) (-) Is there a bipartite graph with ordered degree sequence 3, 3, 3, 3,
3, 5, 6, 6, 6?

(21) (-) A school has n student clubs denoted by c1, c2, · · · , cn, and some
students are members of more than one of them. Each club can send
one representative to the general assembly, but no student can rep-
resent more than one club. Find a sufficient and necessary condition
that assures that n distinct representatives r1, r2, · · · , rn can be found
so that ri is a member of ci for all i ∈ [n].
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(22) (-) Find the size of the smallest vertex cover and of a maximum match-

ing in an odd cycle and an even cycle.

(23) Find the chromatic polynomial of K3,3.

(24) A wheel is a cycle and an extra vertex that is connected to each vertex

of the cycle. Find the chromatic polynomial of a wheel on n + 1

vertices.

(25) (+) A medium-size city has three high schools, each of them attended

by n students. Each student knows exactly n + 1 who attend a high

school different from his. Prove that we can choose three students,

one from each school, so that any two of them know each other.

(26) Fix two positive integers k and n so that k < n/2. Let G = (X,Y )

be the bipartite graph in which the vertices of X are the k-element

subsets of [n], the vertices of Y are the (k+ 1)-element subsets of [n],

and there is an edge between x ∈ X and y ∈ Y if and only if x ⊂ y.

Prove that X has a perfect matching into Y by

(a) using Philip Hall’s theorem,

(b) finding a perfect matching of X to Y .

(27) Deduce Philip Hall’s Theorem from Tutte’s theorem.

(28) A school has various student associations. The principal wants to

hold a meeting, and she wants each student association to send one

representative to this meeting. No student can participate at the

meeting as a representative of more than one organization. Find a

sufficient and necessary condition on such a meeting being possible.

(29) Prove that G is factor-critical if and only if G has an odd number of

vertices and co(G− S) ≤ |S| for all non-empty set S of vertices.

(30) Let G be a bipartite graph, and let uv be an edge of G. Prove that at

least one of u and v have the following property.

“All maximum matchings of G contain an edge adjacent to this ver-

tex”.

Note that this is a stronger requirement than just requiring that each

maximum matching contain an edge adjacent to u or v.

(31) For a graph G, let ν(G) denote the size of its maximum matching. A

set of vertices S of G is called a vertex cover, if all edges of G have at

least one of their vertices in S. Let τ(G) be the size of the smallest

vertex cover of G. In other words, if you think of the edges as non-

intersecting tunnels, τ(G) is the smallest number of lights we need to

provide lighting for all tunnels.

(a) Prove that in any graph G, the inequality ν(G) ≤ τ(G) holds.
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(b) Prove that in any bipartite graph G, the equality ν(G) = τ(G)

holds. (Hint: Use the result of the previous exercise, and induction

on the number of vertices.)

Note that the result of part (b) is often referred to as König’s theorem,

in honor of the Hungarian mathematician Dénes K”onig.

(32) Deduce Philip Hall’s theorem from König’s theorem. (The latter is

stated in the previous exercise.)

(33) Deduce König’s theorem from Philip Hall’s theorem.

(34) For any graph G on n vertices, let α(G) denote the size of the largest

empty subgraph of G. That is, α(G) is the largest number k so that

G has k vertices, no two of which are adjacent. Prove that

α(G) + τ(G) = n,

where τ(G) is defined in Exercise 31.

(35) In a graph G, an edge cover is a set S of edges so that each vertex

of G is incident to at least one edge in S. Let ρ(G) be the smallest

number k so that G has an edge cover consisting of k edges. Let G be

a graph on n vertices so that each vertex of G has degree at least 1.

Prove that then

ν(G) + ρ(G) = n,

where ν(G) was defined in Exercise 31. What does this result imply

for bipartite graphs?

Solutions to Exercises

(1) Recall that n = tk + r. Now we prove the statement by induction on

t. For t = 0, the statement is true. Now let us assume that we know

the statement for t− 1, that is, for T (n− k, k), formula (1) is correct.

To prove that the statement is true for t, that is, that formula (1) is

correct for T (n, k), it suffices to prove that the difference of the two

equations given by formula (1) for T (n, k) and T (n−k, k) holds. That

is, we have to prove that

T (n, k)− T (n− k, k) =
n2 − (n− k)2

2k
· (k − 1)

=
(2n− k)(k − 1)

2

=

(

k

2

)

+ (n− k)(k − 1).
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Let us identify the edges counted by T (n, k) that are not counted by

T (n − k, k). The graph H belonging to T (n, k) has k more vertices,

one in each color class, than the smaller graph H ′. There are
(

k
2

)

edges among these extra vertices, and each of the remaining n − k

vertices is connected to all of these extra vertices but one, the one in

its own color class. This yields (n − k)(k − 1) additional edges, and

the statement follows.

(2) As we have computed in the solution of the previous exercise, the

definitions of T (n, k) and T (n− k, k) yield

T (n, k)− T (n− k, k) =

(

k

2

)

+ (n− k)(k − 1).

This is precisely formula (11.2).

(3) If we join teams who played with each other, we get graphs in which

each vertex has degree two. In such graphs, all components must be

cycles. Also, all these cycles must be of even length for no team has

ever been idle. Then we can pick every other vertex of all cycles and

get a set of teams with the desired property.

(4) Suppose the contrary is true. Then, by Philip Hall’s theorem, there

would be a set T ⊆ X of vertices so that |T | > |N(T )|. Let

a1, a2, · · · , at be the degrees of the vertices in T , and let b1, b2, · · · , bn
be the degrees of the vertices in N(T ). Our assumptions imply t > n,

and also, ai ≥ bj for any i and j. As each edge between T and N(T )

has a vertex in T and one in N(T ), we must have

a1 + a2 + · · ·+ at = b1 + b2 + · · ·+ bn.

However, this is impossible, as the left-hand side has more members,

and they are at least as large as the members of the right-hand side.

(5) Let G have k vertices, and let p1, p2, · · · , pk denote the number of ways

to properly color G using exactly 1, 2, · · · , k colors. Now let n > k.

Then we cannot use all n colors to color G. We first have to choose

the i colors (i ∈ [k]) that we will actually use, which we can do in
(

n
i

)

ways. Then, we have to use the chosen i colors, which we can do in

pi ways. Therefore,

p(n) =

k
∑

i=1

pi

(

n

i

)

.

Here the pi are constants, and the
(

n
i

)

are polynomials of n, of degree

i. Therefore, p(n) is a polynomial of degree k.
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(6) By induction on n. For n = 2, a single edge is such a graph. For

n = 3, the pentagon is. Suppose we know the statement for n − 1,

and let G be a graph with no triangles and chromatic number n− 1.

For any vertex x ∈ G, create a new vertex x′ whose neighbors are

the same as those of x. Do this for all vertices of G. Then take yet

another new vertex y and join it to all the vertices that we added to

G. The graph obtained this way has chromatic number n and has no

triangles.

(7)(a) Let n be even. The proof is by induction on n, with n = 2 being

the initial case. If n = 2, then the statement is true, for an edge

can be colored in x(x − 1) ways, and that agrees with our claim.

Now suppose that the statement is true for n, and try to prove it

for n+ 2. Let A1, A2, · · · , An+2 be the vertices of our polygon.

Then I have x choices for the color of A1, x−1 choices for the color

of A2, x− 1 choices for the color of A3, and so on, x− 1 choices for

the color of An+1, and most of the time -we will explain this later-

x − 2 choices for the color of An+2 as it cannot have the color of

A1 or An+1. This gives us x(x− 1)n(x− 2) colorings. The most of

the time above refers to the possibility that A1 and An+1 can have

the same color, and in this case, only that color is forbidden for

An+2, so when this happens, we have x− 1 choices for the color of

An+2, not just x − 2. So any time this happens, we have to add 1

to the number of proper colorings. To determine how many times

does this happen, note that any time this happens, we can delete

An+2 and contract A1 and An+1 to get a properly colored n-gon.

And, by the induction hypothesis, the number of such n-gons is

(x− 1)[(x− 1)n−1 + 1].

Therefore, we get that the total number of proper colorings for our

n+ 2-gon is

x(x− 1)n(x− 2)+ (x− 1)[(x− 1)n−1 +1] = (x− 1)[(x− 1)n+1 +1],

and the theorem is proved.

(b) If n is odd, the proof is analogous. The initial case is that of n = 3,

and indeed, a triangle can be colored in x(x − 1)(x − 2) ways.

Then, to prove the induction step, we repeat the same argument

and conclude that

x(x− 1)n(x− 2)+ (x− 1)[(x− 1)n−1 − 1] = (x− 1)[(x− 1)n+1− 1],

and the proof follows.
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(8) Let us assume that the condition does not hold, and let X be a coun-

terexample. Let X = A∪B be the decomposition of X into two color

classes. Then we have |A| + |B| = |X | > |N(X)| = |N(A)| + |N(B)|,
and therefore, we must have either |A| > |N(A)|, or |B| > |N(B)|.
Then Philip Hall’s theorem shows that G does not have a perfect

matching.

Now let us assume the condition holds for all X . Then in particular,

it holds for all subsets that are within one color class. Philip Hall’s

Theorem then shows that G has a perfect matching.

(9) We prove the statement by induction on r. If r = 1, then our matrix

is a permutation matrix, and the statement is true. Now let us assume

that we know the statement for r, and prove it for r + 1. Let A be a

magic square with line sum r+1. It suffices to show that there exists

an n×n permutation matrix B so that A−B has nonnegative entries

only.

To see this, we define a bipartite graph G in which both color classes

consist of n vertices. The elements of one color class will represent the

rows of A, and the elements of the other color class will represent the

columns of A. Two vertices will be joined by an edge if and only if the

intersection of the corresponding row and column of A is a positive

entry.

Note that if we can prove that G has a perfect matching, then we are

done as that perfect matching specifies n positions in A, all contain-

ing positive entries, so that no two are in the same row or column.

Therefore, the permutation matrix B having its entries equal to 1 in

these n positions is just the permutation matrix we were looking for.

Therefore, our task is reduced to proving that G has a perfect match-

ing. We will do this using Hall’s theorem. We must show that the

conditions of that theorem are satisfied, that is, any k-element subset

of vertices from one color class has at least k neighbors in the other

color class. Translated to the language of matrices, this means that

any k rows of A must contain nonzero entries in at least k different

columns. Suppose this does not hold, that is, there are k rows that

contain nonzero elements only in s < k columns. Then the sum of all

kn elements in these k rows is kr (if you add them row by row), and

at most sr (if you add them column by column). This contradicts to

s < k, and our claim is proved.

(10) This is not true in general. A counterexample is shown below.
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



0 1 1

1 1 0

1 0 1









2 0 0

0 1 1

0 1 1









0 1 1

1 0 1

1 1 0



 .

The second level can only be decomposed in one way, and its 2 × 2

minor in the bottom right corner makes any further decomposition

impossible.

(11) The result of Exercise 9 was built on Philip Hall’s Theorem for bipar-

tite graphs. We could not use the same argument in Exercise 10 as

there was no corresponding theorem for tripartite graphs. There is no

corresponding theorem for general k-partite graphs either. Therefore,

it is not true that a k-dimensional magic cube with line sum r is the

sum of r magic cubes of dimension k having line sum 1.

(12) Let us assume that G does not have a perfect matching. By Hall’s

theorem, that would imply that there is a vertex set T within one color

class such that |T | > |N(T )|. Denote by d the degree of all vertices in

G. Then there are |T |d edges adjacent to at least one vertex in T . The

opposite endpoints of these |T |d edges must be in N(T ). Therefore, it

follows by the pigeon-hole principle that at least one vertex in N(T )

has degree more than d, which contradicts the assumption that G is

regular.

(13) Represent children and toys with a bipartite graph G the obvious way.

You get a regular bipartite graph with all vertices having degree r. The

previous problem shows that G has a perfect matching M1. Then M1

defines the first playing round, and G−M1 is a regular graph with all

vertices having degree r−1. Again, this graph has a perfect matching

M2, and so on.

This fact can also be stated as follows. It is possible to color the edges

of a regular bipartite graph of degree r with r colors so that each

vertex is adjacent to one edge of each color.
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(14) Let G be bipartite, and let its two color classes consist of m and n

vertices, with m ≤ n. Then we cannot omit any vertex from the

color class with m elements so that the resulting graph has a perfect

matching. Indeed, we would get a bipartite graph with two color

classes of different size.

(15) Consider a staircase Ferrers shape of row lengths (n, n − 1, · · · , 2, 1),
similarly to the solution of Exercise 4 of Chapter 5. Let the rows

correspond to the vertices Ai, and let the columns correspond to the

vertices Bj . Then each matching of Gn corresponds to a placement

of non-attacking rooks on this Ferrers shape. We have seen in the

solution of Exercise 4 of Chapter 5 that there are B(n+ 1) such rook

placements, where B(n) is the nth Bell number.

(16) If M has a non-zero determinant, then it has a non-zero expansion

term, that is, a nonzero product of the form
∏n

i=1 Mi,p(i) for some

permutation p ∈ Sn. That means that AiBp(i) is an edge for each

i ∈ [n], so the set of these edges is a perfect matching in G.
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Do Not Cross. Planar Graphs

12.1 Euler’s Theorem for Planar Graphs

Let us assume that a farming community has three houses and three wells.

The families living in the three houses cannot stand each other, so they

prefer not to meet when they walk to the wells. Can we build roads from

each of the houses to each of the wells so that there will be no two roads

among the needed nine roads that intersect?

Figure 12.1 shows a credible, but failed, attempt to build such roads.

A B C

X ZY

Fig. 12.1 A and Z cannot be connected.

275
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Now you could think that maybe another attempt will succeed. Or, after

many unsuccessful tries, you may think that arranging the houses and the

wells differently might help. Both of these hopes are false, however. The

three houses, three wells problem cannot be solved. In this section, we will

develop a theory to prove this claim.

It is clear that we are dealing with graphs from a new aspect here. That

is, we want to draw them so that their edges do not intersect. This property

is central to our chapter.

Definition 12.1. Let G be a graph that can be drawn on a plane surface

so that no two of its edges intersect. Then G is called a planar graph.

Let G be a planar graph, and draw G on a plane with no intersecting

edges. Then the edges of G partition the plane into regions; we will call

these regions the faces of G. See Figure 12.2 for an example.

1

2
3

4

8

7

6

5

Fig. 12.2 This graph has eight faces.

The number of faces of a planar graph is just as important a parameter

of that graph as the number of edges or vertices. The following theorem

shows the close connection between these three parameters.

Theorem 12.2. [Euler’s Theorem on Planar graphs] Let G be a connected

planar graph with V vertices, E edges, and F faces. Then V + F = E + 2.

Proof. We prove the statement by induction on E, the number of edges

of G. If E = 1, then G is either the tree of one edge, and then V = 2,
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F = 1, and the statement is true, or G is the one-vertex graph with a loop,

and then V = 1, F = 2, and the statement is true again.

Now let us assume that we know the statement for all graphs with E−1

edges, and let G have E edges. We distinguish two cases.

If we can omit an edge e from G so that the new graph G′ is still

connected, then e is in a cycle in G, and therefore there are two different

faces on the two sides of e in G. Then G′ has E − 1 edges, V vertices, and

F − 1 faces as the omission of e turned the two faces on the two sides of e

into one. Therefore, V + F − 1 = E − 1 + 2, so V + F = E + 2.

If there is no e with the mentioned property, then G is a cycle-free

connected graph, that is, a tree. Then we know from Theorem 10.4 that

V = E + 1. On the other hand, F = 1, so the claim is again true. �

Now we are in a position to settle the problem of three houses and three

wells. Indeed, that problem is equivalent to the problem of drawing K3,3

on a plane surface without crossings.

Example 12.3. The graph K3,3 is not planar. Therefore, there is no solu-

tion for the three houses, three wells problem.

Solution. Let us suppose that K3,3 is planar. As it has nine edges and six

vertices, it follows from Theorem 12.2 that it must have five faces. However,

K3,3 is a complete bipartite graph, so all its faces must be quadrilaterals.

Five quadrilaterals need twenty edges, but in a planar graph, each edge is

contained in two faces. Therefore, our graph would need ten distinct edges,

but it has only nine.

Note that in particular this means that it does not matter where the

houses and the wells are located with respect to each other. No arrangement

will work. As K3,3 is a subgraph of K6, it follows from Example 12.3 that

K6 is not planar. On the other hand, K3, the triangle is obviously planar,

and so isK4 as the reader can see by drawing a square and its two diagonals,

then replacing one diagonal by an “outer” edge. It is less obvious to decide

whether K5 is planar.

Example 12.4. The graph K5 is not planar.

Solution. Again, let us suppose that K5 is planar. As it has five vertices

and ten edges, it follows from Theorem 12.2 that it must have seven faces.

As K5 is a complete graph, all its faces must be triangles. Seven triangles,
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however, would need 21 edges, which is impossible as each of the ten edges

of K5 are used in exactly two faces.

It is not by accident that we chose K5 and K3,3 for our examples of

graphs that are not planar. Certainly, if G containsK5 orK3,3 as subgraph,

then G cannot be planar as we cannot even draw a particular subgraph (the

K5 subgraph, or theK3,3 subgraph) of G without crossings. The interesting

fact is, however, that in some sense these two graphs are the only ones that

can cause a graph to be not planar. Let us make this statement more

precise. It is clear that if H is a graph that is not planar, and we remove

a vertex V of degree two from H , contracting the edges AV and V B into

a single edge AB, the obtained graph is still not planar. Similarly, if we

split an edge CD of H into two edges by inserting a vertex F into the

middle of CD, and thus replace the edge CD by the edges CF and FD,

we again get a non-planar graph. If a graph T can be obtained from H by

repeated applications of these two operations, then we say that H and T

are edge-equivalent.

Then the following theorem, that we will not prove, characterizes planar

graphs.

Theorem 12.5. [Kuratowski’s Theorem] A graph is not planar if and only

if it contains a subgraph that is edge-equivalent to K5 or K3,3.

12.2 Polyhedra

A polyhedron is a solid whose boundary is a union of polygons. We meet

polyhedra every day in our lives. Common examples of polyhedra are cubes,

tetrahedra, and prisms.

Polyhedra have some nice properties that are not shared by all planar

graphs. Most importantly, all their faces have at least three edges, and all

their vertices are part of at least three edges. It is also easy to verify that

in all polyhedra, there must be at least four vertices, four faces, and six

edges. We do not have to worry about loops or multiple edges in polyhedra,

either.

In geometry, a polyhedron is called regular if it is “absolutely symmet-

ric”, that is: all its faces have the same number l of edges, all vertices

are contained in the same number d of edges (d is called the degree of the

polyhedron), all edges have the same length, all angles within the faces are
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equal, and all angles between the faces are equal. For example, the cube is

a regular polyhedron. In combinatorics, we can disregard the conditions on

the length of edges, and the size of angles, but we keep the graph-theoretical

conditions that each face is a cycle with l edges, and each vertex has degree

d. One could think about regular polyhedra as three-dimensional general-

izations of regular polygons.

There is, however, a striking difference between regular polygons and

regular polyhedra. Clearly, for all integers n ≥ 3, there exists a regular

polygon with n vertices. So the number of regular polygons that are differ-

ent as graphs is infinite. In this Section we will show that this is not true

in three dimensions. In fact, and our goal in this section will be a proof for

this, there are only five different regular polyhedra, which is very different

from the two-dimensional situation.

One of our main tools in proving this result will be Euler’s theorem for

planar graphs. It is not hard (see Exercise 2) to show that this theorem

also holds for polyhedra by showing that polyhedra are essentially planar

graphs. Nevertheless, we provide an additional proof for Euler’s theorem for

polyhedra only. The beauty of this proof lies in its simplicity as it does not

use induction, or properties of trees; it only requires high school knowledge

of geometry. Some of the formulae that we find on the way will be useful

on their own.

Theorem 12.6. Let P be a convex polyhedron with V vertices, F faces,

and E edges. Then V + F = E + 2.

Proof. Let p be a plane that is not perpendicular to any faces of P , and

let us project P onto p, to get the projected image P ′. As P was a convex

polyhedron, the projection of a face with k edges will be a convex k-gon.

Let us count the sum of angles in all the F faces of P ′ (the boundary B

of P ′ is considered a face, too). There are two ways to do this, namely we

can count by the vertices, or by the faces.

First we count by the vertices. Let us say that B is a convex v1-gon,

and there are v2 vertices of P whose projected image is inside this v1-gon.

Then v1 + v2 = V .

The sum of angles around each of the v2 interior vertices is 360 degrees,

so the total sum of these angles is 360v2. The boundary of P ′ is a convex

v1-gon, so its sum of angles is (v1−2)180. However, the sum of these angles

must be counted twice as each angle is used by two different faces of P ′.
Therefore, we obtain that the total sum S of angles is

S = (v1 − 2)360 + 360v2 = (V − 2)360. (12.1)
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On the other hand, we can count the angles by the faces, too. If a face

of P ′ is a convex k-gon, then the sum of its angles is (k − 2)180 degrees.

Let f1, f2, · · · , fF be the number of edges of the F faces of P . As each edge

is contained in exactly two faces,

F
∑

i=1

fi = 2E. (12.2)

Therefore, the sum of the angles in all these faces is certainly

S =

F
∑

i=1

(fi − 2)180 = 180(

F
∑

i=1

fi)− 360F = 360(E − F ). (12.3)

Comparing (12.1) and (12.3), the proof of our theorem is immediate. �

Formula (12.2) is a useful byproduct of this proof. Note that fi ≥ 3 for

all i as the fi denote the number of edges of various polygons. Therefore,

the left-hand side of (12.2) is at least as large as 3F , proving the following

Corollary.

Corollary 12.7. In any convex polyhedron with F faces and E edges, 3F ≤
2E.

It is not too difficult to prove a similar relation between the numbers of

vertices and edges of a convex polyhedron.

Proposition 12.8. In any convex polyhedron with V vertices and E edges,

3V ≤ 2E.

Proof. Let c1, c2, · · · , cV denote the number of edges adjacent to each

vertex. As each edge is adjacent to exactly two vertices,

V
∑

i=1

ci = 2E. (12.4)

As each vertex is contained in at least three faces, ci ≥ 3 for all i, so the

left-hand side is at least as large as 3V , which was to be proved. �

The reader may think that after finding relations between the number

of faces and edges, as well as the number of vertices and edges, we can

probably find a similarly simple relation between the number of vertices

and that of faces. This is, however, not so simple. The problem is that

in the two previous proofs we heavily relied on the fact that each edge is

contained in exactly two faces, and contains exactly two vertices. Faces and

vertices do not have such a uniform property.
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We now have lower bounds on the number of edges in terms of the

number of vertices, and also in terms of the number of faces. On the other

hand, we have not proved upper bounds yet. It is plausible to conjecture

that such an upper bound should exist in terms of the number of vertices.

Indeed, if we have a simple graph on V vertices, and keep adding new edges

to it, then we eventually reach KV , which is not planar if V > 4. Our task

is to figure out “how many edges are too many”.

Lemma 12.9. In any convex polyhedron, E ≤ 3V−6, and also, E ≤ 3F−6.

Proof. We know from Corollary 12.7 that F ≤ 2E
3 . Comparing this to

Euler’s theorem, we get

E + 2 = F + V ≤ 2E

3
+ V,

E

3
≤ V − 2,

and the claim E ≤ 3V − 6 follows by rearranging. Similarly, Proposition

12.8 implies V ≤ 2E
3 , and comparing this to Euler’s theorem,

E + 2 = F + V ≤ F +
2E

3
,

E

3
≤ F − 2,

and again, the claim E ≤ 3F − 6 follows by rearranging. �

The attentive reader has probably noticed the symmetric role of V and

F in our results so far: these two parameters play symmetric roles in Euler’s

theorem, in Lemma 12.9, in Corollary 12.7 and in Proposition 12.8. Even

the proofs concerning these two kinds of results were very similar. There

is a deep, structural reason for this, and we will explain it shortly. First,

however, we are going to use our recent results. We start with a somewhat

surprising application.

Lemma 12.10. All convex polyhedra have at least one face that has at most

five edges.

Proof. We know from Lemma 12.9 that E ≤ 3F − 6. Comparing this to

(12.2) we obtain
F
∑

i=1

fi = 2E ≤ 6F − 12. (12.5)

Therefore, it cannot be that fi ≥ 6 for all i as that would imply
∑F

i=1 fi ≥
6F . �



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

282 A Walk Through Combinatorics

It should come no longer as a surprise that there is a similar result for

vertices. We could tell the promised deep structural reason for this right

now, but we prefer making the reader curious.

Lemma 12.11. All convex polyhedra have at least one vertex that is con-

tained in at most five edges.

Proof. We know from Lemma 12.9 that E ≤ 3V − 6. Comparing this to

(12.4) we obtain

V
∑

i=1

ci = 2E ≤ 6V − 12. (12.6)

Therefore, it cannot be that ci ≥ 6 for all i as that would imply
∑V

i=1 ci ≥
6F . �

Lemmas 12.10 and 12.11 are of pivotal importance in our quest for all

regular polyhedra. They show that in regular polyhedra, the degree d of

each vertex can be only one of three values, namely 3, 4, or 5, and the same

goes for l. That would leave us with only 3 · 3 = 9 cases to check. The

following discussion will simplify that task.

Let G be any planar graph, and let us construct a new graph G∗ as

follows. The vertices of G∗ are the centers of the faces of G. (Any interior

point would do.) Two vertices A and B of G∗ are connected by k edges if

and only if the corresponding faces in G had k edges in common; in this

case each common edge of those two faces will be crossed by one AB edge.

This sets up a bijection between the vertices of G∗ and the faces of G, and

another bijection between the edges of G∗ and G. Therefore, if G had E

edges, V vertices and F faces, then G∗ will also have E edges, but it will

have F vertices, and V faces. The reader is invited to verify that G∗ is also
planar. See Figure 14.28 for an example.

Definition 12.12. The graph G∗ defined in the above paragraph is called

the dual graph of the planar graph G.

The reader should verify that the dual of a convex polyhedron is a convex

polyhedron, and the dual of a regular polyhedron is a regular polyhedron.

The notion of the dual graph of a planar graph explains the similarity

between results on the number of vertices and results on the number of

faces. Indeed, if a theorem on parameters V and E is true for a polyhedron

P , it is also true for the dual P∗ of P , where these two parameters indicate

the number of faces and the number of edges.
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Fig. 12.3 A graph and its dual.

Now we are ready to find all regular polyhedra. Recall that their degrees

must be 3, 4 or 5. Also remember that in a regular polyhedron, all faces

have l edges, so the total number of edges is, by (12.2),

E =
Fl

2
. (12.7)

(A) Let us assume first that d = 3. This means that ci = 3 for all i, which

implies by (12.4) that 3V = 2E. Comparing this to Euler’s theorem,

we get 3F = E + 6, which, together with (12.7) implies

3F − 6 =
Fl

2
,

(6− l)F = 12.

All three permitted values of l yield an integer solution to this equa-

tion.

(a) If l = 3, then F = 4, therefore E = 3F − 6 = 6, and V = 4.

There indeed exists a polyhedron with these parameters, namely

the tetrahedron.

(b) If l = 4, then F = 6, therefore E = 3F − 6 = 12, and V = 8. These

are the parameters of the cube.
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(c) If l = 5, then F = 12, therefore E = 3F − 6 = 30, and V = 20.

That is, we are looking for a regular polyhedron with 12 faces, that

are all pentagons. It is easy to see that such a polyhedron indeed

exists: it has one pentagonal face “at the bottom”, one “at the

top”, and to each side of these two faces we attach a new face.

This polyhedron is called the dodecahedron.

(B) If d = 4, then (12.4) yields 4V = 2E, therefore E = 2F − 4. Together

with (12.7), this implies

2F − 4 =
Fl

2
,

(4 − l)F = 8.

The only permitted value of l that leads to a positive integer solution

is l = 3. Then we get F = 8, so E = 12, and V = 6. To see that such a

polyhedron indeed exists, take the dual of the cube. This polyhedron

is called the octahedron.

(C) If d = 5, then (12.4) yields 5V = 2E, therefore 3E = 5F − 10.

Comparing this to (12.7) yields

5F − 10 =
3Fl

2
,

F (10− 3l) = 20.

The only permitted value of l that gives a positive integer solution

to this equation is l = 3. Then F = 20, so E = 30, and V =

12. So our purported polyhedron has 20 triangular faces, 30 edges,

and 12 vertices. To see that such a polyhedron indeed exists, note

that we can construct one by taking the dual of the dodecahedron.

This polyhedron is called an icosahedron. Just as the names of other

discussed polyhedra referred to the number of faces, this name comes

from the Greek word for twenty.

As we have examined all permitted values of d, we have proved the

following theorem.

Theorem 12.13. There are five regular polyhedra: the tetrahedron, the

cube, the dodecahedron, the octahedron, and the icosahedron.
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12.3 Coloring Maps

World maps usually color the territories of neighboring countries by differ-

ent colors for obvious reasons. If two countries having a common border

were the same color, the viewer of the map may overlook the border between

them.

This simple problem from everyday life gave rise to one of the most

famous problems in Mathematics. Take any map, with the countries still

uncolored, and try to color the countries so that no two neighboring coun-

tries get the same color, using as few colors as possible. What is the smallest

number of colors that will suffice no matter what the map looks like?

From a graph theoretical point of view, all maps are planar graphs,

so we need to find a proper coloring of the faces of a planar graph. By

proper coloring, we mean the faces that have an edge in common must get

different colors. Note that faces that only have vertices in common may

get the same color. Also note that by duality, this is the same question

as asking how many colors do we need to properly color the vertices of a

planar graph. Indeed, a proper coloring of the faces of the planar graph

G naturally defines a proper coloring of the vertices of G∗, and vice versa.

When coloring the vertices of G∗, the criterion to fulfill is, of course, that

adjacent vertices get different colors.

This question was probably asked first by Francis Guthrie in 1852, and

got soon passed along to well-known mathematicians as A. DeMorgan, and

A. Cauchy. A little bit of thinking yields that at least four colors are needed

as K4 is planar. Trying several maps, one is led to the conjecture that four

colors always suffice. as long as all countries on the map are contiguous,

that is, one can walk from any point of a country to any other point of that

country without crossing into another country. For instance, the United

States is not contiguous since one cannot walk from a point in Alaska to

a point in California without crossing into Canada in between. Since four

colors seem to suffice for maps with contiguous countries, this problem had

been called the “Four-Color Conjecture”.

For a warm-up, let us prove that six colors always suffice. We will use

the dual (vertex-coloring) form of the problem as it makes induction proofs

easier to describe.

Proposition 12.14. The vertices of any planar graph can be properly col-

ored with six colors.

Proof. Induction on V , the number of vertices of the planar graph G. If
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V = 1, then the statement is obviously true. Let us assume that we know

that the statement is true for graphs with V − 1 vertices. Let G have V

vertices. Then we know from Lemma 12.11 that G has a vertex A of degree

at most five. Remove A from G to get the graph G′. By our induction

hypothesis, G′ has a proper coloring with six colors. Take such a coloring

of G′, then color A with a color that is not the color of any of its (at most

five) neighbors. �

This means, by duality, that all maps can be properly colored using

six colors. The situation is significantly harder if we only want to use five

colors. The result, however, is the same.

Theorem 12.15. The vertices of any planar graph can be properly colored

with five colors.

Proof. Just as in proving the previous proposition, we use induction.

The only case in which the previous proof does not work is when A has

five neighbors, and they are all of different colors. In this case, denote by

1, 2, 3, 4 and 5 the colors of the five neighbors y1, y2, y3, y4, y5 of A as

they follow clockwise. Let G′ be the graph obtained from G by removing

A and all the edges adjacent to A. If G′ has a proper 5-coloring in which

y1 and y3 are the same color, then we are done. If not, then any proper

5-coloring of G′ must contain a path from y1 to y3 along which the vertices

are alternatingly colored 1 and 3. By similar argument, if y2 and y4 cannot

be the same color, then any proper 5-coloring of G′ must contain a path

from y2 to y4 along which the vertices are alternatingly colored 2 and 4.

This, however, is a contradiction, as a path from y1 to y3 and a path from

y2 to y4 must always intersect. See Figure 12.4. �

Again, this means by duality that any map can be properly colored

using five colors.

Notes

How about the big question, that of four colors? The Four-Color conjec-

ture remained a conjecture until the 1970s. Then in 1976, Kenneth Appel

and Wolfgang Haken developed a strategy to use a computer to split the

problem into several cases, and check the 4-colorable property in each case.

When they started running the computer program, it was not sure that the

computer would ever finish. It could have happened that the cases lead
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Fig. 12.4 The paths y1y3 and y2y4 intersect.

to subcases, which in turn lead to subcases of subcases, and never end.

This did not happen, however. After 1200 hours of running time, and the

verification of 1936 cases, the computer returned the verdict “four colors

suffice”. (Good that there were no power outages in Urbana, Illinois in

those weeks!) Therefore, we can now call this statement the Four-Color

Theorem. The proof also involved 400 pages worth of checking some other

cases by humans.

A significant problem with the proof of Appel and Haken was that

one did not really learn from it why the statement is true. Numerous

mathematicians have kept trying to simplify the proof ever since. The 1936

cases of the Appel-Haken proof were later reduced to 1476. In 1996, a new,

simpler proof was given by Neil Robertson, Daniel Sanders, Paul Seymour

and Robin Thomas. It involved only 633 cases, and all of these cases could

be checked by a computer. The same four researchers also found an efficient

algorithm to actually give a 4-coloring of a planar graph, as opposed to

simply proving that one exists. Another computer-based proof was given

by Georges Gonthier and Benjamin Werner in 2005.

Exercises

(1) Generalize Theorem 12.2 for graphs that are not necessarily connected.

(2) Deduce Theorem 12.6 from Theorem 12.2.

(3) Find the only convex polyhedron for which equality holds both in Corol-
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lary 12.7 and in Proposition 12.8.

(4) Prove that in any polyhedron, there are two vertices that are adjacent

to an equal number of edges.

(5) Prove that every polyhedron has two faces that have the same number

of vertices.

(6) Prove the result of the previous exercise without using Euler’s theorem,

or its consequences.

(7) Prove that the faces of planar graph G are 2-colorable if and only if all

vertices of G have even degree.

(8) Let n and k be positive integers so that the vertices of any n-vertex

planar graph all of whose faces are triangles have a proper k-coloring.

Prove that then the vertices of any n-vertex planar graph have a proper

k-coloring.

(9) State the dual of the result of the previous exercise.

(10) Let B be a simple, bipartite, and planar graph. If each vertex of G has

degree at least d, at most how large can d be?

Supplementary Exercises

(11) (-) Explain why the method we used in the text to prove Theorem

12.15 would not work if we tried to use it to prove the Four-Color

Theorem.

(12) (-) The faces of a convex polyhedron are all triangles or pentagons.

Prove that the number of faces is even.

(13) (-) Prove that the statement E ≤ 3V − 6 that holds in all polyhedra

does not hold in all connected simple planar graphs.

(14) How many counterexamples are there that solve the previous exercise?

(15) Let P be a polyhedron with no triangular faces. Prove that E ≤
2V − 4.

(16) How many connected simple planar graphs are there for which the

inequality of the previous exercise does not hold?

(17) (-) Is it true that if a connected graph satisfies E ≤ 3V − 6, then that

graph is planar?

(18) (-) Take K6, the complete graph on 6 vertices, and delete two of its

edges. Prove that the obtained graph G is never planar.

What about three edges?

(19) Let P be a convex polyhedron whose faces are all either a-gons or b-
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gons, and whose vertices are each adjacent to three edges. Let pa, pb,

and n respectively denote the number of a-gonal faces, b-gonal faces,

and vertices of P .

(a) Express the number of edges of P in two different ways.

(b) Prove that pa(6 − a) + pb(6 − b) = 12.

Note that a polyhedron satisfying the conditions of this exercise is

called a trivalent, (a, b)-faced polyhedron.

(20) Keep the notation of the previous exercise, and assume that 3 ≤ a ≤
b ≤ 5. Within these limits, does there exist a trivalent (a, b)-faced

polyhedron for each pair (a, b)?

(21) Keeping the notation of the two previous exercises, let P be a trivalent

(5, 6)-faced polyhedron.

(a) Prove that with these conditions, all polyhedra P will contain the

same number of pentagons.

(b) Find the smallest value of n so that there exists a trivalent (5, 6)-

faced polyhedra on n vertices in which no two pentagonal faces

share an edge.

(22) Let G be a planar graph in which each face is either a 2-gon, or a 3-

gon, or a 4-gon, and let p2, p3, and p4 respectively denote the number

of these faces. Let us assume furthermore that each vertex of G has

degree four, and that p2 + p3 = 8, just like in an octahedron.

(a) Prove that with the given conditions, p2 = 0.

(b) Prove that with the given conditions, p3 = 8.

Note that a planar graph (or polyhedron, which we can now say as we

know that p2 = 0) satisfying the conditions of this exercise is called

an octahedrite.

(23) Let G be a convex octogon, and let us select ten points inside G in

general position (no three on the same line). Let S be the set of

these ten points. Now draw some non-intersecting straight segments

so that these segments partition G into triangles, and the vertices of

these triangles are the vertices of G and the elements of S.

How many triangles are formed?

(24) (+) Is it possible to partition a square into a finite number of concave

quadrilaterals?

(25) (+) (Sperner’s Lemma) Let T be a triangle that is partitioned into

smaller triangles by line segments. Let S be the set of these triangles.

Assume that none of the triangles in S that are in the interior of T
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contain a vertex of another triangle on the interior of their sides. Now

color all the vertices of all these triangles red, blue, or green so that

the three vertices of T are all different, and the vertices on the three

sides of T are not colored the same as the opposite vertex of T . See

Figure 12.5 for an example. Prove that there is a triangle in S whose

vertices are all of different colors.

red blue

green

red

red

redblue

blue

bluegreen

green

green

red

Fig. 12.5 A possible partition and coloring.

Solutions to Exercises

(1) For connected graphs, we have F + V = E + 2. For graphs with k

connected components, we will have F + V = E + (k + 1). Indeed,

take the equation of the Euler theorem for each connected component,

and then take the sum of these equations, each of which is of type

Vi+Fi = Ei+2. As the infinite faces of the k components is common,

that face is counted k times on the left-hand side. Taking that into

account, our claim immediately follows.

(2) Comparing the known formulae 3F ≤ 2E and E = V + F − 2, we get

3(E − V + 2) ≤ 2E,

E ≤ 3V − 6

as claimed.
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(3) If equality holds in both formulae, then we have V = F = 2E/3. On

the other hand, Euler’s theorem forces V + F = E + 2. Comparing

these two relations, we get V = F = 4, and E = 6. The only convex

polyhedron with these parameters is the tetrahedron. (Indeed, no face

can have more than three vertices.)

(4) In a polyhedron, each vertex is adjacent to at least three edges. So if

our claim is not true, then there exists a polyhedron with V vertices

and at least 3 + 4 + · · · + (V + 2) = V (V+5)
2 edges. On the other

hand, we have seen in Lemma 12.9 that the number of edges is at

most 3V − 6. Thus we must have

V 2 + 5V ≤ E ≤ 6V − 12.

A routine computation shows that this is not possible as V 2 + 5V >

6V − 12 for all positive integers. Thus our claim is true.

(5) Our claim is equivalent to saying that every polyhedron has two faces

that have the same number of edges. Assume not, and let P be a

counterexample. Then the dual of P would be a counterexample for

the result of the previous exercise.

(6) Let P be a polyhedron, and let L be a face of P with a maximal

number n of edges. Then L shares an edge with n other faces. Each

of these n faces has at least three and at most n edges. Therefore,

the pigeon-hole principle implies that there must be two of them that

have the same number of edges.

(7) The “only if” part is easy. If V has odd degree, then there are an odd

number of faces around V , and they cannot be properly colored by

two vertices.

We prove the “if” part by strong induction on F , the number of faces

of G. If F = 1 (empty graph), or F = 2 (cycle), then the statement is

obviously true. Now assume we know the statement for planar graphs

with at most F − 1 faces, and let G have F faces. Take a face T of G.

Omit all edges of T to get the graph G′. This decreased the number

of faces of G by at least one, and decreased the degrees of vertices

of T by two. Therefore, the induction hypothesis applies to G′, and
G′ can be properly 2-colored. Let us take a proper 2-coloring of the

faces of G′, and assume without loss of generality that the face T ′

that contains the former face T is red. Let us put the edges of T back

to the graph, and color T the other color, say blue. This is a proper

2-coloring of G as T shares edges with parts of T ′, and those are all

red. See Figure 12.6 for an example.
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T T’
red

red
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blue blue

blue

blueblue

T
blue

red
red

red

red

blue

blue

blueblue

blue

blue

Fig. 12.6 The induction step.

(8) Induction on m, the number of non-triangular faces of our graph G. If

m = 0, then the claim is identical to the condition, so the initial step

is trivial. Now let us assume that we know the statement for m − 1,

and prove it for m. We can assume G has no vertices of degree 1 as

if it does, we can remove them without loss of generality. Therefore,

G has a face that is a cycle C consisting r edges. Let V1, V2, · · · , Vr

be the edges of this cycle. Draw (possibly curved) lines from V1 to

V3, V4, · · · , Vr−1. (If all edges are straight lines, then C is a polygon,

and these lines are diagonals of C cutting C into triangles.) The new

graph G′ we obtain has one less non-triangular faces than G, so by

induction, it has a proper coloring p with k colors. Note that the set

of edges of G′ contains that of G, therefore p is also a proper coloring

of G.

(9) For any positive integers n and k, if the faces of all n-vertex regular

planar graphs with vertex degree 3 have a proper k-coloring, then the

faces of all n-vertex planar graphs have a proper k-coloring.

(10) We claim that the largest possible value of d is 3. Indeed, d = 3 is

possible, as is shown by noting that the graph give by the edges and

the vertices of a cube is planar and bipartite (check this!).

On the other hand, d = 4 is not possible. Assume there were such

a graph. Then counting the edges by their endpoints, 4V ≤ 2E, so

2V ≤ E. As our purported graph is simple and bipartite, each of its

faces would have to consist of at least 4 edges, forcing 4F ≤ 2E, so

2F ≤ E. Therefore, using Euler’s theorem,

E + 2 = V + F ≤ E

2
+

E

2
= E

would follow, which is a contradiction.
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Does It Clique? Ramsey Theory

Instead of coloring the vertices of our graphs, in this chapter we will color

their edges. We will see that this leads to a completely different set of

problems. Our first excursion into the land of infinite graphs is also part of

this chapter.

13.1 Ramsey Theory for Finite Graphs

Example 13.1. Six people are waiting in the lobby of a hotel. Prove that

there are either three of them who know each other, or three of them who

do not know each other.

This statement is far from being obvious. We could think that maybe

there is some case in which everyone knows roughly half of the other people,

and in the company of any three people there will be two people who know

each other, and two people who do not. We will prove, however, that this

can never happen.

Solution. (of Example 13.1) Take a K6 so that each person corresponds

to a vertex. Color the edge joining A and B red if A and B know each

other, and blue if they do not. Do this for all 15 edges of the graph. The

claim of the example will be proved if we can show that there will always

be a triangle with monochromatic edges in our graph.

Take any vertex V of our bicolored graph. As V is of degree five, it must

have at least three edges adjacent to it that have the same color. Assume

without loss of generality that this color is red. Let X , Y and Z be the

endpoints of three red edges adjacent to V . (The reader can follow our

argument in Figure 13.1, where we denoted red edges by solid lines.)

293
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Now if any edge of the triangle XY Z is red, then that edge, and the

two edges joining (the endpoints of) that edge to V are red, so we have

a triangle with three red edges. If the triangle XY Z does not have a red

edge, then it has three blue edges.

X Y

ZV

Fig. 13.1 The colors of the edges of the triangle XY Z are crucial.

This beautiful proof is our first example in Ramsey theory. This field

is named after Frank Plumpton Ramsey, who was the first person to study

this area at the beginning of the twentieth century.

We point out that the result is tight, that is, if there were only five

people in the lobby of the hotel, then the same statement would be false.

Indeed, take a K5, and draw it as a regular pentagon and its diagonals.

Color all five sides red, and all five diagonals blue. As any triangle in this

graph contains at least one side and at least one diagonal, there can be no

triangles with monochromatic edges.

Instead of taking a K6, and coloring its edges red and blue, we could

have just taken a graph H on six vertices in which the edges correspond

to people who know each other. In this setup, the edges of H correspond

to the former red edges, and the edges of the complement of H correspond

to the former blue edges. As a complete subgraph is often called a clique,

the statement of Example 13.1 can be reformulated as follows. If H is a

simple graph on six vertices, then at least one of H and the complement of

H contains a clique of size three.
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The arguments used in the proof of Example 13.1 strongly depended

on the parameter three, the number of people we wanted to know or not

to know each other. What happens if we replace this number three by a

larger number? Is it true that if there are sufficiently many people in the

lobby, there will always be at least k of them who know each other, or k

of them who do not know each other? The following theorem answers this

question (in fact, a more general one), in the affirmative.

Theorem 13.2. [Ramsey theorem for graphs] Let k and l be two positive

integers, both of which is at least two. Then there exists a (minimal) positive

integer R(k, l) so that if we color the edges of a complete graph with R(k, l)

vertices red and blue, then this graph will either have a Kk subgraph with

only red edges, or a Kl subgraph with only blue edges.

Note that any non-empty set of positive integers has a smallest element.

Therefore, if we can show that there exists at least one positive integer with

the desired property, then we will have shown that a smallest such integer

exists.

Example 13.3. Example 13.1, and the discussion after it shows that

R(3, 3) = 6. We also have trivial fact R(2, 2) = 2 relating to the graph

with one edge.

Proof. (Of Theorem 13.2) We prove the statement by a new version of

mathematical induction on k and l. This induction will run as follows.

First we prove the initial conditions that R(k, 2) and R(2, l) exist for all k,

and all l. Then we prove the induction step that if R(k, l − 1) exists, and

also R(k − 1, l) exists, then R(k, l) also exists.

To see that the initial conditions hold, note that R(k, 2) = k, and simi-

larly, R(2, l) = l. Indeed, either all edges of a Kk are red, and then it has

a Kk subgraph with all edges red, or at least one of its edges is blue, in

which case it has a K2 subgraph with all edges blue. Analogous argument

works for R(2, l).

We prove the induction step by showing that

R(k, l) ≤ R(k, l − 1) +R(k − 1, l). (13.1)

Indeed, take a complete graph with R(k, l−1)+R(k−1, l) vertices. Take
one of its vertices, and call it V . As V has degree R(k, l−1)+R(k−1, l)−1,
it has either at least R(k, l− 1) blue edges adjacent to it, or it has at least

R(k − 1, l) red edges adjacent to it.
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In the first case, let b denote the R(k, l − 1)-element set of the other

endpoints of these blue edges. Then, by the definition of R(k, l−1), the set

b either contains a monochromatic red Kk and we are done, or a monochro-

matic blue Kl−1, which can be completed to a monochromatic blue Kl by

adding the vertex V , and we are done.

In the second case, let r denote the R(k − 1, l)-element set of the other

endpoints of these red edges. Then again, r either contains a monochro-

matic blue Kl and we are done, or a monochromatic red Kk−1, which can

be completed to a monochromatic red Kk by adding the vertex V , and we

are done again.

So (13.1) is proved, therefore the induction step is proved, and therefore

the theorem is proved. �

Theorem 13.2 does show that the Ramsey number R(k, l) always exists,

but it does not tell us its exact value. Let us try to use this theorem to find

R(4, 3), the smallest Ramsey number we have not discussed yet. Formula

13.1 yields

R(4, 3) ≤ R(4, 2) +R(3, 3) = 4 + 6 = 10.

The following Example shows that the upper bound obtained from Theorem

13.2 is not tight, even for such small values of k and l.

Example 13.4. The equality R(4, 3) = 9 holds.

Solution. As we have just seen, it follows from (13.1) that R(4, 3) ≤ 10.

To prove our claim, we have to show two things: that all 2-colorings of the

edges of K9 will result in either a red K4 or a blue K3, and that the same

will not hold for K8.

(1) To see the first statement, take aK9 with two-colored edges. We claim

that there has to be a vertex V so that either (i) at least six of the

edges adjacent to V are red, or (ii) at least four of the edges adjacent to

V are blue. If neither statements were true, then all vertices of this K9

would have five red edges adjacent to them, which is a contradiction

as the sum of the degrees in the subgraph of all red edges must be

even, so it cannot be 9× 5 = 45.

(a) If there are six red edges adjacent to V , then denote by A the

six-element set of their other endpoints. By Example 13.1, there

is either a red triangle, or a blue triangle on A. So our K9 either

contains a blue triangle, or, together with V , a red K4.
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(b) If, on the other hand, there are four blue edges adjacent to V , then

denote by B the four-element set of their other endpoints. If all

edges on B are red, then there is a red K4. If not, then there is a

blue edge on B, which will form a blue triangle, together with V .

(2) In order to see that R(4, 3) > 8, take aK8, and label its vertices by the

elements of [n], in clockwise direction, say. Let the edge (i, j) (with

j > i) be blue if j − i is 1, 4, or 7, and red otherwise. This graph

will not contain a blue triangle. Indeed, such a triangle would have to

contain a smallest vertex i, and two of the three vertices i+ 1, i + 4,

i + 7, but no matter which two we choose, there will be a red edge

between them.

Red edges are present between vertices i and j so that j > i and j− i

is 2, 3, 5 or 6. To get a red K4, we would need a smallest vertex i,

then three of the four vertices i + 2, i + 3, i + 5 and i + 6. This is

impossible as neither i+2 and i+3, nor i+5 and i+6 can be chosen

together.

This completes the proof of the equality R(4, 3) = 9.

The following example takes the ideas seen in the preceding proof one

step further.

Example 13.5. The equality R(4, 4) = 18 holds.

Solution. Formula 13.1 shows that

R(4, 4) ≤ R(4, 3) +R(3, 4) = 9 + 9 = 18.

For an example of a 2-coloring of K17 without a monochromatic K4,

take the quadratic residue graph. That is, label the vertices from 0 to 16,

and let i − j be red if and only if i − j is a quadratic residue modulo 17.

For those not familiar with this notion, this means that if j > i, then the

edge (i, j) is red if and only if j − i is 1, 2, 4, 8, 9, 13, 15, or 16. (Since if

we divide the square of an integer by 17, the remainder will always be one

of these eight values.) A tedious, but conceptually not difficult, analysis of

all cases shows that there will be no K4 with monochromatic edges in this

graph.

We have seen that R(2, 2) = 1, R(3, 3) = 6, and R(4, 4) = 18. The exact

values of R(k, k) are not known if k ≥ 5. The difficulty of this problem is

illustrated by the following famous quote of Paul Erdős. “Assume an evil



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

298 A Walk Through Combinatorics

spirit orders us to compute R(5, 5), or else he will destroy all mankind. It

may then be best if all mathematicians and computers start working on the

answer. If, however, he orders us to compute R(6, 6), then we had better

think about how to destroy him before he destroys us.”

Can we at least find some bounds for the symmetric Ramsey numbers

R(k, k)? With the methods of this section, we can mostly hope for upper

bounds. They will be consequences of formula (13.1).

Theorem 13.6. Let k and l be positive integers larger than one. Then

R(k, l) ≤
(

k + l − 2

k − 1

)

. (13.2)

Proof. As the reader probably guessed, we will prove this statement by

the same kind of induction on k and l as we proved Theorem 13.2. If k = 2,

our claim reduces to R(2, l) ≤
(

l
1

)

= l, which is trivially true. By symmetry,

the statement is also true if l = 2.

Now let us assume that the statement is true for R(k, l−1) and for R(k−
1, l), and prove it for R(k, l). Applying formula (13.1) and the induction

hypothesis, we get

R(k, l) ≤ R(k, l−1)+R(k−1, l) ≤
(

k + l − 3

k − 1

)

+

(

k + l − 3

k − 2

)

=

(

k + l − 2

k − 1

)

,

which is precisely what we wanted to prove. �

Corollary 13.7. For all integers k ≥ 2, the inequality R(k, k) ≤ 4k−1

holds.

Proof. By Theorem 13.6, we obtain

R(k, k) ≤
(

2k − 2

k − 1

)

≤ 4k−1.
�

A technique for proving lower bounds for Ramsey numbers will be in-

troduced in Chapter 15.

13.2 Generalizations of the Ramsey Theorem

Example 13.8. A circle of 17 friends has the property that no matter

how we choose two from these 17 friends, those two people correspond with

each other on one of three given subjects. Prove that there are three friends

among the circle of these 17 friends such that any two of the three of them

correspond with each other on the same subject.
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This example generalizes Example 13.1 in the hotel lobby in a major

aspect. Now the relation between two people can be of not only two kinds

(they either know each other or not), but of three kinds. So if we represent

our people by a K17, then we have to color the edges of this K17 by three

colors.

Solution. (of Example 13.8) As we have just explained, we have to show

that if we color each of the edges of a K17 either red, or blue, or green, there

will always be a triangle with monochromatic edges. Choose any vertex V

of our K17. As V has degree 16, it follows by pigeon-hole principle that

there is a color so that at least six of the edges adjacent to V have the same

color, say green. Let g be the set of the other endpoints of these green

edges. If there is any green edge between two vertices of g, then we are

done as those two vertices of g and V span a green triangle. If not, then all

the edges among the vertices of g are red or blue. However, g has at least

six elements, so it follows from Example 13.1 that the vertices of g span

either a red triangle, or a blue triangle.

Theorem 13.6 can be generalized to more than two colors in the following

way.

Theorem 13.9. Let n1, n2, · · · , nk be positive integers, with k fixed. Then

there exists a minimal positive integer N = R(n1, n2, · · · , nk) so that if

n > N , and we color all edges of G = Kn with colors 1, 2, · · · , k, then there

will always be at least one index i ∈ [k] so that G has a Kni subgraph whose

edges are all of color i.

We only provide a sketch of a proof. After reading it, you should be

able to see how to proceed in the general case. You can check your work

by reading the solution of Exercise 1.

Proof. (of Theorem 13.9) We prove the statement by induction on n1 +

n2 + · · · + nk. The initial case of n1 = n2 = · · · = nk = 1 is trivial.

Now let us assume that we know the statement for all positive integers

n1, n2, · · · , nk whose sum is less than m, and prove it for the case when

their sum is m.

Note that by our induction hypothesis, we know that the positive integer

R(n1 − 1, n2, · · · , nk) exists. Set N = k(R(n1 − 1, n2, · · · , nk) − 1) + 2.

Let us assume that G has a vertex V so that the color that occurs most

frequently among the edges adjacent to V is color 1. That means that at

least R(n1− 1, n2, · · · , nk) edges adjacent to that vertex are of color 1. Let
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S be the set of the endpoints of these edges (other than V ), and let KS the

complete graph with vertex set S.

By the definition of R(n1 − 1, n2, · · · , nk) either there exists an i ∈
{2, 3, · · · , k} so that KS has a Kni subgraph with all edges colored i and

we are done, or KS has a Kn1−1 subgraph with all edges colored 1, and

then we are done again, adding V to this subgraph. �

Another direction in which the Ramsey theorem can be generalized is

that of hypergraphs, or set systems. To make long story short, in that

generalization, we color not the edges of Kn, but the Kr-subgraphs of Kn,

for some fixed r. The special case of r = 2 corresponds to the traditional

situation, that is, when the edges are colored. Then the following is true.

Theorem 13.10. We color each Kr-subgraph of Kn with one of the colors

1, 2, · · · , k. Let n1, n2, · · · , nk be positive integers. Then there exists a

minimal positive integer N = Rr(n1, n2, · · · , nk) so that if n ≥ N , then

there exists an index i ∈ [k] so that Kn contains a Kni subgraph whose Kr

subgraphs are all colored i.

The proof is omitted. It is conceptually not more difficult than that of

Theorem 13.9, but it involves more notations.

The following is a very surprising application of Theorem 13.10. So far

our studies in Ramsey theory did not involve any geometry at all. Still, we

will be able to use our last theorem to prove a result of geometric nature.

Theorem 13.11. [The Erdős-Szekeres theorem] Let n be a positive integer.

Then there exists a (minimal) positive integer ES(n) so that if there are

N ≥ ES(n) points given in the plane, no three of which are collinear, then

we can choose n points from them that form a convex n-gon.

Before reading further, you should check your understanding of the def-

inition of ES(n) by proving that ES(4) = 5.

Proof. We claim that R3(n, n) will always be such a positive integer (not

necessarily the minimal one). Take the complete graph whose vertices are

our R3(n, n) points in the plane. Color its triangles red or blue according

to the following rule. Number the points from 1 to R3(n, n), and color a

triangle red if the path from the smallest number via the middle one to the

largest one is clockwise. Color a triangle blue if that path is counterclock-

wise.

As our graph has R3(n, n) vertices, there will be a Kn subgraph with

monochromatic triangles. We claim that the vertices of this Kn subgraph
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form a convex n-gon. To see this, it suffices to show that there are no four

vertices in this subgraph so that one is within the triangle spanned by the

other three. In other words, we need to show that the configuration shown

in Figure 13.2 does not occur.

A

D

C B

Fig. 13.2 This configuration cannot occur.

Assume without loss of generality that A < B < C, and that all triangles

of our K4 at hand are red. Then the fact that triangle ADB is red forces

D < A < B. (Indeed, A < D < B would mean that the triangle ADB is

blue, and A < B < D would mean that either the triangle BCD is blue, or

D > C, in which case triangle ACD is blue.) Then, however, D < A < C,

and triangle DAC is blue, which is a contradiction. This completes the

proof. �

We mention that there has been a series of improvements concerning

the best known upper bounds for ES(n). The latest such result can be

found in [43], where it is proved that ES(n) ≤
(

2n−5
n−2

)

+ 1.

13.3 Ramsey Theory in Geometry

Example 13.12. Let us assume all points of the plane are colored either

red, or blue. Prove that there exists a unit segment with monochromatic

endpoints.
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This problem is certainly different from all other problems discussed so

far. The number of points in the plane is infinite, in fact, uncountably

infinite. All our previously discussed problems dealt with finite graphs.

Moreover, in this problem, and in what follows, we will state and prove

theorems of geometric nature, making our first excursion to combinatorial

geometry.

Solution. (of Example 13.12) Take a regular triangle T with side length

one. Then by the pigeon-hole principle, T must have two vertices of the

same color. Those two vertices will form a segment with the required prop-

erty.

The statement of the previous example can be strengthened as follows.

Example 13.13. Let us assume that all points of the plane are colored

either red or blue or green. Prove that there exists a unit segment with

monochromatic endpoints.

Solution. Again, take any regular triangle T with side length 1, and ver-

tices A,B,C. If A, B, and C are not all of different colors, then we are done.

If they are, then append another regular triangle T ′ with side length 1 to

one of the sides of T , say BC, as shown in Figure 13.3. Now the new vertex

D of T ′ must be the same color as A, say red, otherwise a monochromatic

unit segment is formed, either BD, or CD. Thus we have showed that the

segment AD, that is of length
√
3, has monochromatic (red) endpoints.

A

B

D

C
k

Fig. 13.3 All points of k must have the color of A.
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Note that we have not used any special property of T other than being

a regular triangle of unit side lengths. Therefore, we could repeat this

argument for any regular triangle in the plane, and show this way that

all segments of length
√
3 have monochromatic endpoints, otherwise there

exists a unit segment with that property.

Finally, take any red vertex R, and take the circle k whose center is R,

and whose radius is
√
3. Then all points of k must be red, which means

that there is a unit segment with red endpoints. Indeed, k has radius
√
3,

so k certainly has arcs of unit length.

Example 13.14. We colored all the points of the plane either red or blue.

Let T be a triangle whose angles are equal to 30, 60, and 90 degrees, and

whose hypotenuse is of unit length. Prove that there exists a triangle with

monochromatic vertices that is congruent to T .

Solution. It follows from Example 13.12 that there exists a unit segment

with monochromatic vertices. Call that segment s, and let us assume,

without loss of generality, that the endpoints A and B of s are red. Now

take the circle C with diameter s, and consider the four points D1, D2, D3,

and D4 so that A, B and these four points divide the perimeter of C into

six equal parts as shown in Figure 13.4.

A B
Red Red

s

D D

D

C

1
2

4 3
D

Fig. 13.4 The colors of the Di are crucial.
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If any of the Di is red, then we are done as A, B, and this red Di form

a monochromatic (red) triangle with the required parameters. If not, then

all the Di are blue, and they form four blue triangles with the required

parameters.

Notes

The first textbook on Ramsey theory was “Ramsey Theory” by Ronald Gra-

ham, Bruce Rothschild, and Joel Spencer [21]. It is an advanced book. For

questions of geometric flavor, the reader is encouraged to consult “Combina-

torial geometry”[31] by János Pach and Pankaj Agarwal. Finally, for ques-

tions related to coloring integers, the most comprehensive source is “Ram-

sey theory on the integers”, by Bruce Landman and Aaron Robertson[26].

Exercises

(1) Complete the proof of Theorem 13.9.

(2) Prove that in a permutation p of length nm + 1, there is either an

increasing subsequence of length n+ 1, or a decreasing subsequence of

length m+ 1. (The elements of the subsequences do not have to be in

consecutive positions in p.)

(3) Each point of the space is colored either red or blue. Prove that either

there is a unit square whose vertices are all blue, or there is a unit

square that has at least three red vertices.

(4) Let ABC be a regular triangle, and let E be the set containing all

points of the closed segments AB, AC, and BC. We color each point

of E red or blue. Prove that no matter what coloring we choose, there

will always be a right-angled triangle with monochromatic vertices.

(5) Eighteen teams participate at a round-robin soccer tournament. Prove

that after eight rounds are played, we can still find three teams no two

of which have played each other yet.

(6) Let

nk = k!

(

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

k!

)

+ 1.

We color all edges of Knk
with one of k colors. Prove that there will

be a triangle with monochromatic edges.

(7) Let n > 1 be a positive integer. Prove that R(n+ 2, 3) > 3n.
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(8) We colored each point of the space either red, or blue, or green, or yel-

low. Prove that there is a segment of unit length with monochromatic

vertices.

(9) Prove that it is possible to color each point of the plane either red, or

blue so that there is no regular triangle with sides of unit length and

monochromatic vertices.

(10) (+++) We colored each point of the plane either red, or blue. Let

T be any right-angled triangle. Prove that there is a triangle that is

congruent to T and has monochromatic vertices.

(11) We colored each point of the space either red or blue. Let T be a regular

triangle. Prove that there is a triangle that is congruent to T and has

monochromatic vertices.

(12) (+) We colored each point of the space either red or blue. Let T be

any triangle. Prove that there is a triangle that is congruent to T and

has monochromatic vertices.

(13) (++) We colored each point of the space either red or blue or green.

Let T be as in Example 13.14. Prove that there is a triangle that is

congruent to T and has monochromatic vertices.

(14) (+++) We colored each point of the space either red or blue or green.

Let T be any right-angled triangle. Prove that there is a triangle that

is congruent to T and has monochromatic vertices.

(15) A company has 2002 employees, from 6 different countries. Each em-

ployee has a company identification card (ID), and these cards are num-

bered from 1 to 2002. Prove that there is either an employee whose ID

number is equal to the sum of the ID numbers of two of his compatri-

ots, or there is an employee whose ID number is twice that of one of

his compatriots.

(16) Let us color each positive integer by one of the colors 1, 2, · · · , k. Prove
that there exists an integer N = N(k) so that if n > N , then there

are three integers a, b, c that are less than n, are of the same color, and

satisfy a+ b = c. (We allow a = b.)

(17) Let N(k) be defined as in the previous exercise. Determine N(2).

(18) Prove that N(3) > 13.

Supplementary Exercises

(19) The following are true for the n guests of a Christmas party.
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• In any group of three guests, there are two guests who do not know

each other, and

• in any groups of seven guests, there are two guests who do know

each other.

At the end of the party, everyone gives a present to all the guests he

or she knows. Prove that the total number of gifts given is at most

6n.

(20) Prove that if we color the edges of K6 red or blue, then there will be

at least two triangles with monochromatic edges.

(21) Prove that if we color the edges of K9 red or blue, then we will get at

least twelve triangles with monochromatic edges.

(22) Prove that there do not exist three irrational numbers so that no

matter how we choose two of them, their sum is always rational.

(23) Let k and n be positive integers satisfying 1 ≤ k < n. Prove that there

do not exist n irrational numbers so that no matter how we choose k

of them, their sum is always rational.

(24) There are nine passengers on a bus. Among any three of them, there

are two who know each other. Prove that there are five people on the

bus who know at least four of the other passengers.

(25) Continuing the previous exercise, is it true that there are five people

on the bus who all know each other?

(26) Is it true that on the bus of Exercise 24 there are always six people

who know at least four others?

(27) Generalize Exercise 24 for a bus with 2n+ 1 passengers, keeping the

condition that among any three of them, there are two who know each

other.

(28) Five vertices of a regular 10-gon are colored red, and five are colored

blue. Prove that there is a triangle T1 with red vertices and a triangle

T2 with blue vertices that are congruent.

(29) Each vertex of a regular 13-gon is colored either red or blue. Prove

that there exists an isosceles triangle with monochromatic vertices.

(30) We colored the edges of K6 red or blue. Prove that there is a cycle of

length four with monochromatic edges.

(31) We colored the edges of K7 red or blue. Prove that there are at least

three cycles of length four with monochromatic edges.

(32) Prove that R(3, 5) = 14.

(33)(a) (+) Let Tm be any tree on m vertices. Let us color all vertices of

K(m−1)(n−1)+1 red or blue. Prove that there will be either a copy
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of Tm with all edges red, or a copy of Kn, with all edges blue.

(b) Prove that the result of part (a) is optimal.

(34) We color each vertex of the plane red or blue. Let n ≥ 3 be an

integer. Prove that there exist n points so that all these points and

their centroid have the same color. Try to find a proof that only

considers 2n+ 1 points. (Recall that the centroid of a set of n points

in a (vector) space, viewed as the vectors v1,v2, · · · ,vn is the point

given by the vector (v1 + v2 + · · ·+ vn)/n.)

(35) We color each point of the n-dimensional plane having integer coordi-

nates red or blue. Prove that there will be a segment with monochro-

matic vertices whose centroid has the same color as its two endpoints.

(36) Prove that the statement of Exercise 34 remains true even if we only

color the vertices of the plane that have integer coordinates.

(37) Prove that for all integers n ≥ 1, there exists a permutation of length

n that does not contain an arithmetic progression of length 3. Note

that an arithmetic progression can be increasing or decreasing.

(38) Prove that each permutation of the set of all positive integers contains

an increasing arithmetic progression of length three. (A permutation

of an infinite set S is an arrangement of all the elements of S in a

line.)

Solutions to Exercises

(1) Proceed as in the proof provided in the text, except for the choice

of N . Set N = R(n1 − 1, n2, · · · , nk) + R(n1, n2 − 1, n3, · · · , nk) +

· · · + R(n1, n2, · · · , nk − 1) − k + 2. Then it follows by the Pigeon-

hole Principle that there exists an i ∈ [k] so that there are at least

R(n1, · · · , ni−1, · · · , nk) edges adjacent to V that are colored i. Then

the proof is completed as in the text.

(2) Let p = p1p2 · · · pnm+1, and let ai denote the length of the longest

increasing subsequence ending in pi. Similarly, let bi denote the length

of the longest decreasing subsequence ending in pi. It is then clear

that if i 6= j, then the ordered pairs (ai, bi) and (aj , bj) are different.

Indeed, either pi < pj, and then ai < aj , or pi > pj , and then bi < bj .

Thus we have nm+1 different ordered pairs, and the statement follows

by the pigeon-hole principle.

(3) First assume that there is no segment of length b =
√
2 whose end-
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points are both red. Then take any red point, and take the sphere S

of radius b that is centered at that point. Clearly, S consists of blue

points only, and therefore, any unit square on S has four blue vertices.

Now let us assume that there is a segment AB that is of length b

and has two red endpoints. Take the circle C whose center is the

midpoint of AB, whose radius is b/2, and that lies in the plane that

is perpendicular to AB. If any point P of C is red, then the triangle

ABP has three red vertices, and can be completed to a unit square. If

not, then C consists of blue points only, and contains infinitely many

unit squares.

(4) Denote by C1 and C2 the points that divide the segment AB into three

equal parts. Define A1, A2, B1, and B2 analogously. There are at least

two points among A1, B1, and C1 that are of the same color; we can

assume without loss of generality that A1 and B1 are both red. Now

assume there is no right-angled triangle with monochromatic vertices.

Then C and B2 must both be blue. Then we cannot find a color for

C2. If C2 is blue, then the triangle CB2C2 has three blue vertices,

and if C2 is red, then the triangle A1B1C2 has three red vertices. So

in any case, a triangle with monochromatic vertices is formed.

(5) Let us consider aK18 whose vertices correspond to the eighteen teams.

After eight rounds have been played, we color the edge between two

teams red if they have met, and blue if they have not. We have to

show there is a blue triangle in our graph. Take any team A, and

look at the nine teams A has not played yet. If there are two teams

B and C among them that have not met yet, then ABC is a blue

triangle, and we are done. If there were no two such teams, that would

mean that any two of the nine teams that have not played A have

played each other, in other words, these teams completed a round-

robin tournament among themselves. However, that is impossible for

nine teams in just eight rounds. Indeed, in one round, they could only

play 4 games among themselves, therefore in eight rounds, they could

play at most 32. That is less than the total number of
(

9
2

)

= 36 games

needed for a round robin tournament with nine teams.

(6) We prove the statement by induction on k. If k = 1, then nk = 3,

and if we color the edges of a triangle by one color, then of course this

triangle will have monochromatic edges.

Now assume that the statement is true for k, and prove it for k + 1.

Take a complete graph on nk+1 vertices, and select one of its vertices,

say V . Then all edges adjacent to V are colored by one of k+1 colors.
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It is easy to verify that

(k + 1)(nk − 1) = nk+1 − 2 < nk+1 − 1,

so it follows by pigeon-hole principle that at least nk of these edges

are of the same color, say black. Let B be the set of the vertices that

are connected to B by a black edge. If there is a black edge joining

two vertices X and Y of B, then XY V is a triangle with all edges

black. If there is no such X and Y , then all edges within B are of one

of the remaining k colors. As B has at least nk edges, the statement

follows by the induction hypothesis.

(7) It suffices to construct one graph G on 3n vertices that does not con-

tain a Kn+2, but among any three of its vertices, there are two that

are adjacent (so the complement of G does not contain a triangle).

Such a G can be given as follows. Let the vertex set of G be [3n], and

draw these vertices around a cycle in increasing order. Connect i to

its n left and n right “neighbors” along the cycle. This means that

two vertices are joined if their difference is either at most n or at least

2n. However, Exercise 11 of Chapter 1 shows that no matter how we

choose n of these vertices, there will be two of them with difference

more than n but less than 2n. So G cannot contain a Kn+2.

It is easy to see that among any three vertices of G, there are two that

are adjacent. Indeed, let a < b < c be three vertices. If neither ab nor

bc is an edge, then we must have b− a > n, and also c− b > n, which

implies c− a > 2n, and therefore ac is an edge.

(8) This is a generalization of Example 13.13 to three dimensions. Sup-

pose there is no such segment. Take a regular tetrahedron ABCD

with sides of unit length. This tetrahedron must have vertices of four

different colors. Say A is red, and append another regular tetrahedron

BCDE to the triangle BCD. Then E must also be red, otherwise it

would agree in color with one of B,C and D.

So if m is the altitude of a regular tetrahedron, then all vertices of

length 2m have to be of the same color. In particular, the sphere

whose center is A and radius is 2m must be red. However, there are

pairs of points on that sphere whose two points are at a unit distance

from each other, and therefore the claim is proved.

(9) For shortness, let m =
√
3/2, and note that m is the altitude of such

a regular triangle. Color a point (x, y) red if [y/m] is even, and blue

if [y/m] is odd. We get monochromatic stripes of width m so that

no triangle of the required size fits within one stripe, and no triangle
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of the required size is large enough to have vertices in two different

stripes of the same color.

(10) This result is due to Leslie E. Shader, and can be found in the article

All right triangles are Ramsey in the plane, Journal of Combinatorial

Theory, Series A, 20 (1976), 385–390.

(11) Assume there is no such triangle. Choose the side length of T to be the

unit length. Let AB be a unit segment with monochromatic vertices.

We can then assume without loss of generality that A and B are both

red.

Take a regular triangle ABC, and rotate it around its side AB. Then

images of the vertex C form a circle c. Clearly, all points on c must

be blue. The radius of c is
√
3/2, therefore c has pairs of points at

distance 1 from each other. Let D and E be two such points. Then

we can repeat the previous argument. That is, take a regular triangle

DEF and rotate it around its side DE. The rotated images of the

vertex F form a circle f , and they must all be red. If we do this for

all possible choices of D and E, we get a torus that consists of red

points only, and it is easy to see that this torus will contain a regular

triangle with sides of unit length.

(12) This result can be found in P. Erdős, R. L. Graham, P. Montgomery,

B. L. Rothschild, J. H. Spencer and E. G. Straus: Euclidean Ramsey

theorems I, Journal of Combinatorial Theory, Series A, 14 (1973),

341–363.

(13) This problem can be solved with methods similar to Example 13.14.

For a full solution, see M. Bóna: A Euclidean Ramsey theorem, Dis-

crete Mathematics, 122 (1993), 349–352.

(14) The solution of this problem can be found in M. Bóna, G. Tóth,

A Ramsey-type problem on right-angled triangles in space. Selected

papers in honor of Paul Erdős on the occasion of his 80th birthday

(Keszthely, 1993). Discrete Math. 150 (1996), no. 1-3, 61–67.

(15) Take a complete graph on 2002 vertices, and let the edge between

vertices i and j (where i < j) be of color k if the person with ID

number j − i is of country k. This defines a coloring of K2002 by six

colors. Keeping the notations of the previous exercise, n6 = 1958, so

there will be a triangle with monochromatic edges. Let the vertices of

this triangle be a < b < c. Then people with ID numbers c− a, c− b,

and b− a are all from the same country. As (b− a) + (c− b) = c− a,

our claim is proved. (If b − a and c − b are different, then the first

criterion is satisfied, and if b− a and c− b are equal, then the second
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criterion is satisfied.)

(16) Denote by C the given coloring of the positive integers. Take the

complete graph KN whose vertex set is [N ], and whose edges are k-

colored as follows. The edge between x and y is of the color of the

integer |x − y| in C. It follows from Theorem 13.9 that if N is large

enough, then any, and therefore, this, k-coloring of KN contains a

triangle with monochromatic edges. Let that triangle have vertices

x < y < z. Then we know that y − x, z − y, and z − x have the same

color in C, so they can play the role of a, b, and c.

(17) We prove that N(2) = 5. Indeed, try to 2-color [5] without creating

a monochromatic triple so that a + b = c. Assume without loss of

generality that 1 is red, then 2 is blue (for 1+1 = 2), and 4 is red (for

2 + 2 = 4). Then 3 must be blue (for 1+3=4), and then we cannot

find a color for 5, as 5 = 1 + 4 = 2 + 3. Therefore, N(2) ≤ 5. On

the other hand, we have just seen that R,B,B,R is a 2-coloring of

[4] without a monochromatic triple of the desired kind. This proves

N(2) = 5.

(18) We show a 3-coloring of [13] without a monochromatic triple of the

desired kind. Denote by R, B, and G the red, blue, and green color.

Then R,B,B,R,G,G,G,G,G,G,B,B,R is a good coloring.
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So Hard To Avoid. Subsequence

Conditions on Permutations

14.1 Pattern Avoidance

Let us assume that there are n children playing in our backyard, no two

of whom have the same height. For the next game, they need to stand in

a line so that everyone faces the back of the preceding person. Moreover,

each child must be able to see all children that are shorter than him and

precede him in the line. How many such lineups exist?

At this point, the reader certainly suspects that we will have to enumer-

ate permutations of [n] with some new conditions. Let 1, 2, · · · , n denote

the children playing in our backyard, in increasing order of height, so 1 is

the shortest and n is the tallest.

Would for example 1423567 be a good lineup for n = 7? No, it would

not, as 2 or 3 could not see 1, even if he is smaller than them and precedes

them. They could not see him as their view would be blocked by 4, who is

taller than them. On the other hand 6723415 would be a good lineup.

So when is a lineup good? It is good if there are no three elements a, b, c

so that they are in this order (but not necessarily in consecutive positions),

and a < c < b. Indeed, if there were three elements like that, then b could

not see a.

The enumeration of permutations with subsequence conditions like this

is a very active area of contemporary combinatorics. Before we continue,

we make two definitions to simplify our arguments.

Definition 14.1. Let a, b, and c be three entries of a permutation that

follow in this order from left to right, but are not necessarily consecutive.

If a < c < b, then we say that the entries a, b, and c form a 132-pattern.

Why do we call this structure a 132-pattern? Because the entries a,

313
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Fig. 14.1 The permutation 3561247 contains the pattern 132.

b, and c relate to each other the same way as the numbers 1, 3, and 2.

That is, the leftmost one is the smallest, and the middle one is the largest.

Similarly, if we had a < b < c, then we would say that the entries a, b, and

c form a 123-pattern, and if we had c < a < b, then we would say that the

entries a, b, and c form a 231-pattern.

Definition 14.2. Let p be a permutation. If there are no three entries in

p that form a 132-pattern, then p is called 132-avoiding.

Our task is therefore to find the number f(n) of permutations of length

n (or, in what follows, n-permutations) that are 132-avoiding.

Let us suppose that we have a 132-avoiding n-permutation in which the

entry n is in the ith position. Then we claim that any entry to the left of

n must be larger than any entry to the right of n. In order to see this, let

us assume the contrary is true, that is, there is an entry x on the left of n

and an entry y on the right of n so that x < y. Then the entries x, n, and

y form a 132-pattern, which is a contradiction. This implies that entries

1, 2, · · · , n− i are on the right of n, and entries n− i+1, n− i+2, · · · , n−1

are on the left of n. Now the i− 1 entries on the left of n must also form a

132-avoiding permutation, which they can do in f(i − 1) ways. Similarly,



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

So Hard To Avoid. Subsequence Conditions on Permutations 315

the n − i entries on the right of n must form a 132-avoiding permutation,

and they can do it in f(n− i) ways. So there are exactly f(i− 1)f(n− i)

132-avoiding n-permutations in which n is in the ith position. Here we set

f(0) = 1, in order to make the recurrence work.

Summing over all i ∈ [n] (as n can be in any position) we get the

recurrence relation for

f(n) =

n
∑

i=1

f(i− 1)f(n− i), (14.1)

if n ≥ 1, and f(0) = 1.

We have met this recurrence relation before, in formula (8.19), when we

solved Exercise 15 of Chapter 8. We solved that recurrence relation using

generating functions. The conclusion was that the solution of (8.19), and,

equivalently, of (14.1) is the sequence of Catalan numbers.

Corollary 14.3. The number of permutations of length n that avoid the

pattern 132 is cn =
(

2n
n

)

/(n+ 1), which is the nth Catalan number.

So we know that the number of n-permutations avoiding the pattern 132

is cn =
(

2n
n

)

/(n+1). How about the number of permutations avoiding other

patterns? Before addressing that question, let us formally announce the

definition of pattern avoidance for general patterns, even if we mentioned

it in the text before.

Definition 14.4. Let p be an n-permutation, and let q = q1q2 · · · qk be a

k-permutation, with n ≥ k. Let us choose k entries of p, and denote them

by a1, a2, · · · , ak, as they follow from left to right. If qi < qj exactly for

those indices i and j for which ai < aj , then we say that the elements

a1, a2, · · · , ak form a q-pattern.

Definition 14.5. Let p be an n-permutation, and let q = q1q2 · · · qk be a

k-permutation, with n ≥ k. If no k entries of p form a q-pattern, then we

say that p is a q-avoiding permutation.

The number of q-avoiding n-permutations is denoted by Sn(q).

Let us return to our main task of determining Sn(q) for patterns other

than 132. We start with patterns of length three as the problem is trivial

for shorter patterns.

We claim that Sn(231) = Sn(132). Indeed, note that 231 is precisely

the reverse of 132. So if an n-permutation avoids 132, its reverse avoids
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231, and vice versa. This sets up a natural bijection between the set of

132-avoiding n-permutations, and that of 231-avoiding n-permutations.

We also claim that Sn(312) = Sn(132). To see this, define the comple-

ment of an n-permutation p = p1p2 · · · pn to be the n-permutation p̄ whose

first entry is n+ 1 − p1, whose second entry is n+ 1 − p2, and in general,

whose ith entry is n+ 1− pi. So for example, the complement of 34152 is

32514.

Now observe that 312 is the complement of 132. Moreover, note that if p

avoids 312, then pc avoids 132, and vice versa, proving Sn(312) = Sn(132).

So far he have seen that Sn(132) = Sn(231) = Sn(312). It is easy to

extend this chain of equalities one further. Indeed, 213 is the reverse of

312, so Sn(132) = Sn(231) = Sn(312) = Sn(213).

There are two more patterns of length three, namely 123 and 321. It

is clear by taking reverses, or by taking complements, that Sn(123) =

Sn(321). This leaves us with one last question. Is it also true that

Sn(123) = Sn(132)? If it is, that means that all permutation patterns

of length three are avoided by the same number of n-permutations, and

this number is cn, the nth Catalan number. The answer to this question

is in the affirmative. The proof of this is slightly harder than the previous

symmetry arguments, and is the content of the following Lemma.

Lemma 14.6. For all positive integers n, the equality

Sn(123) = Sn(132)

holds.

We need some machinery before we start proving this Lemma. Recall

that an entry of a permutation which is smaller than all the entries that

precede it is called a left-to-right minimum. Note that the left-to-right

minima of a permutation form a decreasing subsequence. For example,

in the permutation 4531762, the entries 4, 3, and 1 are the left-to-right

minima. Note that the leftmost entry, and the entry 1 are always left-to-

right minima.

Proof. (of Lemma 14.6) We will construct a bijection f from the set

of all 123-avoiding n-permutations onto the set of all 132-avoiding n-

permutations which leaves all left-to-right minima fixed. (This last property

is not needed for the proof of our Lemma, but it will be useful later.)

The bijection f is defined as follows. We take any 123-avoiding n-

permutation p, fix all its left-to-right minima, and remove all the elements

that are not left-to-right minima, leaving their places empty. Then going
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from the left to the right, we put the elements which are not left-to-right

minima into the empty slots between the left-to-right minima so that in

each step we place the smallest element we have not placed yet which is

larger than the previous left-to-right minima. In other words, in each step,

we place the smallest entry that is both available (that is, it is not a left-

to-right minimum) and eligible (that is, it is not smaller than the previous

left-to-right minimum). The reader is invited to verify that there is always

at least one such entry, so the process will never get stuck.

For example, if p = 4 6 5 1 3 2, then the left-to-right minima are the

entries 4 and 1, thus we leave them in the first and fourth positions. The

first empty slot is the second position and we put there the smallest entry

which is larger than 4, that is to say, the entry 5. Similarly, we put 6 to the

third position as it is the smallest of the entries not yet used which is larger

than 4 (in fact, this is the only such entry). Then by the same reasoning

we put 2 into the fifth position and 3 into the sixth position. This way we

get the permutation f(p) = 4 5 6 1 2 3.

Note that f(p) is 132-avoiding, because if there were a 132-pattern in

f(p), then there would be one which starts with a left-to-right minimum,

but that is impossible as elements larger than any given left-to-right mini-

mum and to the right of it are written in increasing order.

The inverse of f is even easier to describe: keep the left-to-right minima

of p fixed and put all the other elements into the empty slots between them

in decreasing order. Note that this procedure will not change the set of left-

to-right minima of p (why?). We obtain a permutation which is the union

of two decreasing subsequences and is therefore 123-avoiding. If we apply

this operation to f(p), then we must get p back, as the left-to-right minima

have not changed, and the other elements must have been in decreasing

order in p, otherwise p would not have been 123-avoiding. This completes

the proof of the lemma. �

Theorem 14.7. Let q be any permutation pattern of length three. Then

for all positive integers n,

Sn(q) = cn =

(

2n
n

)

n+ 1
.

Proof. Lemma 14.6 and the preceding easy symmetry arguments show

that Sn(q) is the same for all patterns q of length three. As we know that

Sn(132) = cn, the statement follows. �

So we can enumerate permutations avoiding a given pattern q if the

length of q is three. However, for longer patterns q, the problem becomes
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harder at a drastic speed. There are very few patterns q such that an exact

formula is known for Sn(q). To see one of the reasons for this, consider

patterns of length four. There are 24 of them, but using reverses, comple-

ments, and some less obvious tricks, one can deduce that there are only

three of them that are really different, namely 1234, 1342, and 1324. Com-

puter calculations provide the following fascinating numerical evidence for

these patterns (the values of Sn(q), for n ≤ 8).

• for Sn(1342): 1, 2, 6, 23, 103, 512, 2740, 15485

• for Sn(1234): 1, 2, 6, 23, 103, 513, 2761, 15767

• for Sn(1324): 1, 2, 6, 23, 103, 513, 2762, 15793.

We see that unlike for patterns of length three, it is no longer true here

that Sn(q) does not depend on q. It also seems that for n ≥ 7,

Sn(1342) < Sn(1234) < Sn(1324).

This is actually true. It is very surprising, and not well understood, that

the monotonic pattern is in the middle of this chain. It would have been

plausible to think that the monotonic pattern is the easiest, or the hardest,

to avoid.

We prove the second part of this inequality. The first part follows from

Exercise 5.

Theorem 14.8. For all n ≥ 7, the inequality Sn(1234) < Sn(1324) holds.

Proof. We are going to classify all permutations of n according to the set

and position of their left-to-right minima and right-to-left maxima. This is

the content of the following definition.

Definition 14.9. Two permutations x and y are said to be in the same

class if

• the left-to-right minima of x are the same as those of y, and

• the left-to-right minima of x are in the same positions as the left-to-

right minima of y, and

• the same holds for the right-to-left maxima.

For example, x = 5 1 2 3 4 and y = 5 1 3 2 4 are in the same class, but

z = 2 4 3 1 5 and v = 2 4 1 3 5 are not, as the third entry of z is not a

left-to-right minimum whereas that of v is.

The outline of our proof is going to be as follows: we show that each

nonempty class contains exactly one 1234-avoiding permutation and at least
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one 1324-avoiding permutation. Then we exhibit some classes which contain

more than one 1324-avoiding permutation and complete the proof.

Lemma 14.10. Each nonempty class contains exactly one 1234-avoiding

permutation.

Proof. Suppose we have already picked a class, that is, we fixed the

positions and values of all the left-to-right minima and right-to-left maxima.

We claim that if we put all the remaining elements into the remaining slots

in decreasing order, then we get a 1234-avoiding permutation.

Indeed, the permutation obtained this way consists of three decreasing

subsequences, that is, the left-to-right minima, the right-to-left maxima,

and the remaining entries. If there were a 1234-pattern in this permutation,

then by the Pigeon-hole Principle two of its entries would be in the same

decreasing subsequence, which would be a contradiction. On the other

hand, if two of these elements, say a and b, were in increasing order, then

together with the rightmost left-to-right minimum on the left of a and the

leftmost right-to-left maximum on the right of b they would form a 1234-

pattern. Finally, if the chosen class is nonempty, then we can indeed write

the remaining numbers in decreasing order without conflicting with the

existing constraints— otherwise the class would be empty. (In other words

it is the decreasing order of the remaining elements that violates the least

number of constraints.) �

Now comes the harder part. Recall that an inversion in a permutation

p = p1p2 · · · pn is a pair (pi, pj) so that i < j but pi > pj.

Lemma 14.11. Each nonempty class contains at least one 1324-avoiding

permutation.

Proof. First note that if a permutation contains a 1324-pattern, then we

can choose such a pattern so that its first element is a left-to-right minimum

and its last element is a right-to-left maximum. Indeed, we can just take

any existing pattern and replace its first (last) element by its closest left

(right) neighbor which is a left-to-right minimum (right-to-left maximum).

Therefore, to show that a permutation avoids 1324, it is sufficient to show

that it does not contain a 1324-pattern having a left-to-right minimum for

its first element and a right-to-left maximum for its last element. (Such

a pattern will be called a good pattern.) Also note that a left-to-right

minimum (right-to-left maximum) can only be the first (last) element of a

1324-pattern.
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Now take any 1324-containing permutation. By the above argument, it

has a good pattern. Interchange its second and third elements. Observe

that we can do this without violating the existing constraints, that is, no

element x goes on the left of a left-to-right minimum y such that x < y,

and no element x goes on the right of a right-to-left maximum z such that

z < x. The resulting permutation is in the same class as the original because

the left-to-right minima and right-to-left maxima have not been changed.

Let us repeat this procedure as long as we can. Note that each step of

the procedure decreases the number of inversions of our permutation by at

least 1. Therefore, we will have to stop after at most
(

n
2

)

steps. Then the

resulting permutation will be in the same class as the original one, but it

will have no good pattern and therefore no 1324-pattern, as we claimed.�

Notation (by example): in what follows, we write a1 ∗ a2 ∗ ∗ b1 for

the class of permutations of length six which have two left-to-right minima,

a1 and a2, which are in the first and third position, and one right-to-left

maximum, b1, which is in the last position.

Finally, we must show that “at least one” in the above lemma does not

always mean exactly one. If n = 7, then the class 3 ∗ 1 ∗ 7 ∗ 5 contains

two 1324-avoiding permutations, 3 6 1 2 7 4 5 and 3 4 1 6 7 2 5. This proves

S7(1234) < S7(1324). For larger n we can extend this example in an easy

way, such as taking the class n (n − 1) · · · 8 3 ∗ 1 ∗ 7 ∗ 5. This shows

that there are more 1324-avoiding permutations than 1234-avoiding ones

and completes the proof of the theorem. �

As we said, there are very few patterns q that are longer than three

so that an exact formula is known for Sn(q). Therefore, even good ap-

proximations or upper bounds for Sn(q) would be interesting. The famous

Stanley–Wilf conjecture claimed that for any pattern q, there exists a con-

stant cq so that Sn(q) ≤ cnq for all n. This conjecture resisted numerous

solution attempts in the last twenty years. Finally, the conjecture has been

proved [30] using a spectacular argument, by Adam Marcus and Gábor

Tardos in 2003. The best possible value of the constant cq is still unknown.

(The Marcus-Tardos proof, beautiful as it is, does not provide a constant

that would seem to be close to the actually needed value of cq.)

In some special cases, however, we can find a small constant cq so that

Sn(q) ≤ cnq for all n. The easiest case is when q is monotonic.

Theorem 14.12. For all positive integers k ≤ n, the inequality

Sn(1234 · · ·k) ≤ (k − 1)2n
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holds.

Proof. Let us say that an entry x of a permutation is of rank i if x is the

top of a rising subsequence of length i, but there is no rising subsequence

of length i + 1 whose top is x. Then for all i, elements of rank i must

form a descending subsequence. Therefore, a q-avoiding permutation can

be decomposed into the union of k− 1 descending subsequences. There are

(k − 1)n ways to partition the elements into k − 1 classes and there are

less than (k − 1)n ways to assign each position to one of the subsequences,

completing the proof. �

Note that this result is completely in line with our earlier results, show-

ing that Sn(123) = cn < 4n.

Additional patterns q for which an exact formula is known for Sn(q)

will be mentioned in the Notes. We conclude this section by presenting a

recursive result. We will need the following definition.

Definition 14.13. Let p ∈ Sa, and q ∈ Sb, with p = p1p2 · · · pa and

q = q1q2 · · · qb. Then the direct sum of p and q is the pattern p⊕ q ∈ Sa+b

where

(p⊕ q)i =







pi if i ≤ a ,

qi−a + a if i > a.

In other words, we increase each entry of q by a before placing q after

p.

Example 14.14. If p = 132 and q = 2431, then p⊕ q = 1325764.

Now we are in a position to announce and prove the recursive result

that we promised.

Theorem 14.15. Let q1 and q2 be patterns so that Sn(q1 ⊕ 1) ≤ cn1 for all

n, and that Sn(1⊕ q2) ≤ cn2 for all n. Then

Sn(q1 ⊕ 1⊕ q2) ≤ (
√
c1 +

√
c2)

2n

for all n.

Example 14.16. Let q1 = 213, and let q2 = 132. Then Exercise 30 and

Theorem 14.12 imply that Sn(q1 ⊕ 1) = Sn(2134) < 9n, and also, Sn(1 ⊕
q2) = Sn(1243) < 9n. Therefore,

Sn(q1 ⊕ 1⊕ q2) ≤ (3 + 3)2n = 36n.
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Proof. (of Theorem 14.15) Let p ∈ Sn be a permutation that avoids

q = q1⊕ 1⊕ q2. Color all entries of p that can play the role of the last (and

largest) entry of a q1 ⊕ 1-pattern red, and color all other entries blue.

Then the string of all red entries must avoid 1⊕ q2. Indeed, if did not,

then any copy C of 1 ⊕ q2 made up by red entries could be turned into a

copy of q by using the entries on the left of C that make the leftmost entry

of C red. (This is the point where we use the structure of q = q1 ⊕ 1⊕ q2,

that is, the property that each entry in the first part is smaller than each

entry in the second part.)

Furthermore, the string of blue entries must be (q1⊕1)-avoiding. Indeed,
if it contained a copy D of that pattern, then the last entry of that pattern

would have to be a red entry, which would be a contradiction.

Therefore, if there are k blue entries and n − k red entries, then there

are at most
(

n
k

)2
ck1c

n−k
2 permutations of length n that avoid q. Indeed,

there are at most
(

n
k

)

possibilities for the set of blue entries, and the same

number of possibilities for the positions of these entries. Summing over all

k, this yields

Sn(q) ≤
n
∑

k=1

(

n

k

)2

ck1c
n−k
2

≤
(

n
∑

k=1

(

n

k

)

√

ck1c
n−k
2

)2

≤ (
√
c1 +

√
c2)

2n.

We have used the fact that the sum of the squares of positive real numbers

is at most as large as the square of their sum, as well as the Binomial

Theorem. �

14.2 Stack Sortable Permutations

The initial setup of our topic for this section sounds similar to the well-

known game of Hanoi towers. Assume we have a permutation p =

p1p2 · · · pn and we want to sort its entries, to get the identity permuta-

tion 12 · · ·n. Our only tool is a stack, a vertical array that can hold entries

in increasing order, that is, the smallest one on top, and the largest one at

the bottom.

The numbers enter the stack in the order in which they occur in the

input permutation p. We take p1, and put it in the stack. Now take p2. If
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p2 < p1, then it is allowed for p2 to go in the stack on top of p1, so we will

put it there. If p2 > p1, however, then first we take p1 out of the stack,

and put it to the first position of the output permutation, and put p2 into

the stack. We continue this way: at step i, we compare pi with the element

r = pai−1
currently on top of the stack. If pi < r, then pi goes on the top of

the stack, if not, then r goes to the leftmost empty position of the output

permutation, and pi gets compared to the new element that is currently on

the top of the stack. The algorithm ends when all n entries passed through

the stack and are in the output permutation s(p). See Figure 14.2 for an

example of this procedure.

Example 14.17. Let p = 2413. Then the stages of our sorting procedure

are shown in Figure 14.2.

      INPUT                                          STACK                                    OUTPUT

2413

413 2

413 2

13 4 2

3
1

4
2

3 214

3
4 21

2134

2134

Fig. 14.2 Sorting 2413.

If the image s(p) of p under this stack sorting operation is the identity

permutation, then we say that p is stack sortable. So the previous example

shows that 2413 is not stack sortable.

Which permutations are stack sortable? To answer this natural ques-

tion, we first analyze the effect of the stack sorting operation s to pairs of
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entries in p.

Proposition 14.18. Let p be a permutation, and let a < b be two entries

of p. Then

(1) if a precedes b in p, then a precedes b in s(p),

(2) if b precedes a in p, and there is no element c located between a and b

in p so that c > b > a, then a precedes b in s(p),

(3) if b precedes a in p, and there is an element c located between a and

b in p so that c > b > a, then b precedes a in s(p). Note that this

happens when the entries a, b, and c form a 231-pattern.

Proof.

(1) As a precedes b in p, a will enter the stack before b. As a < b, this

means that b cannot even enter (let alone, leave) the stack before a

does, so a precedes b in s(p).

(2) In this case the string of p between b and a is a decreasing subsequence

S. The elements of S enter the stack starting with b, then they pile

up on top of each other, with a entering the stack last, and getting

therefore to the top of the stack. So a will be the first element of S to

leave the stack. In particular, a leaves the stack before b, and thus a

precedes b in s(p).

(3) In this case, b has to leave the stack before c enters it. On the other

hand, c has to enter the stack before a does. Therefore, b leaves the

stack before a could even enter it, so b precedes a in s(p).
�

Theorem 14.19. A permutation p is stack sortable if and only if it avoids

the pattern 231.

Proof. If there is a 231-pattern in p, formed by the entries a < b < c,

then part 3 of the previous Proposition shows that b will precede a in s(p),

so s(p) cannot be the identity permutation. If there is no 231-pattern in p,

then any pair a < b of entries falls either into part 1, or into part 2 of the

previous proposition, and will therefore be sorted. �

So most permutations are not stack sortable. To increase the number

of permutations that can be sorted using our stack, we can take s(p), and

pass it through the stack again, following the same rules. If the obtained

permutation s(s(p)) is the identity permutation, then we say that p is two-

stack sortable.
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Two-stack sortable permutations are more difficult to characterize, let

alone enumerate, than stack sortable permutations. One reason for this

difficulty is that the two-stack sortable property is not monotonic. That is,

there are instances when p is two-stack sortable, but a subsequence p′ of p
is not.

Example 14.20. Let p = 35241. Then s(p) = 32145, and s(s(p)) = 12345,

so p is two-stack sortable. Now let p′ = 3241. Then s(p′) = 2314, and

s(s(p′)) = 2134, so p′ is not two-stack sortable.

For this reason, we cannot hope for a characterization of two-stack

sortable permutations by pattern avoidance only. However, we can still

use a similar concept if we stretch the definition of pattern avoidance a

little bit.

Theorem 14.21. A permutation p is two-stack sortable if and only if it

does not contain a 2341-pattern, and it does not contain a 3241-pattern,

except as a part of a 35241-pattern.

Proof. First we prove the “only if” part. Assume entries a < b < c < d

of p form a 2341 pattern. Then it follows from Proposition 14.18 that

entries a, b, and c form a 231-pattern in s(p), implying that s(p) is not

stack sortable.

Now assume that entries w < x < y < z form a 3241-pattern in p that

is not part of a 35241-pattern. Proposition 14.18 then implies that both

x and y precede w in s(p). If there are no entries between x and y in p

that are larger than both of them, then Proposition 14.18 also implies that

x precedes y in s(p), and we are done as w, x, and y form a 231-pattern

in s(p). If there is an entry t between x and y that is larger than both

of them, then, keeping in mind that the 3241-pattern yxzu is not part of

any 35241-pattern, the pattern ytxzu must be a 34251-pattern. However,

that implies that entries y, t, z, and u form a 2341-pattern, and we have

seen in the previous paragraph that such a pattern prevents p from being

two-stack sortable.

Now we prove the “if” part. It suffices to show that if s(p) is not stack

sortable, then p had to contain one of the two forbidden configurations

mentioned in the theorem. If s(p) is not stack sortable, then it contains a

231-pattern. Let e < f < g be the entries of one such pattern. Then by

Proposition 14.18, e was the rightmost of these three entries in p, and there

had to be an entry h in p that separated both f and g from the entry e.

If f preceded g in p, then fghe was a 2341-pattern in p, and we are done.
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If not, then g preceded f in p. We know that f precedes g in s(p), which

implies that there was no entry between g and f in p that was larger than

both of them. So gfhe formed a 3241-pattern in p that was not part of a

35241-pattern, completing the proof. �

The number of two-stack sortable n-permutations is known to be

2

(n+ 1)(2n+ 1)
·
(

3n

n

)

.

This formula has at least four different proofs, all of which are somewhat

complicated.

We can certainly generalize our definitions. We say that a permutation

p is t-stack sortable if st(p) is the identity permutation. In other words,

passing p through the stack t times, we get the identity permutation. Note

that all t-stack sortable permutations will necessarily be u-stack sortable

permutations, for all u > t.

While we are not able to enumerate t-stack sortable permutations, we

will prove several interesting statements concerning them. To that end,

we need to have a deeper understanding of the effects of the stack sorting

operation.

Lemma 14.22. Let p = LnR be an n-permutation, where L denotes the

string on the left of the entry n, and R denotes the string on the right of

the entry n. Then we have

s(p) = s(L)s(R)n.

Proof. As p passes through the stack, first the entries that belong to L

enter the stack. They all leave the stack before n enters, creating s(L) at

the front of the output permutation. Then n enters the stack. Then all the

entries belonging to R pass through the stack, creating s(R) in the output

permutation, while n stays in the bottom of the stack. Finally, n leaves the

stack. �

We mention that the property s(p) = s(L)s(R)n in fact defines the stack

sorting operation. That is, the stack sorting operation is the only operation

defined on all finite permutations that has this property.

Corollary 14.23. All n-permutations are (n− 1)-stack sortable.

Proof. We prove this statement by induction on n. For n = 1, the

statement is trivial. Now suppose the statement is true for n−1, and prove

it for n.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

So Hard To Avoid. Subsequence Conditions on Permutations 327

Let p = LnR be any n-permutation. Lemma 14.22 means in par-

ticular that s(p) always ends with its largest entry, and also, if R is

empty, then s(Ln) = s(L)n. Iterating this, sn−1(p) = sn−2(s(L)s(R)n) =

sn−2(s(L)s(R))n. This latter is the identity permutation as s(L)s(R) is a

permutation of length n− 1, and therefore is (n− 2)-stack sortable by the

induction hypothesis. �

Corollary 14.24. For all n-permutations p, the t-sorted image st(p) ends

in the string (n− t+ 1)(n− t+ 2) · · ·n.

Proof. Immediate by induction on t. �

The property that s(p) = s(L)s(R)n enables us to translate the stack

sorting operation into the language of binary plane trees. If p is an n-

permutation, we associate a rooted tree T (p) to p as follows.

The root of T (p) is a vertex labeled n, the largest entry of p. If a is

the largest entry of p on the left of n, and b is the largest entry of p on the

right of n, then the root will have two children, the left one will be labeled

a, and the right one labeled b. If n was the first (resp. last) entry of p, then

the root will have only one child, and that will be a left (resp. right) child,

and it will necessarily be labeled n− 1 as n− 1 must be the largest of all

remaining elements.

Define the rest of T (p) recursively, by taking T (p′) and T (p′′), where p′

and p′′ are the substrings of p on the two sides of n, and affixing them to

a and b.

Example 14.25. If p = 263498175, then T (p) is the tree shown in Figure

14.3.

9

6

2

3

4

8

1

7

5

Fig. 14.3 The decreasing binary tree of p = 263498175.
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The tree T (p) is called the decreasing binary tree of p. It is indeed a

binary tree, that is, each vertex has 0, 1, or 2 children. We repeat, for

emphasis, that each child is a left child or a right child of its parent, even if

that child is an only child. Given T (p), we can easily recover p by reading T

according to the tree traversal method called in-order. In other words, first

we read the left subtree of T (p), then the root, and then the right subtree

of T (p). We read the subtrees according to this very same rule.

Now let us read the tree T (p) in postorder instead. In other words, let

us first read the left subtree of T (p), then the right subtree of T (p), and

finally the root.

Example 14.26. The tree shown in Figure 14.3 is the decreasing binary

tree of p = 263498175. Read in postorder, it yields the permutation

234615789.

9

6

2

3

4

8

1

7

5

Fig. 14.4 Read in postorder, this tree yields 234615789.

The alert reader might have noted that reading T (p) in postorder we

precisely got the permutation s(p), the image of p under the stack sorting

operation. This is no accident.

Proposition 14.27. Let p be any n-permutation. The decreasing binary

tree T (p) of p, read in postorder, yields the permutation s(p).

Proof. We prove the statement by induction on n, the initial case of

n = 1 being trivial. Assume the statement is true for all positive integers

less than n. Let p = LnR, and let us read T (p) in postorder. We start with

the left subtree, which is in fact T (L). Reading that in postorder, we get
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s(L) by the induction hypothesis. Then we have to read the right subtree,

which is T (R). Reading that in postorder, we get s(R) by the induction

hypothesis. (Both L and R are shorter than p.) Finally, we read the root,

which is n. So we obtain the permutation s(L)s(R)n, and we are done by

Proposition 14.22. �

Recall that we say that i is a descent of the permutation p = p1p2 · · · pn
if pi > pi+1. Similarly, we say that i is an ascent of the permutation p if

pi < pi+1. Let d(p) denote the number of descents of p. Note that if p is

an n-permutation, then n − 1 − d(p) is equal to the number of ascents of

p. Indeed, if i is a descent of p, then i is an ascent of the complement of

p. It follows immediately that there are as many n-permutations with k

descents as there are with n− 1− k descents.

If we consider decreasing binary trees again, it is straightforward to

verify that p has k descents if and only if T (p) has k edges connecting a

vertex to the right child of that vertex.

Let us now enumerate t-stack sortable n-permutations according to their

descents. Let Wt(n, k) be the number of t-stack sortable n-permutations

with k descents. The following table shows the numbers Wt(n, k) for small

values of the parameters.

n=4

t=1

t=2

t=3

n=5

t=1

t=2

t=3

t=4

   k=0           k=1            k=2           k=3             k=4

1 6 6

1 10 10

1

1

1

1

1

111 11

10 1

1

1

1

1020

4920 20

26 2666

25 2562

1

1

Fig. 14.5 The numbers Wt(n, k) for n = 4 and n = 5.

These data seem to suggest that Wt(n, k) = Wt(n, n − 1 − k), for all

positive integers n, k, t. If true, this would be a surprising theorem, as

there seems to be nothing “symmetric” about t-stack sortable permutations,
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these obscure creatures. The complement, or reverse, of a t-stack sortable

permutation does not need to be t-stack sortable (try 213, or 132, with

t = 1), so these easy bijections will not work.

In the rest of this chapter, we prove this nice symmetry. We will also see

the tree interpretation of the stack-sorting operation at work. The following

simple map will be our main tool.

Definition 14.28. Let f be the map defined on all finite permutations as

follows

• f(1) = 1,

• if p is an n-permutation, and p = LnR, and neither L nor R is empty,

then f(p) = f(L)nf(R),

• if p is an n-permutation and p = Ln, then f(p) = nf(L), and

• if p is an n-permutation and if p = nR, then f(p) = f(R)n.

In words, if the maximal entry n is at neither endpoint of p, then we keep

n fixed and apply f recursively on both sides of n. If n is at either endpoint,

then we put n into the opposite endpoint, and apply f recursively. When

we apply f recursively to L and R, then we treat L and R as permutations.

This means that the maximum element of L will take over the role of n

when f(L) is formed, and the maximum element of R takes over the role

of n when f(R) is formed.

Example 14.29. If p = 123, then f(p) = 321. So if p = 4123, then

f(p) = 3214.

Example 14.30. If p = 1423, then f(p) = 1432.

Example 14.31. As a consequence of the preceding examples, if p =

412395867, then f(p) = 321495876.

The following Proposition shows that the effect of f on the number of

descents of a permutation is precisely what we will need.

Proposition 14.32. For any n-permutation p, the equality d(p)+d(f(p)) =

n− 1 holds.

Proof. We prove this claim by induction on n, the initial case being

trivial. First assume that n is at neither endpoint of p, so p = LnR, and

f(p) = f(L)nf(R). Say that n is in the ith position of p. Then we have
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d(p) = d(L) + d(R) + 1, and d(f(p)) = d(f(L)) + d(f(R)) + 1. So

d(p) + d(f(p)) = d(L) + d(R) + 1 + d(f(L)) + d(f(R)) + 1

= (i − 2) + (n− i− 1) + 2 = n− 1,

which was to be proved. We used the facts that d(L)+ d(f(L)) = i− 2 and

d(R) + d(f(R)) = n− i− 1 by the induction hypothesis.

Now let us assume that n is in the last position, and p = Ln. Then

clearly, d(p) = d(L), while d(f(p)) = d(nf(L)) = d(f(L))+1, and the proof

follows by induction. Similarly, if n is in the first position, and p = nR,

then d(p) = d(nR) = 1 + d(R), while d(f(p)) = d(f(R)n) = d(f(R)), and

again, the proof follows by induction. �

Our f maps permutations with k descents into permutations with n−
1−k descents. So that we could use f to prove that the sequence Wt(n, k),

0 ≤ k ≤ n − 1 is symmetric, we must show that f preserves the t-stack

sortable property. The following Lemma is the key element of the proof of

this.

Lemma 14.33. For any permutation p, the equality s(p) = s(f(p)) holds.

Proof. We prove the statement by induction on n, the length of p. The

statement is trivially true if n = 1. Now let us suppose it is true for all

positive integers less than n.

(1) Suppose first that the entry n is at neither end of p, and let p = LnR.

Then

s(p) = s(L)s(R)n = s(f(L))s(f(R))n = s(f(L)nf(R)) = s(f(p)).

(2) Now suppose that the entry n is in the first position, so p = nR. Then

s(p) = s(R)n = s(f(R)n) = s(n(f(R))) = s(f(p)).

(3) Finally, if the entry n is in the last position, so p = Ln, then

s(p) = s(L)n = s(f(L))n = s(n(f(L))) = s(f(p)).

So the statement is true in all cases. Again, we used the facts that

s(L) = s(f(L)) and s(R) = s(f(R)) by the induction hypothesis. �

Corollary 14.34. The permutation p is t-stack sortable if and only if f(p)

is t-stack sortable.

Proof. Both statements are true if and only if the permutation s(p) =

s(f(p)) is (t− 1)-stack sortable. �
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Now the proof of our duality theorem is immediate.

Theorem 14.35. For all positive integers n, k, t, the equality

Wt(n, k) = Wt(n, n− 1− k)

holds.

Proof. Corollary 14.34 and Proposition 14.32 show that f bijectively

maps the set of t-stack sortable n-permutations with k descents onto that

of t-stack sortable n-permutations with n− 1− k descents. �

In order to get a deeper understanding of this proof, let us try to go

through it in terms of decreasing binary trees. A right (left) edge is an edge

between a vertex and its right (left) child. What we want to prove is that

there are as many decreasing binary trees on n vertices corresponding to

t-stack sortable permutations with k right edges as there are with k left

edges.

Our map f takes a tree T (p), and goes through its vertices starting at

the root. If the root has two children, then the two edges adjacent to the

root are unchanged. However, if the root has only a left edge, then the

entire left subtree of the root will be moved to the right of the root and

become its right subtree. Similarly, if the root has only a right edge, then

the entire right subtree of the root will be moved to the left of the root

and become its left subtree. Then we proceed to the vertices immediately

below the root, and apply the same rule. We continue this way until all

vertices have been treated.

This procedure clearly turns vertices with only a left child into vertices

with only a right child. If a vertex had two children in T (p), it will have the

same two children in T (f(p)). This proves again that d(p)+d(f(p)) = n−1

as the number of left edges of T (p) is equal to the number of right edges of

T (f(p)).

To see that s(p) = s(f(p)), we need to show that the trees T (p) and

T (f(p)) yield the same permutation when read in postorder. To see this,

note that if a vertex x has only one child y, then as far as the result of

the postorder reading is concerned, it does not matter whether y is a left

child or a right child of x. In both cases, the postorder reading will first go

through the subtree rooted at y, then go to x. On the other hand, the only

effect of the map f on p is precisely this, that is, f turns each single left

child into a single right child and vice versa. So f has no effect on s(p), as

we have claimed.
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Note that we have proved a little more than we planned. We proved

that each entry x of p has the property that the subtree of T (p) rooted at

x, and the subtree of T (f(p)) rooted at x yield the same result when read

in postorder. Originally we only wanted to prove this for the full trees, that

is, the subtrees of the entry n.

Example 14.36. The decreasing binary trees of p = 356124 and f(p) =

536421 yield the same permutation 351246 when read in postorder. The

same is true for the subtrees of any given entry.

6

5

3

4

2

1

6

5
4

1

23

Fig. 14.6 Trees T (p) and T (f(p)).

Notes

As pattern avoidance is the youngest of all areas covered in this book, it

is also the one whose progress is the fastest. For this reason, this is the

chapter that changed most since the publication of the first edition.

For a more thorough treatment of the topics discussed in this Chapter,

the reader is advised to consult “Combinatorics of Permutations” by the

present author [8], which devotes Chapters 4, 5, and 8 to the subject. Chap-

ter 4 contains the proof of the Stanley-Wilf conjecture, by Adam Marcus

and Gábor Tardos.

We have included several exercises that ask for the number Sn(q1, q2) of

n-permutations avoiding both patterns q1 and q2. Further results on this

subject are available in [9] and [48].

The solution of the Stanley-Wilf conjecture implies that the limit L(q) =
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limn→∞ n
√

Sn(q) exists. This limit provides a good way of measuring the

growth rate of the sequence Sn(q). It was previously conjectured that if

q ∈ Sk, then L(q) ≤ (k − 1)2. However, this conjecture has recently been

disproved [2]. A counterexample is given by the inequality L(1324) > 9.35.

As far as a lower bound is concerned, it is known [24] that L(q) ≥ k2/e3

for all q ∈ Sk.

Exercises

(1) Find a formula for the number of n-permutations that avoid both 132

and 123. We will denote this number by Sn(132, 123).

(2) Find a formula for Sn(132, 231).

(3) Find a formula for Sn(132, 321).

(4) Find a formula for Sn(132, 213).

(5) (+++) Prove that for all positive integers n,

Sn(1342) =
(7n2 − 3n− 2)

2
· (−1)n−1

= +3

n
∑

i=2

2i+1 · (2i− 4)!

i!(i− 2)!
·
(

n− i+ 2

2

)

· (−1)n−i.

(6) (++) Prove that for all positive integers n, we have Sn(1423) =

Sn(2413).

(7) Prove that the number of ways to partition a convex n + 2-gon into

triangles by non-crossing diagonals is cn.

(8) Prove that the number of ways to partition a convex n + 1-gon into

triangles and one quadrilateral by non-crossing diagonals is
(

2n−3
n−3

)

.

(9) (+) Let bn be the number of n-permutations containing exactly one

copy of the pattern 132. Find a recursive formula for bn.

(10) Prove that bn =
(

2n−3
n−3

)

, for all positive integers n ≥ 3, where bn is

defined in the previous exercise.

(11) (+) Let dn be the number of n-permutations containing exactly one

copy of the pattern 123. Prove that dn = 3
n

(

2n
n+3

)

.

(12) Find a formula for Sn(132, 123, 312).

(13) A partition π of [n] having blocks β1, β2, · · · , βk, is called non-crossing

if there are no four elements 1 ≤ a < b < c < d ≤ n so that a, c ∈ βi

and b, d ∈ βj for some distinct blocks βi and βj . Prove that the number

of non-crossing partitions of [n] is cn.

(14) Prove that for k ∈ [n], the number of non-crossing partitions of [n]
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having k blocks is equal to the number of 132-avoiding n-permutations

that have k − 1 descents.

(15) Let N(n, k) be the number of 132-avoiding n-permutations with k left-

to-right minima. Prove that for all k ∈ [n], the equality

N(n, k) = N(n, n+ 1− k)

holds.

(16) (+) For S ⊆ [n− 1], let Permn(S) denote the number of 132-avoiding

n-permutations with descent set S. Let α(S) denote its “reverse com-

plement,” that is, i ∈ α(S)⇐⇒ n−i /∈ S. Prove that for all S ⊆ [n−1],
the equality Permn(S) = Permn(α(S)) holds.

(17) Let n ≥ 3. Find all n-permutations that are not (n− 2)-stack sortable.

(18) Find a necessary condition for a permutation to be t-stack sortable.

(19) Prove that if p does not have t+ 2 entries (not necessarily consecutive

ones) so that rightmost one of them is the smallest, and the one pre-

ceding it is the largest, then p is t-stack sortable. Note that this means

p avoids all t! patterns of length t+ 2 that end in (t+ 2)1.

(20) Let n be an even positive integer. Find all n-permutations p for which

there is no permutation q 6= p so that s(p) = s(q). Here s denotes the

stack sorting operation.

(21) Is it true that an n-permutation is two-stack sortable if and only if

there is at most one entry on the left of the entry n that is larger than

the smallest entry on the right of the entry n?

(22) What is the number of unlabeled binary trees on n vertices? These

trees are similar to decreasing binary trees in that they are rooted,

each vertex has 0, 1, or 2 children, and each child is either a left child

or right child of its parent, even if it is a only child. However, the

vertices are not labeled.

Supplementary Exercises

(23) Prove that for any pattern q, and any positive integers m and n, the

inequality

Sn(q)Sm(q) ≤ Sn+m(q)

holds.

(24) (+) Prove that for any pattern q,

L(q) = lim
n→∞

n
√

Sn(q)
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exists.
(25) Prove that L(132) = 4.
(26) Prove that L(1342) = 8.
(27) (Knowledge of basic definitions from group theory required.) Prove

that if p is a q-avoiding permutation, then p−1 is a q−1-avoiding per-
mutation. Here t−1 denotes the inverse of the n-permutation t in the
symmetric group Sn.

(28) Let p = p1p2 · · · pn be a 132-avoiding permutation. Prove that for all
i ∈ [2, n], the entry pi is a left-to-right minimum if and only if i− 1 is
a descent of p.

(29) Let q1 and q2 be two different patterns of length three. Is it true
that Sn(q1, q2) is always given by one of the formulae computed in
Exercises 1 – 4?

(30) Prove that for all positive integers k ≤ n, the equality

Sn(123 · · ·k) = Sn(123 · · ·k k − 1)

holds.
(31) Find an upper bound for Sn(3124675).
(32) (+) Find the ordinary generating function of the numbers

Sn(1324, 2413).
(33) Let q be any pattern of length k that has exactly one inversion. Prove

that

Sn(q) ≥ Sn(12 · · ·k).

(34) A circular translate of the permutation p = p1p2 · · · pn is a permuta-
tion pipi+1 · · · pnp1p2 · · · pi−1. In other words, we get a circular trans-
late of p by moving any initial segment of p to the end of p.
Find a formula for the number of n-permutations p so that no circular
translate of p contains the pattern 132.

(35) Find a recurrence relation for the sequence an = Sn(132, 4321). Then
use that recurrence relation to prove that for all non-negative integers,

an = 2
(

n

4

)
+
(

n + 1
3

)
+ 1.

(36) (-) Show an example of a permutation of length n2 that contains all n!
patterns of length n. Such a permutation is called an n-superpattern.

(37) (-) Show an example of an n-superpattern of length n2 − n + 1.
(38) (-) Create a word of length n2 − n + 1 over the alphabet [n] that

contains all n! permutations of length n as a subword. (Letters of a
subword do not have to be in consecutive positions.)
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(39) Find a simple characterization for the set of permutations avoiding all
of the patterns 1324, 1423, 2314, 2413, and 3412.

(40) Count the permutations of length n that avoid all five patterns listed
in the previous exercise.

(41)(a) Show an example of a pair of patterns so that for all n ≥ 2, the
number Sn(p, q) is even.

(b) Show that Sn(132) is odd if and only if n = 2k − 1.
(42) Let us assume that we have a computer program that decides whether

a given m-permutation is an n-superpattern or not. We would like to
use this program to find the number of m-permutations that are n-
superpatterns. Let us assume for simplicity that m is odd. Prove that
it suffices to test a suitably chosen set of m!/3 permutations with our
program, and then the number of n-superpatterns of length m can be
deduced.

(43) An unlabeled plane tree is a rooted tree that is embedded in the plane.
Two unlabeled plane trees A and B are considered the same if the
following hold:

(a) the roots of A and B have the same number k of children, denoted
from the left to right by A1, A2, · · · , Ak, and B1, B2, · · · , Bk, and

(b) the subtrees rooted at Ai and Bi are isomorphic as unlabeled plane
trees by this same definition.

Prove that the number of unlabeled plane trees on n+1 vertices is cn.
(44) Prove that there are as many unlabeled plane trees on n + 1 vertices

with k leaves as there are with n + 1− k leaves.
(45) Prove that there are as many non-crossing partitions of [n] with k

blocks as there are with n + 1− k blocks.
(46) Describe the set of permutations p for which no vertex of T (p) has

two children.
(47) Let p and q be two n-permutations so that T (p) and T (q) become

identical if we remove the labels of their vertices. Prove that the
stack-sorting operation has the same effect on p and q. That is, prove
that there is a permutation s so that ps = qs.

(48) A permutation p is called sorted if there is a permutation q so that
s(q) = p. Is p = 61374528 sorted?
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Solutions to Exercises

(1) We claim that Sn(132, 123) = 2n−1, and we are going to prove this by

induction on n. The initial case is trivial. Assume the statement is

true for n− 1. Take any permutation of length n− 1 that avoids both

these patterns. Create two n-permutations from it by adding 1 to all

its entries, then insert a new entry 1 to either its last or its next-to-last

position. Clearly, these two new n-permutations avoid both 132 and

123.

We show that we obtain all n-permutations that avoid both these

pattern by this procedure. We claim that such a permutation must

contain the entry 1 at its last or next-to-last position. Indeed, if

there are two elements on the right of 1, then they must be in either

increasing or decreasing order, and must therefore form either a 123

or a 132 pattern together with the entry 1.

This proves that Sn(132, 123) = 2 · Sn−1(132, 123), and the proof

follows by induction.

(2) Try to construct an n-permutation that avoids both 132 and 231.

Then it is clear that the entry n must be either at the first or at the

last position. Indeed, if there are two elements x and y bracketing

n, then together with n they form either a 231-pattern, or a 132-

pattern. Once n is placed, by similar argument we must place n − 1

either the first or the last empty position. We continue this way,

having two choices at each step. Finally, we have to place 1 into the

only empty spot left. So this procedure can result in 2n−1 different

permutations. All these permutations will look like the letter V , that

is, first they will decrease steadily, then they will increase steadily.

Therefore, all of them will indeed avoid both 132 and 231. So we

proved that Sn(132, 231) = 2n−1.

(3) Let p be an n-permutation avoiding both these patterns. In order to

avoid 132, all entries on the left of n must be larger than all entries

on the right of n. In order to avoid 321, all entries on the right

of n must be in increasing order. Moreover, unless n is in the last

position, all entries on the left of n must be in increasing order, too,

otherwise two of them in decreasing order and any entry on the right of

n would form a 321-pattern. So if n is in the ith position, and i 6= n,

then there is only one such permutation, namely the permutation

(n − i + 1) (n − i + 2) · · · n 1 2 · · · n − i. If n is in the last

position, then n cannot participate in any 132- or 321-patterns, so we
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can prepend it by any (132,321)-avoiding (n − 1)-permutation. This

yields the recurrence Sn(132, 321) = (n − 1) + Sn−1(132, 321), for

n ≥ 2, with the initial condition S1(132, 321) = 1. Solving this, we

get Sn(132, 321) = 1 +
(

n
2

)

.

(4) We claim that Sn(132, 213) = 2n−1. We prove this by induction on

n, the initial case being trivial. Assume the statement is true for all

integers smaller than n.

To avoid 132, all entries on the left of n must be larger than all entries

on the right of n. To avoid 213, all entries on the left of n must be in

increasing order. On the right of n, we must have a permutation that

avoids both 132 and 213. One checks easily that these conditions to-

gether are not only necessary, but also sufficient for an n-permutation

to avoid both 132 and 213.

Now assume n is in the ith position. Then the above conditions give

rise to 2n−i−1 permutations if i < n, and one permutation if i = n.

Indeed, the only freedom we have once the position of n is known is to

permute the elements on the right of n, and the induction hypothesis

says that we can do that in 2n−i−1 different ways.

So Sn(132, 213) = 1 +
∑n

i=1 2
n−i−1 = 2n−1.

(5) This result is due to present author and can be found in Exact enu-

meration of 1342-avoiding permutations. A close link with labeled

trees and planar maps, Journal of Combinatorial Theory, Series A,

80 (1997), 257–272.

(6) This result is due to Zvezdelina Stankova, and can be found in For-

bidden Subsequences, Discrete Mathematics, 132 (1994), 291–316.

(7) Label the vertices of our (n+2)-gon by integers from 1 through n+2 in

increasing order. Let dn be the number of ways to partition a convex

n+2-gon into triangles by non-crossing diagonals, and set d2 = 0. We

are going to find the number of partitions in which i is the smallest

index in [3, n+ 1] so that 1i is a diagonal in our partition π (if there

is such an index).

In this scenario, 2i must be a diagonal π, otherwise the polygon con-

taining 2 would have more than three sides. We have di−3 possibilities

for the part of π that partitions the i − 1-gon 23 · · · i, and we have

dn−i+2 possibilities for the part of π that partitions the n− i+ 4-gon

1i(i + 1) · · · (n + 2). So the number of all possibilities for such a π is

di−3 · dn−i+2.

Let us not forget that it can also happen that such an index i does

not exist. In that case, vertex is not part of any diagonal that is in π,
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so the diagonal 2(n+ 2) must be in π. Then there are dn−1 ways for

the part of π that partitions the (n+ 1)-gon 23 · · · (n+ 2).

Summing over all cases, we get the formula

dn = dn−1 +

n+1
∑

i=3

di−3 · dn−i+2 =

n
∑

j=1

dj−1 · dn−j .

This is identical to the recurrence relation (14.1) that we proved for

132-avoiding permutations, so the proof follows.

(8) By the previous exercise, an (n+ 1)-gon can be triangularized in any

of cn−1 ways, using n− 2 diagonals. The removal of any one of these

n − 2 diagonals forms a quadrilateral from two adjacent triangles.

Further, there are two ways to triangularize this quadrilateral: with

the diagonal we removed and the only other diagonal. Therefore,

each way of partitioning the (n + 1)-gon into one quadrilateral and

n − 3 triangles is yielded by exactly two triangularizations. Hence,

the number of such ways to partition the (n + 1)-gon is the number

of triangularizations multiplied by the number of diagonals that can

be chosen for removal, divided by two. This yields that the number

of all such partitions is

cn−1
n− 2

2
=

1

n

(

2n− 2

n− 1

)

n− 2

2

=
(2n− 2)!(n− 2)

2n(n− 1)!(n− 1)!

=
(2n− 2)!

2n(n− 1)!(n− 1)(n− 3)!

=
(2n− 2)!

2(n− 1)n(n− 1)!(n− 3)!

=
(2n− 3)!

n!(n− 3)!

=

(

2n− 3

n− 3

)

.

This solution is due to Christian Jones (personal communication).

(9) Clearly, b0 = b1 = b2 = 0. Take any n-permutation p and suppose

that the entry n is in the ith position in p. For shortness, call entries

preceding n front entries, and call entries that n precedes back entries.

Then there are three ways p can contain exactly one subsequence S

of type 132.
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(i) When all elements of S are front entries. Then any front entry must

be larger than any back entry for any pair violating this condition

would form an additional 132-subsequence with n. Therefore, the i

largest entries must be front entries n (in fact, these are the entries

n− 1, n− 2, · · · , n− i+1), while the n− i smallest entries must be

back entries (these are the entries 1, 2, · · ·n − i). Moreover, there

can be no subsequence of type 132 formed by back entries. So all

we can do is to take a 132-avoiding permutation on the n− i back

entries in cn−i ways and take a permutation having exactly one

132-subsequence on the i − 1 front entries. This yields bi−1cn−i

permutations of the desired property.

(ii) When all elements of S are back entries. The argument of the

previous case holds here, too, we must only swap the roles of the

front and back entries. Then we get that in this case we have

ci−1bn−i permutations of the desired property.

(iii) Finally, it can happen that the leftmost element x of S is a front

entry and rightmost element z of S is a back entry. This case is

slightly more complicated. Note that here 2 ≤ i ≤ n− 1, otherwise

either the set of front entries or that of back entries would be empty.

First note that there is exactly one pair (x, z) so that x is a front

entry, z is a back entry and x < z. (For any such pair and n

form a 132-subsequence.) This implies that the front entries are

n−1, n−2, · · · , n−i+2, n−i and the back entries are 1, 2, · · · , n−i−
1, n−i+1, the only pair with the given property is (n−i, n−i+1) =

(x, z), and any other front entry is larger than both x and z.

Let us take these entries x and z. Clearly, all 132-subsequences

of the given type must start with x and must end with z. We

claim that the middle entry of S must be n. Indeed, if the middle

element were some other w, then x n z and x w z would both be

132-subsequences. (Recall that x < z and they both are smaller

than any other front entry.) Moreover, we claim that x must be

the rightmost front entry, in other words, it must be in the position

directly on the left of n. Indeed, if there were any entry y between

x and n, then x y z and x n z would both be 132-subsequences for

y is a front entry and thus larger than x and z.

Therefore, all we can do is put the entry n− i in position (i − 1),

then take any 132-avoiding permutation on the first i− 2 elements

in ci−2 ways and take any 132-avoiding permutation on the n − i

back entries in cn−i ways. This gives us ci−2cn−i permutations of
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the desired property.

Summing over all permitted i in each of these three cases we get that

bn =

n−1
∑

i=1

bi−1cn−i +

n−1
∑

i=1

ci−1bn−i +

n−1
∑

i=2

ci−2cn−i. (14.2)

Note that the first two sums are equal for they contain the same

summands. Moreover, we can easily see by (8.19) or the equivalent

(14.1) that the last sum equals cn−1−cn−2. Thus the above recurrence

relation for bn simplifies to

bn = 2 ·
(

n−1
∑

i=1

bi−1cn−i

)

+ cn−1 − cn−2. (14.3)

(10) We prove that the number rn of partitions of a convex (n + 1)-gon

P into triangles and one quadrilateral also satisfies the recurrence

relation (14.3).

(I) First, we consider the case when there is no diagonal going into

1. Then it can be that 2(n + 1) is a diagonal, and the problem is

reduced to one lesser in size, with rn−1 partitions. Or, it can be

that 2(n+1) is not a diagonal, and in that case, vertices 1, 2, n+1

and a fourth vertex i form a quadrilateral. Then, to complete the

partitioning, we have to triangulate the (i − 1)-gon 2 · · · i in ci−3

ways, and the (n−i+2)-gon i(i+1) · · ·n+1 in cn−i ways. Summing

this we get that in this first case there are

rn−1 +

n
∑

i=3

ci−3cn−i = rn−1 + cn−2

different partitions.

(II) Now we look at the case when there is a diagonal going into 1. Let

i be smallest number so that 1i is a diagonal. Again, there are two

cases: the quadrilateral is either in the part 12 · · · i, or in the part

i(i + 1) · · · (n+ 1)1. Let us first handle the second case, as that is

easier. We need to triangulate the part 12 · · · i, without having a

diagonal touching 1 in ci−3 ways, (we have computed this in the

solution of Exercise 7), then partition the i(i+1) · · ·n(n+1)1 part

in rn−i+2 ways.

Let us return to the first case. We have to partition the first part

without having a diagonal touching 1. As we have computed in case
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I, there are ri−2+ci−3 possibilities, then we have to triangulate the

second part in cn−i+1 ways. So here there are

n−1
∑

i=3

ci−3rn−i+2 +

n
∑

i=3

(ri−2 + ci−3)cn−i+1

partitions.

These two cases together yield the following recurrence

rn = cn−1 − cn−2 + 2

n−1
∑

i=3

ci−3rn−i+2,

or, writing j = i− 2, we get

rn = cn−1 − cn−2 + 2

n−3
∑

j=1

cj−1rn−i,

which is equivalent to (14.3) as rk = 0 for k ≤ 3.

Therefore, the sequences {bn} and {n} satisfy the same recurrence

relations, so they must be the same as their initial values are the

same.

(11) This result is due to J. Noonan, and can be found in his article enti-

tled “The number of permutations containing exactly one increasing

subsequence of length three,” Discrete Math. 152 (1996), no. 1-3,

307–313.

(12) Let f(n) = Sn(123, 132, 312). Then in a permutation counted by f(n),

the entry 1 must be in one of the last two positions. If it is in the

last position, then there are f(n − 1) possibilities for the rest of the

permutation. If it is in the next-to-last position, then last position

must contain the entry n, yielding f(n− 2) permutations. This shows

that f(n) = f(n − 1) + f(n − 2), with f(0) = 1 and f(1) = 1. This

recurrence relation has been solved in Exercise 4 of Chapter 8. Recall

that the numbers f(n) are called Fibonacci numbers.

(13) The result of this exercise certainly follows from that of the next one,

but we sketch a direct solution. Let π be a non-crossing partition of

[n], and let B be the block of π that contains the element 1. Let i be

the largest element of B. Then π defines a non-crossing partition on B,

and another one on [n]−B. It is easy to show that this decomposition

leads to the same recurrence relation (14.1) that was satisfied by 132-

avoiding n-permutations.
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(14) This result was first published in [10]. We prove our statement by

finding an appropriate bijection. Let π a non-crossing partition of [n].

We construct the 132-avoiding permutation p = f(π) corresponding

to π as follows. Let k be the largest element of π which is in the

same block of π as 1. Put the entry n of p in the kth position, i.e.,

set pk = n. As p is to be 132-avoiding, this implies that the entries

larger than n − k are on the left of n in p, and the entries smaller

than or equal to n − k are on the right of n. Delete k from π and

apply this procedure recursively, with obvious minor adjustments, to

the restrictions of π to the sets {1, . . . , k−1} and {k+1, . . . , n}, which
are also non-crossing partitions. Namely, if j is the largest element in

the same block as k + 1, we set pj = n − k, so that the restriction

π1 of π to {k + 1, k + 2, . . . , n} yields a 132-avoiding permutation of

{1, 2, . . . , n − k} placed on the right of n in p = f(π). Similarly,

if in the restriction π2 of π to the set {1, 2, . . . , k − 1} the largest

element in the same block as 1 is equal to j, we set pj = n− 1. Thus,

recursively, π2 yields a 132-avoiding permutation which we realize on

the set {n− k+1, n− k+2, . . . , n− 1} and we place it to the left of n

in p = f(π). In other words, with a slight abuse of notation, f(π) is

the concatenation of f(π2), n, and f(π1), where f(π2) permutes the

set {n−k+1, n−k+2, · · · , n−1} and f(π1) permutes the set [n−k].

To see that this is a bijection note that we can recover the maximum

of the block containing the element 1 from the position of the entry n

in p, and then proceed recursively.

For example, If π = ({1, 4, 6}, {2, 3}, {5}, {7, 8}), then f(π) =

64573812.

(15) As the reader is asked to prove in Supplementary Exercise 28, in a

132-avoiding permutation p = p1p2 · · · pn the entry pi is a left-to-

right minimum if and only if either i = 1 or i − 1 is a descent. So

N(n, k) is also the number of 132-avoiding n-permutations with k− 1

descents, and we need to show that this number is equal to the number

N(n, n+ 1 − k) of 132-avoiding n-permutations with n − k descents.

For symmetry reasons, in the last sentence, the words “132-avoiding”

can be replaced by “231-avoiding”, and our claim then immediately

follows from Theorem 14.35 by setting t = 1.

(16) We use induction on n. For n = 1, 2, 3 the statement is true. Now

suppose we know it for all positive integers smaller than n. Denote by

t the smallest element of S, and let p be a 132-avoiding n-permutation

whose descent set is S.
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(a) Suppose that t > 1. Then we have p1 < p2 < · · · < pt and, because

p avoids the pattern 132, the values of p1, p2, . . . , pt are consecutive

integers. So, for given values of p1 and t, we have only one choice

for p2, p3, . . . , pt. This implies

Permn(S) = Permn−(t−1)(S − (t− 1)), (14.4)

where S − (t − 1) is the set obtained from S by subtracting t − 1

from each of its elements.

On the other hand, we have n− t+ 1, n− t+ 2, · · · , n− 1 ∈ α(S),

meaning that in any permutation q counted by Permn(α(S)) the

chain of inequalities qn−t+1 > qn−t+2 > · · · > qn holds. In

order to avoid forming a 132-pattern in q, it has to hold that

(qn−t+2, · · · , qn) = (t− 1, t− 2, · · · , 1). Therefore,
Permn(α(S)) = Permn−(t−1)(α(S)|n− (t− 1)) (14.5)

where α(S)|n − (t − 1) denotes the set obtained from α(S) by re-

moving its last t− 1 elements. Then

Permn−(t−1)(S − (t− 1)) = Permn−(t−1)(α(S)|n− (t− 1))

by the induction hypothesis, so equations (14.4) and (14.5) imply

Permn(S) = Permn(α(S)).

(b) If t = 1, but S 6= [n− 1], then let u be the smallest index which is

not in S. Then again, to avoid forming a 132-pattern, the value of

pu must be the smallest positive integer a which is larger than pu−1

and is not equal to any pi for i ≤ u− 1. So again, we have only one

choice for pu. On the other hand, the largest index in α(S) will

be n− u. Therefore, in permutations q counted by Permn(α(S)),

we must have qn−u = 1 as qn−u must be the rightmost left-to-right

minimum in such permutations, and that is always the entry 1.

However, we have to be careful when we delete the entry pu from p,

and when we delete the entry 1 from q, because these deletions can

have one of two different effects on the descent set of p and q. If the

entries pu−1pupu+1 form a 213-pattern, then deleting pu will result

in losing the first descent of p, while if these entries form a 312-

pattern, then no descent is lost. If the entries qn−u−1qn−uqn−u+1

form a 213-pattern, then deleting qn−u removes the last descent of

q, while if these entries formed a 312-pattern, then no descent is

lost.

In order to use this information to reduce our permutations in size,

we define two subsets S′, S′′ ⊂ [n − 2] as follows. First we define
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S′, the set corresponding to the case when no descents got lost.

Let i ∈ S′ if and only if either i < u and then, by the definition

of u, i ∈ S, or i > u and i + 1 ∈ S. In other words, we decrease

elements larger than u by 1; intuitively, we remove u from [n− 1],

and translate the interval on its right one notch to the left. Note

that |S′| = |S| as we removed u, and u was not a descent anyway.

If we now take α(S′), that will consist of entries j so that j < n−u

and (n − 1) − (j − 1) = n − j /∈ S. So in other words, we simply

remove n − u from [n − 1] (there has been nothing on the right

of n − u in α(S) to translate). Note that |α(S′)| = |α(S)| − 1 as

n− u ∈ α(S).

The set S′′ is the set corresponding to the case when descents are

lost. Therefore, we define i ∈ S′′ if and only if either i < u− 1 and

then, by the definition of u, i ∈ S, or, i > u and i+1 ∈ S. In other

words, we decrease elements larger than u− 1 by 1; intuitively, we

remove u − 1 from [n − 1], and translate the interval on its right

one notch to the left. If we now take α(S′′), that will consist of

entries j so that j < n− u + 1 and (n− 1)− (j − 1) = n− j /∈ S.

Note that |S′′| = |S| − 1, and |α(S′′)| = |α(S)|.
Therefore,

Permn(S) = Permn−1(S
′) + Permn−1(S

′′),

and also

Permn(α(S)) = Permn−1(α(S
′)) + Permn−1(α(S

′′)).

By the induction hypothesis, the right-hand sides of these two equa-

tions agree, and therefore the left-hand sides must agree, too.

(c) Finally, if S = [n − 1], then the statement is trivially true as

Permn(S) = Permn(α(S)) = 1.

So we have shown that Permn(S) = Permn(α(S)) in all cases.

(17) We prove by induction that these are precisely the permutations that

end in the string n1. For n = 3, the statement is true.

Now assume the statement is true for n − 1. Let p = p1p2 · · · pn be

an n-permutation that is not (n− 2)-stack sortable. That means that

sn−2(p) = 21345 · · ·n as Proposition 14.24 implies that sn−2(p) must

end in 345 · · ·n. As each stack sorting operation moves the entry 1

up by at least one notch by Proposition 14.18, it follows that pn = 1.

Similarly, if pn−1 6= n, then during the first stack sorting operation

the entry 1 passes more than one entries, so in n − 2 operations, it

moves ahead more than n− 2 notches. Therefore pn−1 = n.
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To see that all such permutations are good, note that for such a p, we

have s(p) = Ln, where L is an (n − 1)-permutation that ends by the

string (n − 1)1. Therefore, by the induction hypothesis, s(p) is not

(n− 3)-stack sortable, and the proof follows.

This result, and that of the next Exercise, is due to Julian West, who

proved them in his thesis, Permutations with forbidden subsequences;

and, Stack sortable permutations, PHD-thesis, Massachusetts Insti-

tute of Technology, 1990.

(18) Such a permutation p cannot contain the pattern 23 · · · (t + 2)1. If it

did, then the entry a that plays the role of 1 in that 23 · · · (t + 2)1-

pattern could move up only one notch within the string of the entries

of that pattern during each stack-sorting operation. Therefore, after t

operations, it would still be behind the first entry of that pattern.

(19) Let us denote the condition given in the exercise by Ct, and let us

denote the set of the t! patterns discussed in the exercise by Pt.

We are going to prove our claim by induction on t. If t = 1, then the

condition simplifies to the 231-avoiding condition, and the statement

is true. Now suppose it is true for t − 1. Let p be as specified by

the conditions of the theorem. Then s(p) satisfies condition Ct−1.

Indeed, if s(p) contained a pattern q from Pt−1, then it follows from

Proposition 14.18 that p would have to contain a pattern from Pt.

(There had to be something large between the entries playing the role

of t + 1 and 1 in q.) Therefore, s(p) is (t − 1)-stack sortable by the

induction hypothesis, so p is t-stack sortable.

(20) We claim that there are no such permutations. We know by Lemma

14.33 that s(p) = s(f(p)), where f is the map given by Defi-

nition 14.28. On the other hand, Proposition 14.32 shows that

d(p) + d(f(p)) = n − 1. Therefore, if n is even, then one of p and

f(p) must have an odd number of descents, and the other one must

have an even number of descents. So p 6= f(p), while s(p) = s(f(p)).

(21) No, that is not true. A counterexample is 163452. This permutation

is not 2-stack sortable because of the 2341-pattern 3452.

The “only if” part is true. If there are at least two entries on the left

of n that are larger than the entry c located on the right of n, then

let a and b be the leftmost two entries with this property. If a < b,

then abnc is a 2341-pattern, and if b < a, then abnc is a 3241-pattern

that is not part of a 35241-pattern. (There is nothing between a and

b that is larger than c.)

(22) We claim that the number of such trees is the Catalan number cn
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since these trees are in bijective correspondence with 231-avoiding n-

permutations. Indeed, given an unlabeled binary tree B on n vertices,

there is exactly one way to turn it into the decreasing binary tree T (p)

for a 231-avoiding permutation p. In order to see this, note that the

root of B must be labeled n, and, in order to avoid 231-patterns, all

vertices in the left subtree of the root must have smaller labels than

all vertices in the right subtree of the root. So the sets of labels in the

two subtrees are uniquely determined. This argument can be iterated

for the subtrees, until we uniquely determine the label of each vertex.
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Chapter 15

Who Knows What It Looks Like, But

It Exists. The Probabilistic Method

We use the words “likely” or “probable” and “likelihood” or “probability”

every day in informal conversations. While making these concepts abso-

lutely rigorous can be a difficult task, we will concentrate on special cases

when a mathematical definition of probability is straightforward, and con-

forms to common sense.

15.1 The Notion of Probability

Let us assume that we toss a coin four times, and we want to know the

probability that we will get at least three heads. The number of all out-

comes of the four coin tosses is 24 = 16. Indeed, each coin toss can

result in two possible outcomes. On the other hand, the number of fa-

vorable outcomes of our coin tossing sequence is five. Indeed, the five

favorable outcomes, that is, those containing at least three heads, are

HHHH,HHHT,HHTH,HTHH, and THHH . Our common sense now

suggests that we define the probability of getting at least three heads as the

ratio of the number of favorable outcomes to the number of all outcomes.

Doing that, we get that the probability of getting at least three heads is

5/16.

This common sense approach is the basis of our formal definition of

probability. It goes without saying that we will have to be a little more

careful. For instance, the above argument assumed, without mentioning it,

that our coin is fair, that is, a coin toss is equally likely to result in a head

or tail.

Definition 15.1. Let Ω be a finite set of outcomes of some sequence of

trials, so that all these outcomes are equally likely. Let A ⊆ Ω. Then Ω is

349
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called a sample space, and A is called an event. The ratio

P (A) =
|A|
|Ω|

is called the probability of A.

In particular, P is a function that is defined on the set of all subsets of

Ω, and 0 ≤ P (A) ≤ 1 always holds.

There are, of course, circumstances when this definition does not help,

namely when Ω and A are not finite sets. An example of that situation is

to compute the probability that a randomly thrown ball hits a given tree.

As the ball could be thrown in infinitely many directions, and would hit the

tree in an infinite number of cases, the above definition would be useless.

We will not discuss that situation in this book; we will only study finite

sample spaces.

Note that if A and B are disjoint subsets of Ω, then |A∪B| = |A|+ |B|,
and therefore, P (A ∪ B) = P (A) + P (B). In general, we know from the

Sieve formula that |A ∪ B| = |A| + |B| − |A ∩ B|, implying P (A ∪ B) =

P (A)+P (B)−P (A∩B). A generalization of this observation is the following

simple, but extremely useful inequality.

Proposition 15.2. Let A1, A2, · · · , An be events from the same sample

space. Then

P (A1 ∪ A2 ∪ · · · ∪ An) ≤ P (A1) + P (A2) + · · ·+ P (An).

Proof. We simply have to show that

|A1 ∪ · · · ∪An| ≤ |A1|+ · · ·+ |An|.
This is true as the left-hand side counts each element of the sample space

that is part of at least one of the Ai exactly once, while the right-hand side

counts each element of the sample space that is part of at least one of the

Ai at least once. �

The reader has already been subjected to some training in basic enumer-

ation in Chapters 3–7. Most exercises in those chapters can be formulated

in the language of probability. For example, the question “how many six-

digit integers contain the digit 6” can be asked as “what is the probability

that a randomly chosen six-digit integer contains the digit 6”. Therefore,

we do not cover these basic questions again here. Instead, we close this

section by two examples that show how counterintuitive probabilities can

be.
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Example 15.3. In one of the lottery games available in Florida, six num-

bers are drawn from the set of numbers 1, 2, · · · , 36. What is the probability

that a randomly selected ticket will contain at least one winning number?

Some people tend to answer 6
36 = 1

6 to this question. They are wrong.

That answer would be correct if only one number were drawn. Then the

number of favorable outcomes would indeed be six, and the number of all

outcomes would indeed be 36. However, when six numbers are drawn, the

situation is more complicated.

Solution. (of Example 15.3) Let A be the event that a ticket contains

at least one winning number, and let B be the event that a ticket does

not contain any winning number. Then clearly, A and B are disjoint, and

A ∪ B = Ω, so P (A) + P (B) = 1. Therefore, it suffices to compute P (B).

For a ticket not to contain any winning numbers, it has to contain six non-

winning numbers. The number of ways that can happen is
(

30
6

)

. Therefore,

P (A) = 1− P (B) = 1−
(

30
6

)

(

36
6

) = 1− 0.3048 = 0.6952.

So with almost 70 percent probability, a randomly chosen ticket will contain

at least one winning number! No wonder you must have more than one

winning number to actually win a prize.

Note that when A and B are two disjoint events, then we say that A

and B are mutually exclusive. In other words, it is not possible that A and

B happen together. If, in addition, we also have A ∪ B = Ω, then we say

that B is the complement of A. We denote this by writing Ā = B.

Example 15.4. Forty people are present at a party, and there is nobody

among them who was born on February 29. Adam proposes the following

game to Bill. Each guest writes his or her birthday (just the day and month,

not the year) on a piece of paper. If there are two pieces of paper with the

same date on them, then Adam wins, if not, then Bill wins. When Bill

heard this proposal, he looked around, and said “Fine, there are only forty

people here, much less than the number of days in a year, so I am bound

to win.” What do we think about Bill’s argument?

Solution. The problem with Bill’s argument is that he fails to note the

difference between one hundred percent probability and more than fifty

percent probability. If we want to be one hundred percent sure that there

will be two people in the room having the same birthday, then we would
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indeed need 366 people to be present. To have more than fifty percent

chance is an entirely different issue.

In what follows, we prove that if there are at least 23 people at the party,

then Adam, not Bill, has more chance of winning this game. In order to

prove this, it is clearly sufficient to provide a proof for the case when there

are exactly 23 people at the party as any additional person just improves

Adam’s chances.

Let us compute the probability that there are no two people at the party

who have the same birthday. For that to happen, the first person’s birthday

can be any of the 365 possible days of the year, that of the second person

could be any of 364 days, and so on. So the number of favorable outcomes

is (365)23. On the other hand, the number of all outcomes is obviously

36523. Therefore, the probability that there are no two people in the room

whose birthdays coincide is
365 · 364 · · · · · 343

36523
=

364 · 363 · · ·343
36522

<
1

2
.

Therefore, the probability that there are two people at the party who do

have the same birthday is more than one half.

Finally, we point out that the condition that nobody was born on Febru-

ary 29 was only included to make the situation simpler. Indeed, February

29 exists only in leap-years, so the chance of being born on that day is 1/4

of the chance of being born on any other given day. That would make the

outcomes in our sample space not equally likely, contradicting the definition

of sample space. We could help this by changing our sample space from the

365-element set of dates in a year to the set of 4 · 365 + 1 = 1461 days of a

4-year cycle. That would make computations a little bit more cumbersome.

15.2 Non-constructive Proofs

If there are balls in a box, and we know that the probability that a randomly

selected ball is blue is more than 0, then we can certainly conclude that

there is at least one blue ball in the box. This thought seems utterly simple

at first sight, but it has proved to be extremely useful in existence proofs

as the following examples show.

Recall that in Chapter 13, we defined the symmetric Ramsey number

R(k, k). For easy reference, this was the smallest positive integer so that if

we 2-color the edges of the complete graph on R(k, k) vertices, we always

get a Kk subgraph whose edges are all the same color.
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Now we are going to find a lower bound for R(k, k) by proving that

R(k, k) > 2k/2. Let us take a closer look at the statement to be proved.

What it says is that if G is a complete graph on 2k/2 vertices, then it is

possible to 2-color the edges of G so that no monochromatic copy of Kk

is formed. When we proved similar statements in Chapter 13, showing

that R(3, 3) > 5, or R(4, 4) > 17, we proved them by actually providing a

coloring of K5 or K17 that indeed did not contain the required monochro-

matic copies. However, this was more than what we strictly needed to do.

To prove R(k, k) > 2k/2, it suffices to prove that it is possible to 2-color

the edges of G so that no monochromatic copy of Kk is formed; it is not

necessary to actually find such a coloring. We will shortly see how big a

difference this is.

Theorem 15.5. For all positive integers k ≥ 3, the inequality R(k, k) >

2k/2 holds.

Proof. Let G = Kn, and let us color each edge of G red or blue as

follows. For each edge, flip a coin. If we get a head, we color that edge

red, otherwise we color that edge blue. This way each edge will be red with

probability one half, and blue with probability one half. We are going to

show that the probability p that we get no monochromatic Kk-subgraphs

in G this way is more than zero. On the other hand, p = |F |
|Ω| , the number

of favorable outcomes divided by the number of all outcomes, where Ω is

the set of all possible 2-colorings of the edges of a complete graph on n

vertices. So p > 0 implies that there is at least one favorable outcome, that

is, there is at least one Kn with 2-colored edges that does not contain any

monochromatic Kk-subgraphs.

Instead of proving that p > 0, we will prove that 1− p < 1, which is an

equivalent statement. Note that 1−p is the probability that we get at least

one monochromatic subgraph in our randomly colored graph G = Kn.

The number of ways to 2-color the edges of a given Kk-subgraph of Kn

is clearly 2(
k
2) as there are two choices for the color of each edge. Out of

all these colorings, only two will be monochromatic, one with all edges red,

and one with all edges blue. Therefore, the probability that a randomly

chosen Kk-subgraph is monochromatic is

2

2(
k
2)

= 21−(
k
2).

The graph Kn has
(

n
k

)

subgraphs that are isomorphic to Kk. Each of

them has the same chance to be monochromatic. On the other hand, the
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probability that at least one of them is monochromatic is at most the sum

of these
(

n
k

)

individual probabilities, by Proposition 15.2. In other words,

if AS denotes the event that the Kk-subgraph S of G has monochromatic

edges, then

P

(

⋃

S

AS

)

≤
∑

S

P (AS) =

(

n

k

)

21−(
k
2), (15.1)

where S ranges through all Kk-subgraphs of G. Now let us assume, in

accordance with our criterion, that n ≤ 2k/2. Then the last term of (15.1)

can be bounded as follows.
(

n

k

)

21−(
k
2) <

nk

k!
· 21−(k2) ≤ 2 · 2k2/2

k!2(
k
2)

= 2 · 2
k/2

k!
< 1,

for all k ≥ 3. The last inequality is very easy to prove, for example by

induction. �

We have seen in Chapter 13 that R(k, k) ≤ 4k. Our latest result shows

that (
√
2)k < R(k, k). These are essentially the best known results on the

size of R(k, k), so there is a lot of progress to be made on Ramsey numbers.

Theorem 15.6. Let n and m be two positive integers larger than 1, and

let m ≥ 2 log2 n. Then it is possible to color each edge of Kn,n red or blue

so that no Km,m-subgraph with monochromatic edges is formed.

Proof. The number of ways to 2-color the edges of a given Km,m sub-

graph of Kn,n is 2m
2

, and two of these colorings result in monochromatic

subgraphs. Therefore, the probability that at least one monochromatic

Km,m is formed is at most
(

n
m

)2
21−m2

. Therefore, all we have to prove is

(

n

m

)2

21−m2

< 1,

that is,

2

(

n

m

)2

< 2m
2

.

To see this, we insert two intermediate expressions as follows.

2

(

n

m

)2

< n2m ≤ (2m/2)2m = 2m
2

,

where the second inequality is a simple consequence of the relation between

n and m. �
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Another way to formulate this same theorem is as follows. If m ≥
2 log2 n, then there exists a matrix of size n× n whose entries are either 0

or 1 having no m×m minor that consists of zeros only, or of ones only.

What is amazing about this result is that nobody knows how to construct

that matrix, or how to color the edges of Kn,n so that the requirements are

fulfilled. In fact, the gap between what we can do and what we know is

possible is rather large. The best construction known to this day for an

n × n matrix with zeros and ones, and not having m × m homogeneous

minors works for m = c
√
n, where c is a constant. This is much more than

what we know is true, that is, m = 2 log2 n.

15.3 Independent Events

15.3.1 The Notion of Independence and Bayes’ Theorem

Let us throw two dice at random. Let A be the event that the first die

shows six, and let B be the event that the second die shows six. It is

obvious that P (A) = P (B) = 1/6, and P (A ∩ B) = 1/36. We see that

P (A)·P (B) = P (A∩B), and start wondering whether this is a coincidence.

Now let us pick a positive integer from [12] at random. Let C be the event

that this number is divisible by two, let D be the event that this number

is divisible by three, and let F be the event that this number is divisible

by four. Then P (C) = 1/2, P (D) = 1/3, and P (F ) = 1/4. Furthermore,

P (C∩D) = 1/6, and P (D∩F ) = 1/12, so the “product rule” seems to hold.

However, P (C ∩ F ) = P (F ) = 1/4 6= P (A)P (B), breaking the “product

rule”.

Why is it that sometimes we find P (A) · P (B) = P (A ∩B), and some-

times we find P (A) · P (B) 6= P (A ∩ B)? As you have probably guessed,

this is because sometimes the fact that A occurs makes the occurrence of

B more likely, or less likely, and sometimes it does not alter the chance

that B occurs at all. For example, if we choose an integer from 1 to 12,

then the fact that it is divisible by two certainly makes it more likely that

it is also divisible by four. Indeed, the number of all possible outcomes

decreases from 12 to six, while that of favorable outcomes does not change.

On the other hand, the fact that our number is divisible by two does not

change its chances to be divisible by three. Indeed, the number of all out-

comes decreases from 12 to six, but the number of favorable outcomes also

decreases, from four to two.

This warrants the following two definitions.
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Definition 15.7. If A and B are two events from the same sample space

Ω, and P (A ∩ B) = P (A) · P (B), then A and B are called independent

events. Otherwise they are called dependent.

Definition 15.8. Let A and B be events from the same sample space, and

assume P (B) > 0. Let

P (A|B) =
P (A ∩B)

P (B)
.

Then P (A|B) is called a conditional probability, and is read “the probability

of A given B”.

That is, P (A|B) is the probability of A given that B occurs. The following

proposition is now immediate from the definitions.

Proposition 15.9. The events A and B are independent if and only if

P (A|B) = P (A) holds.

In other words, A and B are independent if and only if the occurrence

of B does not make the occurrence of A any more likely, or any less likely.

Example 15.10. We toss a coin four times. We are not allowed to see the

results, but we are told that there are at least two heads among the results.

What is the probability that all four tosses resulted in heads?

Solution. Let A be the event that all four tosses are heads, and let B

be the event that there are at least two heads. Then A ∩ B = A, so

P (A|B) = P (A)/P (B). As the probability of getting a head at any one

toss is 1/2, we have P (A) = 1
24 = 1

16 . There is 1/16 chance to get four

heads, 4/16 chance to get three heads and one tail, and 6/16 chance to get

two heads, two tails. Therefore, P (B) = 11
24 , and P (A|B) = 1/11.

Example 15.11. Let p = p1p2 · · · pn be a randomly selected n-

permutation. Let A be the event that p1 > p2, and let B be the event

that p2 > p3. Compute P (A|B), and decide if A and B are independent.

Solution. Clearly, P (A) = P (B) = 1/2 as can be seen by reversing the

relevant pair of entries. On the other hand, A ∩ B is the event that p1 >

p2 > p3, which occurs in 1/6 of all permutations. Therefore,

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/2
=

1

3
6= P (A),

so A and B are not independent.
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Your reaction to the previous example was probably something along

the lines “Of course. If p1 > p2, then p2 is smaller than normal, so it

is less likely than normal that p2 > p3.” While that argument works in

this case, one should be extremely careful when injecting intuition into

arguments involving conditional probabilities. The following example is a

striking instance of this.

Example 15.12. A University has two colleges, the College of Liberal Arts,

and the College of Engineering. Each college analyzed its own admission

record and each college found that last year, a domestic applicant to the

college had a larger chance to be admitted than an international applicant.

Can we conclude that the same is true for the entire university? (In this

example, we assume that applicants can only apply to one college.)

Solution. No, we cannot. A counterexample is shown in Figure 15.1.

Domestic

International

Applied:   120
applicants

applicants

Entire
UniversityLiberal Arts        Engineering

Admitted: 10 Admitted:  10 Admitted: 20

Applied:   130Applied:    10

Applied:   15

Admitted:  1

Applied:    115

Admitted:    91Admitted:    90

: 15.9%

success rate : 79.1%success rate:90% success rate:6.7%

success rate:8.3% success rate: 100% success rate 

Applied:    100

Fig. 15.1 Not all that glitters is gold.

How is this very counterintuitive fact called Simpson’s paradox possible?

Some people do not believe it even when they see it with their own eyes.

An imprecise, but conceptually correct, explanation is this. A much larger

portion of the international applicants applied to Engineering, where the

general rate of acceptance was higher. While it is true that the domestic



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

358 A Walk Through Combinatorics

students had an even higher acceptance rate in that college, it concerned

only eight percent of all domestic applicants, versus more than 85 percent

of international applicants. In other words, more than 85 percent of all

international applicants got into Engineering, whereas less than 16 percent

of all domestic applicants did. This is a huge difference, and the College of

Liberal Arts, with relatively few applicants, cannot make up for that.

In order to find a more precise explanation, we will need Bayes’ Theo-

rem.

Theorem 15.13. [Bayes’ Theorem] Let A and B be mutually exclusive

events so that A ∪B = Ω. Let C be any event. Then

P (C) = P (C|A) · P (A) + P (C|B) · P (B). (15.2)

In other words, the probability of C is the weighted average of its con-

ditional probabilities, where the weights are the probabilities of the condi-

tions.

Proof. (of Theorem 15.13) As A and B are mutually exclusive, A ∩ C

and B ∩ C are disjoint, and since A ∪ B = Ω, their union is exactly C.

Therefore,

P (C) = P (C ∩A) + P (C ∩B),

and the proof follows as the first (resp. second) member of the right-hand

side agrees with the first (resp. second) member of the right-hand side of

15.2. �

Now we are in a position to provide a deeper explanation for Example

15.12. Let A1 (resp. B1) be the event that an international (resp. domestic)

applicant applies to the College of Liberal Arts, and define A2 and B2

similarly, for the College of Engineering. Let C1 (resp. C2) be the event that

an international (resp. domestic) applicant is admitted to the university.

Then Theorem 15.13 shows that

P (C1) = P (C1|A1) · P (A1) + P (C1|B1) · P (B1),

and

P (C2) = P (C2|A2) · P (A2) + P (C2|B2) · P (B2).

The criterion requiring that domestic students have larger chances to get

accepted by any one college ensures that P (C1|A1) < P (C2|A2), and

P (C1|B1) < P (C2|B2). It does not, however, say anything about P (A1)

and P (B1). (We know that A2 is the complement of A1, and B2 is the
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complement of B1.) Therefore, we can choose A1 and B1 so that it is very

advantageous for P (C1), and very bad for P (C2). We can do this by choos-

ing P (A1) to be large if P (C1|A1) is large, and by choosing P (A1) small if

P (C1|A1) is small. Similarly, we can choose P (A2) to be large if P (C2|A2)

is small, and vice versa.

In other words, weighted averages are a lot harder to control than

unweighted averages. Indeed, if we impose the additional condition that

P (A1) = P (B1) = 1/2, or even only the condition P (A1) = P (B1), then

the domestic students would have a greater chance to be admitted to the

university.

The reader is asked to solve Exercise 33 at this point. That exercise

shows a typical example when Bayes’ theorem solves a problem that does

not seem to be simple at the first sight, and whose results are important

and counter-intuitive.

15.3.2 More Than Two Events

It is not obvious at first sight how the independence of three or more events

should be defined. We could require the equality P (A1 ∩ A2 ∩ · · · ∩ An) =

P (A1) ·P (A2) · · · · ·P (An). This, in itself, is not a very strong requirement,

however. It holds whenever P (A1) = 0, no matter how strongly the other

variables depend on each other. In order to have some more local conditions,

we can impose the requirements that P (Ai∩Aj) = P (Ai)P (Aj) for all i 6= j.

However, consider the following situation.

We select a positive integer from [10] at random. Let A be the event

that this number is odd. Now let us select an integer from [20] at random,

and let B be the event that this number is odd. Finally, let C be the event

that the difference of the two selected integers is odd.

It is then not difficult to verify that P (A) = P (B) = P (C) = 1/2, and

also the events A, B, and C are pairwise independent, that is, any two of

them are independent. However, P (A ∩ B ∩ C) = 0 6= P (A)P (B)P (C) =

1/8. Therefore, we do not want to call these events independent, either.

We resolve these possible problems by requiring a very strong property

for a set of events to be independent.

Definition 15.14. We say that the events A1, A2, · · · , An are independent

if, for any nonempty subset S = {i1, i2, · · · , ik} ⊆ [n], the equality

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1 ) · P (Ai2 ) · · · ·P (Aik )

holds.
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We close this section by mentioning that Theorem 15.13 is easy to gen-

eralize to more than two conditions.

Theorem 15.15. [Bayes’ Theorem, General Version] Let A1, A2, · · · , An

be events in a sample space Ω so that A1∪A2∪· · ·∪An = Ω, and Ai∩Aj = ∅
if i 6= j. Let C ⊂ Ω be any event. Then

P (C) =

n
∑

i=1

P (C|Ai)P (Ai).

Proof. Analogous to that of Theorem 15.13. �

15.4 Expected Values

A random variable is a function that is defined on a sample space Ω, and

whose range is a set of numbers. For example, if Ω is the set of all graphs

on n labeled vertices, we can define the random variable X by setting X(G)

to be the number of edges of G, or we can define the random variable Y by

setting Y (G) to be the number of connected components of G.

Just as for functions, we can define the sum and product of random

variables over the same sample space the usual way, that is, (X + Y )(u) =

X(u) + Y (u), and (X · Y )(u) = X(u) · Y (u).

Possibly the most important and useful parameter of a random variable

is its expected value, or, in other words, expectation, or average value, or

mean.

Definition 15.16. Let X : Ω → R be a random variable so that the set

S = {X(u)|u ∈ Ω} is finite, that is, X only takes a finite number of values.

Then the number

E(X) =
∑

i∈S

i · P (X = i)

is called the expected value, or expectation of X on Ω.

Here, and throughout this chapter, P (X = i) is the probability of the

event that X(u) = i. That is,

P (X = i) =
|{u ∈ Ω|X(u) = i}|

|Ω| .

In other words, E(X) is the weighted average of all values X takes, with

the weights being equal to the probability of X taking the corresponding

value.
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Remarks. Some probability variables can be defined over many differ-

ent sample spaces. Our above example, the number of edges of a graph,

can be defined not just over the space of all graphs on n vertices, or all con-

nected graphs on n vertices, but also on all graphs on at most 3n vertices,

and so on. In each case, the set S = {X(u)|u ∈ Ω} is different, therefore

the expectation of X is also different. Therefore, if there is a danger of con-

fusion, we write EΩ(X), to denote where the expectation is taken. If there

is no danger of confusion, however, we will only write E(X), to alleviate

notation.

Sometimes we announce both Ω and X in the same sentence as in “let

X(G) be the number of edges of a randomly selected connected graph G

on n vertices.” This means that Ω is the set of all connected graphs on n

vertices, and X(G) is the number of edges of the graph G ∈ Ω.

It is possible to define the expectation of X in some cases when the set

S = {X(u)|u ∈ Ω} is not finite. If S is a countably infinite set, we can

define E(X) =
∑

i∈S i · P (X = i) as long as this infinite sum exists. See

Exercise 4 for an example. If S is not countable, the summation may be

replaced by integration. Details can be found in any probability textbook.

Definition 15.17. The random variables X and Y are called independent

if for all s and t, the equality

P (X = s, Y = t) = P (X = s)P (Y = t)

holds.

15.4.1 Linearity of Expectation

For any real number c, we can define the random variable cX by setting

cX(u) = c(X(u)) for all u ∈ Ω. The following innocent-looking theorem

proves to be extremely useful in enumerative combinatorics.

Theorem 15.18.

(1) Let X and Y be two random variables defined over the same space Ω.

Then

E(X + Y ) = E(X) + E(Y ).

(2) Let X be a random variable, and let c be a real number. Then

E(cX) = cE(X).
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So “taking expectations” is a linear operator. The best feature of this

theorem is that it does not require thatX and Y be independent! No matter

how deeply X and Y are intertwined, nor how hard it is to compute, say,

the probability that X = Y , the expected value of X + Y is always given

by this simple formula. This is why linearity is the most useful property of

expectation, and is applied to a very wide array of problems.

Proof. (of Theorem 15.18)

(1) Let x1, x2, · · · , xn be the values that X takes with a positive probabil-

ity, and let y1, y2, · · · , ym be the values that Y takes with a positive

probability. Then

E(X + Y ) =

n
∑

i=1

m
∑

j=1

(xi + yj)P (X = xi, Y = yj)

=

n
∑

i=1

m
∑

j=1

xiP (X = xi, Y = yj)

+

n
∑

i=1

m
∑

j=1

yjP (X = xi, Y = yj)

=
n
∑

i=1

xiP (X = xi) +
m
∑

j=1

yjP (Y = yj)

= E(X) + E(Y ).

(2) Let r ∈ Ω, then by definition (cX)(r) = cX(r). So if x1, x2, · · · , xn is

the range of X , then P (cX = cxi) = P (X = xi). Therefore,

E(cX) =

n
∑

i=1

cxi · P (cX = cxi) = c

n
∑

i=1

xiP (X = xi) = cE(X).

�

In order to be able to better appreciate the surprising strength of The-

orem 15.18, let p = p1p2 · · · pn be an n-permutation, and let us say that i

is a valley if pi is smaller than both of its neighbors, that is pi < pi−1, and

pi < pi+1. We require 2 ≤ i ≤ n− 1 for i to be a valley.

Theorem 15.19. Let n ≥ 2 be a positive integer. Then on average, a

randomly selected permutation of length n has (n− 2)/3 valleys.

Without Theorem 15.18, this would be a painful task. We would have

to compute the number v(j) of n-permutations with j valleys for each j, (a
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difficult task), then we would have to compute
∑

j j ·
v(j)
n! . Theorem 15.18,

however, turns the proof into a breeze.

Proof. (of Theorem 15.19) Take n − 2 different probability variables

Y2, Y3, · · · , Yn−1, defined on the set of all n-permutations as follows. For an

n-permutation p, let Yi(p) = 1 if i is a valley, and let Yi(p) = 0 otherwise.

Then for 2 ≤ i ≤ n− 1, every pi has a 1/3 chance to be the smallest of the

set {pi−1, pi, pi+1}. Therefore,

E(Yi) =
1

3
· 1 + 2

3
· 0 =

1

3
.

Define Y = Y2 + Y3 + · · ·+ Yn−1. Then Y (p) is the number of valleys of p.

Therefore, Theorem 15.18 implies

E(Y ) =
n−1
∑

i=2

E(Yi) = (n− 2) · E(Y1) =
n− 2

3
.

�

Variables similar to Yi, that is, variables that take value 1 if a certain

event occurs, and value 0 otherwise, are called indicator (random) variables.

Theorem 15.20. The expected value of the number of fixed points in a

randomly selected n-permutation is 1.

Proof. We define n different probability variables X1, X2, · · · , Xn on the

set of all n-permutations as follows. For an n-permutation p, let Xi(p) = 1

if pi = i, that is, when p has a fixed point at position i, and let Xi(p) = 0

otherwise.

As pi is equally likely to take any value j ∈ [n], it has a 1/n chance to

be equal to i. Therefore,

E(Xi) =
1

n
· 1 + n− 1

n
· 0 =

1

n
,

for all i ∈ [n]. Now define X = X1 +X2 + · · ·+Xn; then X(p) is precisely

the number of fixed points of p. On the other hand, applying Theorem

15.18, we get

E(X) =

n
∑

i=1

E(Xi) = n · E(X1) = n · 1
n
= 1, (15.3)

which was to be proved. �
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15.4.2 Existence Proofs Using Expectation

It is common sense that the average of a set of numbers is never larger than

the largest of those numbers. This is true for weighted averages as well as

the following theorem shows.

Theorem 15.21. Let X : Ω → R be a random variable so that the set

S = {X(u)|u ∈ Ω} is finite, and let j be the largest element of S. Then

j ≥ E(X).

Proof. Using the definition of E(X),

E(X) =
∑

i∈S

i · P (X = i) ≤ j
∑

i∈S

P (X = i) = j.
�

We present two applications of this idea. The first shows that a simple

graph will always contain a large bipartite subgraph.

Theorem 15.22. Let G be a simple graph with vertex set [n], and m edges.

Then G contains a bipartite subgraph with more than m/2 edges.

Proof. Let us split the vertices of G into two disjoint nonempty subsets

A and B. Then A and B span a bipartite subgraph H of G. (We remove

the edges within A and within B.) Let Ω be the set of 2n−1 − 1 different

bipartite subgraphs we get this way. Let X(H) be the number of edges in

H .

On the other hand, let us number the edges of G from one through m,

and let Xi = 1 if the edge i has one vertex in A, and one in B, and let

Xi = 0 otherwise.

What is P (Xi = 1)? By our definitions, we can get a subdivision of [n]

leading toXi = 1 by first putting the two endpoints of the edge i to different

subsets, then splitting the remaining (n − 2)-element vertex set in any of

2n−2 ways. Therefore, P (Xi = 1) = 2n−2

2n−1−1 , and P (Xi = 0) = 2n−2−1
2n−1−1 .

This implies

E(Xi) = 0 · P (Xi = 0) + 1 · P (Xi = 1) =
2n−2

2n−1 − 1
>

1

2
.

We can repeat this argument for all edges. Then we note that X = X1 +

X2 + · · ·+Xm, so Theorem 15.18 implies

E(X) =
m
∑

i=1

E(Xi) = m · E(X1) >
m

2
.

As the expected value of the number of edges in these bipartite subgraphs

of G is more than m/2, it follows from Theorem 15.21 that there is at least

one bipartite subgraph of G with more than m/2 edges. �
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The next example is related to a well-known problem in complexity

theory, the so-called “Betweenness problem”.

Example 15.23. We are given a list L = (L1, L2, · · · , Lk) of ordered triples

Li = (ai, bi, ci), so that for any i, the numbers ai, bi, and ci are distinct

elements of [n]. It is possible, however, that symbols with different indices

i and j denote the same number.

Let p = p1p2 · · · pn be an n-permutation. We say that p satisfies Li if

the entry bi is between ai and ci in p. (It does not matter whether the order

of these three entries in p is aibici or cibiai.)

Prove that there exists an n-permutation p that satisfies at least one

third of all Li in any given list L.

Solution. Let Yi be the indicator variable of the event that a randomly

chosen n-permutation satisfies Li. Then P (Yi = 1) = 1
3 as each of ai, bi

and ci has the same chance to be in the middle. Therefore, E(Yi) = 1
3 .

Now if Y =
∑k

i=1 Yi, then Y is the number of Li in L that are satisfied by

p. Theorem 15.18 then implies

E(Y ) =

k
∑

i=1

E(Yi) =
k

3
,

and our claim follows from Theorem 15.21.

15.4.3 Conditional Expectation

Another way of computing the expectation of a variable is by using condi-

tional expectations. The conditional expectation E(X |A) is the expected

value of X given that event A occurs. Accordingly, E(X |A) is defined by re-

placing the absolute probabilities in the definition of E(X) by probabilities

conditional on the occurrence of A. In other words,

E(X |A) =
∑

i

i · P (X = i|A),

where i ranges through all values X takes with a positive probability, given

that A occurs.

We can then extend Theorem 15.15 to expectations as follows.

Theorem 15.24. Let X be a random variable, and let A1, A2, · · · , An be

events in a sample space Ω so that A1∪A2 ∪· · ·∪An = Ω, and Ai∩Aj = ∅
if i 6= j. Then

E(X) =

n
∑

i=1

E(X |Ai)P (Ai).
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Proof. This follows immediately from Theorem 15.15. Just let C be the

event X = j in that theorem. Multiply both sides by j, and sum over all

values of j taken by X with a positive probability. �

Example 15.25. We throw a die three times. Provided that the first throw

was at least four, what is the expectation of the number of times a throw

resulted in an even number?

Solution. If the first throw was an even number, then the expected number

of times we got an even result is two as it is one over the last two throws

and is one over the first throw. If the first throw was an odd number, then

this expectation is 1. Therefore, Theorem 15.24 implies

E(X) =
2
∑

i=1

E(X |Ai)P (Ai) =
2

3
· 2 + 1

3
· 1 =

5

3
.

In this problem, it was very easy to compute the probabilities P (Ai).

The following problem is a little bit less obvious in that aspect.

Example 15.26. Our football team wins each game with 3/4 probability.

What is our expected value of wins in a 12-game season if we know that we

won at least three of the first four games?

Solution. We either won three games (event A1), or four games (event A2)

out of the first four games. If we disregard the condition that we won at least

three games out of the first four (eventB), then P (A1) = 4· 14 (34 )3 = 27
64 , and

P (A2) = (34 )
4 = 81

256 . That condition, however, leads us to the conditional

probabilities

P (A1|B) =
P (A1 ∩B)

P (B)
=

27
64

27
64 + 81

256

=
4

7
,

and

P (A2|B) =
P (A2 ∩B)

P (B)
=

3

7
.

In this problem we assume that B occurred, that is, B is our sample

space. To emphasize this, we will write PB(Ai) instead of P (Ai|B). We

denote the expectations accordingly.

In the last eight games of the season, the expected number of our wins

is certainly 8 · 34 = 6, by Theorem 15.18. Therefore, denoting the number

of our wins by X , Theorem 15.24 shows

EB(X) = EB(X |A1)PB(A1) + EB(X |A2)PB(A2) = 9 · 4
7
+ 10 · 3

7
= 9

3

7
.
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We see that this expectation is larger than nine, the expectation without

the condition that we won at least three of the first four games. This is

because that condition allowed us to win all four of those games, which is

better than our general performance.

Notes

This Chapter was not as much on Probability Theory itself as on the

applications of Probability in Combinatorics. While there are plenty of

textbooks on Probability Theory itself, there are not as many on Discrete

Probability, that is, when Ω is finite. A very accessible introductory book

in that field is “Discrete Probability” by Hugh Gordon [20]. As far as the

Probabilistic Method in Combinatorics goes, a classic is “The Probabilistic

Method”, by Alon and Spencer [3].

Exercises

(1) Let pn be the probability that a random text of n letters has a sub-

string of consecutive letters that reads “Probability is fun”. Prove that

limn→∞ pn = 1.

(2) A big corporation has four levels of command. The CEO is at the top,

(level 1) she has some direct subordinates (level 2), who in turn have

their own direct subordinates (level 3), and even those people have their

own direct subordinates (level 4). Nobody, however, has more direct

subordinates than his immediate supervisor. Is it true that the average

number of direct subordinates of an officer on level i is always higher

than the average number of direct subordinates of an officer on level

i+ 1?

(3) A women’s health clinic has four doctors, and each patient is assigned

to one of them. If a patient gives birth between 8am and 4pm, then her

chance of being attended by her assigned doctor is 3/4, otherwise it is

1/4. What is the probability that a patient is attended by her assigned

doctor when she gives birth?

(4) We toss a coin a finite number of times. Let S denote the sequence of

results. Set X(S) = i if a head occurs in position i first. Find EΩ(X),

where Ω is the set of all finite outcome sequences.

(5) Show that for any n, there exist n events so that any n− 1 of them are
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independent, but the n events are not.

(6) At a certain university, a randomly selected student who has just en-

rolled has 66 percent chance to graduate in four years, but if he success-

fully completes all freshmen courses in his first year, then this chance

goes up to 90 percent. Among those failing to complete at least one

freshmen course in their first year, the 4-year-graduation rate is 50 per-

cent. What is the percentage of all students who cannot complete all

freshmen courses in their first year?

(7) We select an element of [100] at random. Let A be the event that this

integer is divisible by three and let B be the event that this integer is

divisible by seven. Are A and B independent?

(8) Six football teams participate in a round robin tournament. Any two

teams play each other exactly once. We say that three teams beat each

other if in their games played against each other, each team got one

victory and one loss. What is the expected number of triples of teams

who beat each other? Assume that each game is a toss-up, that is, each

team has 50 percent chance to win any of its games.

(9) Solve the previous exercise if one of the teams is so good that it wins

its games by 90 percent probability.

(10) What is the expected value of the number of digits equal to 3 in a

4-digit positive integer?

(11) Let X(α) be the first part of a randomly selected composition α of n.

Find E(X).

(12) Let Y (α) be the number of parts in a randomly selected composition

α of n. Find E(Y ).

(13) Let π be a randomly selected partition of the integer n. Let X(p) be

the first part of π, and let Y (p) be the number of parts in π. Find

E(X)− E(Y ).

(14) Let p = p1p2 · · · pn be an n-permutation. Recall that the index i is

called an excedance of p if p(i) > i. How many excedances does the

average n-permutation have?

(15) Let k be any positive integer, and let n ≥ k. Let Y be the number of

k-cycles in a randomly selected n-permutation. Find E(Y ).

(16) Recall from Chapter 14 that Sn(1234) < Sn(1324) if n ≥ 7. Let n

be a fixed integer so that n ≥ 7. Let A be the event that an n-

permutation contains a 1234-pattern, and let B be the event that an

n-permutation contains a 1324-pattern. Similarly, let X , (resp. Y )

be the number of 1234-patterns (resp. 1324-patterns) in a randomly

selected n-permutation. What is larger, E(X |A) or E(Y |B)?
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(17) Prove that there is a tournament on n vertices that contains at least
n!

2n−1 Hamiltonian paths. What can we say about the number of Hamil-

tonian cycles?

(18) Let Y be a probability variable. Then

V ar(Y ) = E
(

(Y − E(Y ))2
)

is called the variance of Y .

(a) Prove that V ar(Y ) = E(Y 2)− E(Y )2.

(b) Let X(p) be the number of fixed points of a randomly selected n-

permutation p. Prove that V ar(X) = 1.

Note that
√

V ar(X) is called the standard deviation of X .

(19) For i ∈ [n], define Xi as in the proof of Theorem 15.20. Are the Xi

independent?

(20) Let X and Y be two independent random variables defined on the same

space. Prove that V ar(X + Y ) = V ar(X) + V ar(Y ).

(21) We are given a list L = (L1, L2, · · · , Lk) of ordered 4-tuples Li =

(ai, bi, ci, di), so that for any i, the numbers ai, bi, ci, and di are distinct

elements of [n]. It is possible, however, that symbols with different

indices i and j denote the same number.

Let p = p1p2 · · · pn be an n-permutation. We say that p satisfies Li if

the substring of p that stretches from ai to bi does not intersect the

substring of p that stretches from ci to di. (It could be that ai is on

the right of bi, or ci is on the right of di.)

Prove that there exists an n-permutation p that satisfies at least one

third of all Li in any given list L.

(22) A player pays a fixed amount of n dollars to a casino for the right to

participate in the following game. A fair coin is tossed several times

until a tail is obtained. If the first tail is obtained as the result of the

ith coin toss, then the player receives a payout of 2i dollars, and the

game ends.

(a) Assuming that the casino has unlimited resources to pay its obliga-

tions and that the player has an unlimited amount of time to pay,

what is the value of n that the player should pay for the right to

play this game. (For this part of the exercise, let us say that the

player should pay any amount of n dollars as long as n is less than

the amount of his expected winnings.)

(b) What is the probability that the player will win less than 1000

dollars? Compare your answer to the answer to part (a).
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(c) What is the expected value of the player’s payout if the casino has

“only’ 1014 dollars available for payouts? (This is more than the

world’s GDP.)

Supplementary Exercises

(23) What is the probability of finding two people who were born in the

same month of the year in a group of six randomly selected people?

(24) Prove that it is possible to 2-color the integers from 1 to 1000 so that

no monochromatic arithmetic progression of length 17 is formed.

(25) Is it true that if the occurrence of A makes B more likely to occur,

then the occurrence of B also makes A more likely to occur?

(26) (-) Give an example for three events A, B, and C, so that A and

B are independent, B and C are independent, but A and C are not

independent.

(27) (-) Give an example for three events A, B, and C so that A and B

are not independent, B and C are not independent, but A and C are

independent.

(28) (-) What is the probability of the event that a randomly selected

composition of n has first part 1?

(29) What is the probability of the event that a randomly selected compo-

sition of n has a second part and that second part is 1?

(30) Let i ≥ 3. What is the probability that a randomly selected composi-

tion of n has an ith part and that part is 1?

(31) Let S be an n × n magic square (see Exercise 24 in Chapter 3) with

line sum r. Let A be the event that each entry of the first row is at

least r
2n , and let B be the event that each element of the second row

is at least r
2n . Is the following argument correct?

“It must be that P (B|A) < P (B). Indeed, if A occurs, then the entries

of the first row are all larger than normal, so each entry of the second

row must be smaller than normal, because the sum of each column is

fixed.”

(32) Can two events be at the same time mutually exclusive and indepen-

dent?

(33) A medical device for testing whether a patient has a certain type of

illness will accurately indicate the presence of the illness for 99 percent

of patients who do have the illness, and will set off a false alarm for
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five percent of patients who do not have the illness.

Let us assume that only three percent of the general population has

the illness.

(a) If the test indicates that a given patient has the illness, what is

the probability that the test is correct?

(b) If the test indicates that a given patient does not have the illness,

what is the probability that the test is correct?

(c) What percentage of the test results provided by this device will

be accurate?

(34) Adam and Brandi are playing the following game. They write each

integer from 1 through 100 on a piece a paper, then they randomly

select a piece of paper, and then another one. They add the two

integers that are written on the two pieces of paper, and if the sum is

even, then Adam wins, if not, then Brandi. Is this a fair game?

(35) Replace 100 by n in the previous exercise. For which positive integers

n will the game be fair?

(36) Note: here, and in the next several exercises, when we say that we

randomly select two objects of a certain kind, we mean that we select

an ordered pair (A,B) of objects of that kind. So (A,B) and (B,A)

are different pairs, and A = B is allowed.

(a) Let us randomly select two subsets of [n]. What is the probability

that they have the same number of elements?

(b) Let f(n) be the probability you were asked to compute in part

(a). Prove that f(n) ≃ 1√
nπ

.

(37) Let us randomly select two compositions of the integer n, and let g(n)

be the probability that they have the same smallest part. Prove that

if n goes to infinity, then g(n)→ 1.

(38) (+) Let us randomly select two partitions of [n], and let h(n) be the

probability that their smallest blocks have the same size. Prove that

if n goes to infinity, then h(n)→ 1.

(39) Let us randomly select two permutations of length n, and let m(n) be

the probability that their largest cycles have the same length. Prove

that

m(n) ≥
n
∑

i=⌈(n+1)/2⌉

1

k2
.

Note that the summation starts in the smallest value of i that is strictly

larger than n/2.
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(40) A dealership has n cars. An employee with a sense of humor takes all

n keys, puts one of them in each car at random, then locks the doors

of all cars. When the owner of the dealership discovers the problem,

he calls a locksmith. He tells him to break into a car, then use the key

found in that car to open another, and so on. If and when the keys

already recovered by this procedure cannot open any new cars, the

locksmith is to break into another car. This algorithm goes on until

all cars are open.

(a) What is the probability that the locksmith will only have to break

into one car?

(b) What is the probability that the locksmith will have to break into

two cars only?

(c) What is the probability that the locksmith will have to break into

at most k cars?

(41) (+)

(a) Let us consider the situation described in the previous exercise, but

let us now assume that the manager calls two locksmiths, each of

whom chooses a car and breaks into it. What is the probability

that there will be no need to break into any other cars? (Make the

rather conservative assumption that the two locksmiths will not

break into the same car. )

(b) Same as part (a), but with k locksmiths, instead of two.

(c) Compare the result of part (a) of this exercise and part (b) of

the previous exercise. Explain why the results agree with common

sense.

(42) Let X be a random variable defined on the sample space of all trees

on vertex set [n] so that X(t) equals the number of leaves of the tree

t. Find E(X). Explain what your result means for large values of n.

(That is, explain, roughly what fraction of the vertices of a tree on [n]

will be leaves on average.)

(43) Find the expectation of the number of k-cycles in a randomly selected

n-permutation. Then use the result to solve Exercise 7 of Chapter 6.

(44) We randomly select a cycle of an n-permutation. On average, what

will be the length of this cycle?

(45) There are 16 disks in a box. Five of them are painted red, five of

them are painted blue, and six are painted red on one side, and blue

on the other side. We are given a disk at random, and see that one of

its sides is red. Is the other side of this disk more likely to be red or
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blue?

(46) There are ten disks in a basket, two of them are blue on both sides,

three of them are red on both sides, and the remaining five are red on

one side, and blue on the other side. One disk is drawn at random,

and we have to guess the color of its back. Does it help if we know

the color of its front?

(47) A pack of cards consists of 100 cards, two of them are black kings. We

shuffle the cards, then we start dealing them until we draw a black

king. Which is the step where this is most likely to occur?

(48) Let p = p1p2 · · · pn be an n-permutation. We say that p get changes

direction at position i, if either pi−1 < pi > pi+1, or pi−1 > pi < pi+1,

in other words, when pi is either a peak or a valley. We say that p has

k runs if there are k− 1 indices i so that p changes direction at these

positions. For example, p = 3561247 has 3 runs as p changes direction

when i = 3 and when i = 4. What is the average number of runs in a

randomly selected n-permutation?

(49) What is the average number of cycles of length four in a randomly

selected graph on vertex set [n]? (Each pair of vertices has 1/2 chance

to be connected by an edge.)

(50) Recall that a descent of a permutation p = p1p2 · · · pn is the number of

indices i ∈ [n− 1] so that pi > pi+1. Let X be the number of descents

of a randomly selected n-permutation. Find E(X) and V ar(X).

Solutions to Exercises

(1) First, we note that the sequence {pn} is increasing. Indeed, pn+1 =

pn + qn, where qn is the probability of the event that the set of the

first n letters does not contain the required sentence, but that of the

first n+ 1 letters does.

It is therefore sufficient to show that the sequence {pn} has a subse-

quence that converges to 1. Such a subsequence is rn = p16n. (Note

that the sentence “Probability is fun” contains 16 letters.)

Let a be the probability of the event that a randomly selected 16-letter

string is not our required sentence. Then a < 1. On the other hand,

rn ≥ 1− an as we can split a 16n-letter string into n strings of length

16, each of which has a chance to be something else than our sentence.
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So we have

1− an ≤ rn ≤ 1,

and our claim follows by the squeeze principle as an → 0.

(2) That is not true. Figure 15.2 shows a counterexample. Indeed, the

average number of direct subordinates of level-2 officers is 6/4 = 1.5,

while that of level-3 officers is 10/6 = 1.66.

CEO (level 1)

level 2

level 3

level 4

Fig. 15.2 A counterexample for Exercise 2.

(3) There is 1/3 chance that a given patient gives birth between 8am and

4pm, and there is 2/3 chance that she gives birth between 4pm and

8am. Therefore, Bayes’ theorem shows that the answer is 1
3 · 34+ 2

3 · 14 =
5
12 .

(4) The only way for the first head to occur in position i is to have a tail

in each of the first i − 1 positions, then a head in position i. The

chance of this happening is 1/2i. Therefore, we have

E(X) =

∞
∑

i=1

i

2i
= 2.

We used the fact that
∑

n≥1 nx
n = x

(1−x)2 . This has been proved in

two different ways in Exercise 25 of Chapter 4.

(5) Let us throw a die n− 1 times, and for 1 ≤ i ≤ n− 1, denote Ai the

event that throw i results in an even number. Finally, let An be the

event that the sum of all the results is even. Then for any k-element

subsets of these events, for 1 ≤ k ≤ n− 1, we have

P (Ai1 ) · P (Ai2 ) · · · ·P (Aik ) = P (Ai1 ∩Ai2 ∩ · · · ∩ Aik) =
1

2k
.
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However,

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1 ∩ A2 ∩ · · · ∩ An−1) =
1

2n−1

6= 1

2n
= P (A1) · P (A2) · · · ·P (An).

(6) Let A be the event that a randomly selected new student passes all

his courses in his first year, and let C be the event that a randomly

selected new student graduates in four years. Then Bayes’ theorem

and our data imply

P (C) = P (C|A)P (A) + P (C|Ā)P (Ā),

0.66 = 0.9P (A) + 0.5(1− P (A)),

yielding P (A) = 0.4, and P (Ā) = 0.6. This means that sixty percent

of freshmen fail to complete at least one course in their first year.

(7) No, they are not. There are 33 integers in [100] that are divisible by

three, and there are 14 integers in [100] that are divisible by seven.

Therefore P (A) = 33/100, and P (B) = 14/100. On the other hand,

there are just 4 integers in [100] that are divisible by 21 (so both by

three and seven), which implies that P (A ∩ B) = 4/100 = 0.04. On

the other hand, P (A)P (B) = 462
1000 = 0.0462.

(8) Select three teams A, B, and C. Their three games within this 3-

member group, that is A vs. B, B vs. C, and A vs. C can end in

eight different ways. Only two of those are outcomes in which these

teams beat each other. Thus the expected number of beat-each-other

triples on {A,B,C} is 1/4. As there are
(

6
3

)

= 20 possible triples, it

follows from Theorem 15.18 that the expected number of beat-each-

other triples is 5.

(9) In this case, the ten triples not containing the strong team still have

a 1/4 chance to beat each other. In any of the other ten triples, the

chances for this are 2 · 0.9 · 0.1 · 0.5 = 0.09. Therefore, using indicator

variables and Theorem 15.18, we get that on average, there will be

10 · 0.25 + 10 · 0.09 = 3.4 beat-each-other triples.

(10) Define indicator variables the usual way, that is, Xi = 1 if the ith

digit is equal to 3, and zero otherwise. Then E(X1) = 1/9, as the first

digit cannot be zero, and E(Xi) = 0.1 if i > 1. Therefore, we have

E(X) = E(X1 +X2 +X3 +X4) =
1
9 + 3

10 = 0.4111.
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(11) Let Ai be the event that α has i parts. Then P (Ai) =
(n−1

i−1)
2n−1 , and the

first part of α is n/i on average. Therefore,

E(X) =

n
∑

i=1

(

n−1
i−1

)

2n−1
· n
i
=

1

2n−1
·

n
∑

i=1

(

n

i

)

=
2n − 1

2n−1
= 2− 1

2n−1
.

(12) First solution. The number of weak compositions of n into k parts

is
(

n−1
k−1

)

. Therefore, the probability that a randomly selected weak

composition of n will have k parts is
(

n−1
k−1

)

/2n−1. This implies

E(Y ) =
1

2n−1

n
∑

k=1

k

(

n− 1

k − 1

)

=
1

2n−1
((n− 1)2n−2 + 2n−1) =

n+ 1

2
.

Second solution. Alternatively, we know that weak compositions of

n into k parts are in bijection with (k − 1)-element subsets of [n− 1].

There is a natural bijection between these subsets of [n − 1], and

(n − k)-element subsets of [n − 1], simply by taking complements.

This, however, defines a bijection between weak compositions of n

into k parts, and weak compositions of n into n+1− k parts, and the

claim follows.

(13) For all i, we have P (X = i) = P (Y = i). Indeed, π has first part i

if and only if its conjugate partition has i parts. Therefore, E(X) =

E(Y ), so E(X)− E(Y ) = 0.

(14) Let Xi the indicator variable of the event that i is an excedance of

p. Then clearly, P (Xi = 1) = n−i
n , thus E(Xi) =

n−i
n . Let X(p) be

the number of excedances of p, then E(X) =
∑

E(Xi) =
∑n

i=1
n−i
n =

n(n−1)
2n = n−1

2 .

(15) We know from Lemma 6.19 that the probability that a given entry

i of p is part of a k-cycle is 1/n. Therefore, if Yi is the indicator

variable of i being part of a k-cycle, then E(Yi) = 1/n. Now we

have Y = Y1+Y2+···+Yn

k . Indeed, a k-cycle contains exactly k entries.

Therefore, we get by Theorem 15.18 that E(Y ) = nE(Y1)/k = 1/k.

(16) First note that E(X) = E(Y ) =
(

n
4

)

/24 as any four entries of p have a

1/24 chance of forming a q-pattern, for any 4-element pattern q. Now

Theorem 15.24 shows

E(X) = E(X |A)P (A) + E(X |Ā)P (Ā) = E(X |A)P (A),

E(Y ) = E(Y |B)P (B) + E(Y |B̄)P (B̄) = E(Y |B)P (B).

Indeed, the second summands are obviously equal to zero. As E(X) =

E(Y ), this implies E(X |A)P (A) = E(Y |B)P (B), and then P (A) >

P (B) implies E(Y |B) > E(X |A).
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This makes perfect sense: a smaller number of permutations contains

the same number of patterns, so on average, they must contain more

patterns.

(17) Take Kn, and direct each of its edges at random, to get a tournament

T . If p is an undirected Hamiltonian path in Kn, then let Xp(T ) = 1

if p becomes a directed Hamiltonian path in T , and let Xp(T ) = 0

otherwise. Then we have E(Xp) = 1
2n−1 , as p has n − 1 edges. Let

X =
∑

p Xp, where p ranges through all n! Hamiltonian paths of Kn.

Then X equals the number of Hamiltonian paths of T . Theorem 15.18

then implies

E(X) = n!E(Xp) =
n!

2n−1
,

and our claim follows from Theorem 15.21.

For Hamiltonian cycles, the only difference is that they have one ad-

ditional edge. Therefore, there exists a tournament on n vertices with

at least n!
2n Hamiltonian cycles.

(18)(a) We get V ar(Y ) = E((Y −E(Y ))2) = E(Y 2)−E(2Y E(Y ))+E(Y )2,

by simply computing the square. Note that in the second term,

E(Y ) is a number, so we get V ar(Y ) = E(Y 2)−2E(Y )2+E(Y )2 =

E(Y 2)− E(Y )2.

(b) Using the result computed in part (a), and the linearity of expec-

tation, we simply have to show that E(X2) = 2. For i ∈ [n], define

Xi as in the proof of Theorem 15.20. Then

E(X2) = E((

n
∑

i=1

Xi)
2) =

n
∑

i=1

E(X2
i ) + 2

∑

i<j

E(XiXj). (15.4)

Now note that the Xi are 0-1 variables, so Xi = X2
i , and in partic-

ular, E(X2
i ) = E(Xi) = 1/n, by Theorem 15.20. If p is a randomly

selected n-permutation, and i < j, then there is 1/(n− 1)n chance

that pi = i, and pj = j, which is the only way for XiXj to be

nonzero (one). Therefore, E(XiXj) =
1

n(n−1) . This, compared to

(15.4), implies

E(X2) = n · 1
n
+ 2 ·

(

n

2

)

· 1

n(n− 1)
= 1 + 1 = 2,

and our claim follows.

(19) No, they are not. We have computed in the proof of the previous

exercise that P (XiXj = 1) = 1
n(n−1) . On the other hand, we have

computed in Theorem 15.20 that P (Xi) = P (Xj) =
1
n . So P (XiXj =

1) 6= P (Xi = 1)P (Xj = 1), and our claim is proved.
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(20) It follows from part (a) of Exercise 18 that

V ar(X + Y ) = E((X + Y )2)− E(X + Y )2. (15.5)

Let us express both members of the right-hand side by simpler terms

as follows. On one hand,

E((X + Y )2) = E(X2) + E(Y 2) + 2E(XY ) = E(X2) + E(Y 2)

+2E(X)E(Y ),

as X and Y are independent. On the other hand,

E(X + Y )2 = (E(X) + E(Y ))2 = E(X)2 + E(Y )2 + 2E(X)E(Y ).

Comparing these two equations to (15.5), we get V ar(X + Y ) =

E(X2) + E(Y 2)− E(X)2 − E(Y )2, and the statement is proved.

(21) Let Yi be the indicator variable of the event that a randomly chosen

n-permutation satisfies Li. Then clearly, P (Yi = 1) = 1
3 as ai, bi, ci

and di can occur in p in 24 different ways, of which eight satisfies Li.

Indeed, we can first choose if the (ai, bi) pair comes first, or the (ci, di)

pair comes first, then we can choose the order of the elements within

the pairs.

Therefore, E(Yi) =
1
3 . Now let Y =

∑k
i=1 Yi, then Y is the number of

Li in L that are satisfied by p. Theorem 15.18 then implies

E(Y ) =

k
∑

i=1

E(Yi) =
k

3
,

and our claim follows from Theorem 15.21.

(22)(a) The probability of the first tail coming at the ith toss is 2−i, for

all i. So the expected payout is
∑

i≥1

2−i · 2i =
∑

i≥1

1 =∞.

So, given the (unrealistic) conditions of this part of the exercise,

no finite price is too high for the player to play this game.

(b) The player will win more than 1000 dollars if and only if it takes

at least ten tosses to get the first tail (since 210 = 1024 is the

smallest power of 2 that is larger than 1000). That happens if and

only if the first nine tosses are all heads, and the probability of

that is 2−9 = 1/512. So very few people would pay more than

1000 dollars to play this game, since the chances of recovering their

participation fee are less than 0.002 percent.
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(c) In this case, the expected value of the payout is

∑

i≥1

2−i ·min(2i, 1014) =

log2(10
14)

∑

i≥1

1 + 1014 ·
∑

i>log2(10
14)

2−i

= 46 +
1014

246

= 47.2.

So expecting a payout of more than 47.2 dollars is not realistic.
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Chapter 16

At Least Some Order. Partial Orders

and Lattices

16.1 The Notion of Partially Ordered Sets

Let us assume that you are looking for air tickets for your upcoming trip.

There are five different airlines offering service to your destination, and

you know what each of them would charge for a ticket. However, price is

not the only important criterion for you. The duration of the flights also

matters a little bit. In other words, if airline X offers a lower price and a

shorter flight-time than airline Y , then you say that the offer of airline X

is a better offer.

Let us assume that the offers from the five airlines are as follows.

A 600 dollars, 9 hours 20 minutes,

B 650 dollars, 8 hours 40 minutes,

C 550 dollars, 9 hours 10 minutes,

D 575 dollars, 8 hours 20 minutes,

E 660 dollars, 9 hours 5 minutes.

For example, the offer of airline D is clearly better than that of airline

E, but there is no such clear-cut difference between the offers of airlines C

and D. You can represent the entire complex situation with the diagram

shown in Figure 16.1.

In this diagram, the dots correspond to the offers. If an offer X is better

than another offer Y , then X is above Y in the diagram, and there is a path

from X to Y so that when we walk through that path, we never walk up.

This was an example of a partially ordered set, the main topic of this

chapter. The reader probably sees the explanation for this name: some,

but not necessarily all, pairs of our elements were comparable. The time

has come for a formal definition.

381
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C D

BA

E

600 dollars
9h 20min

650 dollars
8h 40min

660 dollars
9h 5min

575 dollars
8 h 20 min

550 dollars
9h 10 min

Fig. 16.1 Comparing the five offers.

Definition 16.1. Let P be a set, and let ≤ be a relation on P so that

(a) ≤ is reflexive, that is, x ≤ x, for all x ∈ P ,

(b) ≤ is transitive, that is, if x ≤ y and y ≤ z, then x ≤ z,

(c) ≤ is antisymmetric, that is, if x ≤ y and y ≤ x, then x = y.

Then we say that P≤ = (P,≤) is a partially ordered set, or poset. We also

say that ≤ is a partial ordering of P .

Just as for the traditional ordering of real numbers, we write x < y if

x ≤ y, but x 6= y. When there is no danger of confusion as to what the

partial ordering ≤ of P is, we can write P for the poset P≤. If, for two

elements x and y of P , neither x ≤ y nor y ≤ x holds, then we say that x

and y are incomparable.

Example 16.2. Let P be the set of all subsets of [n], and let A ≤ B if

A ⊆ B. Then P≤ is a partially ordered set. This partially ordered set is

denoted by Bn and is often called a Boolean algebra of degree n.

Example 16.3. The set of all subspaces of a vector space, ordered by

containment, is a partially ordered set.

Example 16.4. Let P be the set of all positive integers, and let x ≤ y if

x is a divisor of y. Then P≤ is a partially ordered set.

Example 16.5. Let P = R, the set of real numbers, and let ≤ be the

traditional ordering. Then P≤ is a partial order, in which there are no two
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incomparable elements. Therefore, we also call R a total order, or chain.

Example 16.6. Let P be the set of all partitions of [n]. Let α and β be

two elements of P . Define α ≤ β if each block of β can be obtained as the

union of some blocks of α. For instance, if n = 6, then {1, 4}{2, 3}{5}{6} ≤
{1, 4, 6}{2, 3, 5}. Then P≤ is a partial order, which is often called the

refinement order, and is denoted by Πn.

If x ∈ P is such that there is no y ∈ P for which x < y, then we say

that x is a maximal element of P . If for all z ∈ P , z ≤ x holds, then we

say that x is the maximum element of P . Minimal and minimum elements

are defined accordingly. The reader should verify that all finite posets have

minimal and maximal elements. Not all finite posets have minimum or

maximum elements, however. The poset shown in Figure 16.1 does not

have either. The minimum element of a poset, if it exists, is often denoted

by 0̂, while its maximum element, if it exists, is often denoted by 1̂.

If x < y in a poset P , but there is no element z ∈ P so that x < z < y,

then we say that y covers x. This notion enables us to formally define Hasse

diagrams, the kind of diagrams we informally used in our introductory

example.

The Hasse diagram of a finite poset P is a graph whose vertices represent

the elements of the poset. If x < y in P , then the vertex corresponding

to y is above that corresponding to x. If, in addition, y covers x, then

there is an edge between x and y. Alternatively, if we want to avoid the

imprecise (but intuitively obvious) notion of “above”, we can say that the

Hasse diagram of P is the directed graph whose vertices are the elements

of P , and in which there is an edge from x to y if x is covered by y.

Example 16.7. The Hasse diagram of B3 is shown in Figure 16.2.

Hasse diagrams are useful to visualize various properties of posets. In

particular, they can help us decide whether two small posets are isomorphic

or not. We can hear the complaints of the reader that we have not even

given the definition of isomorphism of posets yet. This is true, but the

definition is the obvious one. That is, two posets P and Q are called

isomorphic if there is a bijection f : P → Q so that for any two elements x

and y of P , the relation x ≤P y holds if and only if f(x) ≤Q f(y).

It is easy to verify that up to isomorphism, there is one 1-element poset,

two 2-element posets, and five 3-element posets. The Hasse diagrams of the
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{1,2,3}

{2,3}{1,3}{1,2}

321

empty set 

{  } {  } {  }

Fig. 16.2 The Hasse diagram of B3.

latter are shown in Figure 16.3. The reader is invited to find all sixteen

4-element posets.

Fig. 16.3 The five three-element posets.

We have defined chains in Example 16.5. To see a finite example, in

B4, the set of subsets {{2, 3}, {3}, {1, 2, 3, 4}} is a chain as we have {3} ≤
{2, 3} ≤ {1, 2, 3, 4}.

The dual notion is that of antichains. If the subset S ⊆ P contains no

two comparable elements, then we say that S is an antichain. For example,
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{{2, 3}, {1, 3}, {3, 4}, {2, 4}} forms an antichain in B4 as none of these four

sets contains another one.

It is straightforward that any subset of a chain is a chain, and any subset

of an antichain is an antichain. A chain cover of a poset is a collection of

disjoint chains whose union is the poset itself. The size of a chain cover

is just the number of chains in it. It seems plausible that if a poset has a

large antichain, then it cannot be covered with just a few chains, and vice

versa. The following classic theorem shows the precise connection between

the sizes of antichains and chain covers of a poset.

Just as for matchings, a chain, (resp. antichain) X of P is called max-

imum if P has no larger chain (resp. antichain) than X , and X is called

maximal if it cannot be extended. That is, no element can be added to X

without destroying the chain (resp. antichain) property of X .

Theorem 16.8. [Dilworth’s Theorem] In a finite partially ordered set P ,

the size of any maximum antichain is equal to the number of chains in any

smallest chain cover.

Proof. Let a be the size of a maximum antichain A of P , and let b be the

size of any smallest chain cover of P . Then it is clear that a ≤ b. Indeed,

no chain can contain more than one element of A, so at least a chains are

needed in any chain cover.

We still have to prove the converse, that is, if the largest antichain of

P is of size k, then P can be decomposed into the union of k chains. We

prove this by induction on n, the number of elements in P . The initial case

of n = 1 is trivial. Now let us assume that the statement is true for all

positive integers less than n. We distinguish two cases.

• First let us assume that P has a k-element antichain A that contains

at least one element that is not minimal, and at least one element

that is not maximal. Then A “cuts P into two”, that is, into the

sets U and L, where U is the set of elements that are greater than

or equal to at least one element in A, and L is the set of elements

that are smaller than or equal to at least one element in A. Note that

U ∩L = A. As A contains non-minimal and non-maximal elements, U

and L are non-empty, and they both are partially ordered sets, with

the ordering of P naturally restricted to them. Moreover, they have

less than n elements, so the induction hypothesis implies that they

are both unions of k chains. Each of the k chains in U has one of the

k elements of A at its bottom, and each of the k chains in L has one
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of the k elements of A at its top. Therefore, these 2k chains can be

united to k chains covering P .

• Now let us assume that P does not have an antichain like the an-

tichain A of the previous case. That is, all maximum antichains of

P consist of maximal elements only, or minimal elements only. That

necessarily implies that they contain all minimal elements, or all max-

imal elements. Let x be a minimal element of P , and let y be a

maximal element of P such that x ≤ y. (Since P is finite, such a pair

of elements exist, though in the trivial special case when P itself is

antichain, x = y will occur.) Let P ′ be the poset obtained from P by

removing x and y. Then the largest antichain of P ′ has k−1 elements

as it cannot contain all minimal elements or all maximal elements of

P . Moreover, P ′ has less than n elements, so by the induction hy-

pothesis, it can be decomposed into k − 1 chains. Adding the chain

x ≤ y to this chain cover of P ′, we get a chain cover of P that is of

size k.
�

If P is an n-element poset, then a linear extension of P is just an

order-preserving bijection from P onto [n]. That is, if x ≤ y in P , then

f(x) ≤ f(y) in [n].

Example 16.9. The poset shown on the left in Figure 16.4 has two linear

extensions, f , and g, where f(A) = g(A) = 4, f(D) = g(D) = 1, f(B) =

g(C) = 2, and f(C) = g(B) = 3. The poset shown on the right in Figure

16.4 has four linear extensions, as {E,F} can be mapped onto {3, 4} in two

ways, and {G,H} can be mapped onto {1, 2} in two ways.

A

B C

D

E F

G H

Fig. 16.4 Posets with two and four linear extensions.
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16.2 The Möbius Function of a Poset

In what follows we will develop some powerful computation techniques for

a large class of posets. This class includes all finite posets. If the reader is

only interested in finite posets, she can skip the next two paragraphs. In

those paragraphs we discuss what other posets will belong to this class.

If x ≤ y are elements of P , then the set of all elements z satisfying

x ≤ z ≤ y is called the closed interval between x and y, and is denoted by

[x, y]. If all intervals of P are finite, then P is called locally finite. Note

that this does not necessarily mean that P itself is finite. The set of all

positive integers with the usual ordering provides a counterexample.

A set of elements I ⊆ P is called an ideal if x ∈ I and y ≤ x imply

y ∈ I. If an ideal is generated by one element, that is, I = {y : y ≤ x},
then I is called a principal ideal. For example, if P = Bn, then the ideal

of all subsets of [k] is a principal ideal, while the ideal of all subsets that

have at most four elements is not. In some of our theorems, we will have to

restrict ourselves to posets in which each principal ideal is finite. In other

words, each element is larger than a finite number of elements only. Note

that this is a stronger requirement than being locally finite. The poset of

all integers is locally finite, but has no finite principal ideals. Finally, we

note that dual ideals, and principal dual ideals are defined accordingly.

Let Int(P ) be the set of all intervals of P .

Definition 16.10. Let P be a locally finite poset. Then the incidence

algebra I(P ) of P is the set of all functions f : Int(P )→ R.

Multiplication in this algebra is defined by

(f · g)(x, y) =
∑

x≤z≤y

f(x, z)g(z, y).

This definition of multiplication may seem odd at first sight. However,

note that this is precisely the same as matrix multiplication. Indeed, take

any linear extension x1x2 · · ·xn of P , and define the n× n matrices F and

G whose (i, j) entries are f(xi, xj) and g(xi, xj). These matrices will be

upper triangular. Taking their product FG, we can see that the (i, j) entry

of this product is
n
∑

k=1

f(xi, xk)g(xk, xj) =

j
∑

k=i

f(xi, xk)g(xk, xj) =
∑

xi≤xk≤xj

f(xi, xk)g(xk, xj),

as claimed. So the incidence algebra of P is isomorphic to the algebra of

n × n upper triangular matrices. We will alternatingly use the function

terminology and the matrix terminology in our discussion.
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Does I(P ) have a unit element, that is, an element u so that uf = fu =

f for all f ∈ I(P )? The above discussion shows that it must have as the

algebra of all upper triangular matrices does have one, namely the identity

matrix. The corresponding element of I(P ) is the function δ satisfying

δ(x, y) = 1, if x = y, and δ(x, y) = 0 if x < y. It is straightforward to verify

that indeed, this function satisfies δf = fδ = f for all f ∈ I(P ), so it is

indeed the unit element of I(P ).

The following element of I(P ) is also a simply defined zero-one function.

Nevertheless, it is surprisingly useful.

Definition 16.11. Let P be a locally finite poset. Let ζ ∈ I(P ) be defined

by ζ(x, y) = 1 if x ≤ y. Then ζ is called the zeta function of P .

Amultichain in a poset is a multiset of elements a1, a2, · · · , am satisfying

a1 ≤ a2 ≤ · · · ≤ am. Note that the inequalities are not strict, unlike in the

definition of chains.

Proposition 16.12. Let x ≤ y be elements of the locally finite poset P .

Then the number of multichains x = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk = y is equal

to ζk(x, y).

Proof. By induction on k. If k = 1, then we have ζ1(x, y) = 1 if and

only if x ≤ y, and the statement is true. (In fact, the statement is even

true if k = 0. Then ζ0(x, y) = δ(x, y) = 1 if and only if x = y.)

Now let us assume that the statement is true for all positive integers less

than k. Each multichain x = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk = y can uniquely

be decomposed to a multichain x = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk−1 = z, and

a two-element multichain z ≤ y, where z ∈ [x, y]. Fix such a z. Then our

induction hypothesis implies that the number of multichains x = x0 ≤ x1 ≤
x2 ≤ · · · ≤ xk−1 = z is ζk−1(x, z), while the number of multichains z ≤ y

is ζ(z, y). Summing over all z, we get that the total number of multichains

x = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xk = y is
∑

z∈[x,y]

ζk−1(x, z)ζ(z, y) = ζk(x, y).

�

The above proof shows that the number of elements of a multichain,

or chain for that matter, is not always the handiest description of its size.

We will sometimes use the length of the chain, or multichain instead. The

length of a chain (or multichain) is the number of its elements minus one.

For chains, this has the following intuitive justification. If we walk up in
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the Hasse diagram of the poset, from the bottom of a chain of length k to

its top, we will make k steps.

Lemma 16.13. Let P be a locally finite poset. Let [x, y] ∈ Int(P ). Then

the number of chains of length k that start at x and end in y is (ζ−δ)k(x, y).

Proof. Analogous to that of Proposition 16.12. �

Does the zeta function of P have an inverse? That is, does there exist

a function µ ∈ I(P ) so that ζµ = µζ = δ? Again, resorting to our usual

help, the matrix representations of the elements of I(P ), we see that the

answer to this question should be in the affirmative. (The zeta matrix Z

of P is just the n × n matrix whose rows and columns are labeled by the

n elements of P , according to some linear extension of P , and Zi,j = ζi,j .)

Indeed, ζ(x, x) = 1 for all x ∈ P , therefore all diagonal entries of the zeta

matrix Z of P are equal to 1, so detZ = 1 as Z is triangular. Hence Z−1

exists, and those who remember the formula for the inverse of a matrix

know that the matrix Z−1 will have integer entries only.

It turns out that the inverse of the zeta function of P is even more

important than the zeta function itself. Therefore, it has its own name.

Definition 16.14. The inverse of the zeta function of P is called the

Möbius function of P , and is denoted by µ = µP .

Computing the values of µ by computing the matrix Z−1 could be quite

time-consuming. Fortunately, the triangular property of Z makes the fol-

lowing recursive computation possible.

Theorem 16.15. Let P be a locally finite poset. Let [x, y] ∈ Int(P ). Then

µ(x, x) = 1, and

µ(x, y) = −
∑

x≤z<y

µ(x, z) (16.1)

if x < y. In other words, µ is the only function in I(P ) satisfying µ(x, x) =

1, and
∑

z∈[x,y] µ(x, z) = 0 for all x < y.

Proof. First, we have 1 = δ(x, x) = (µζ)(x, x) = µ(x, x)ζ(x, x) = µ(x, x).

Second, we have

0 = δ(x, y) = µζ(x, y) =
∑

z∈[x,y]

µ(x, z)ζ(z, y) =
∑

z∈[x,y]

µ(x, z)

if x < y. So the sum of µ(x, z), taken over all z in a nontrivial interval

[x, y] is indeed 0 as we claimed. �
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Corollary 16.16. Let P be a locally finite poset. Let [x, y] ∈ Int(P ), and

let us assume that x 6= y. Then

µ(x, y) = −
∑

z∈(x,y]

µ(z, y).

Proof. This can be proved as Theorem 16.15, except that we have to use

the equality ZM = I instead of the equality MZ = I. �

Theorem 16.15 enables us to compute the values of µ(x, y) starting at

µ(x, x) = 1, and going from the bottom up.

Example 16.17. Figure 16.5 shows the computation of the values of

µ(x, y). In this example, x is chosen to be the bottom element of the

poset.

0

1

−1 −1 −1

1 10 −1

1

−1 −1

2

x

Fig. 16.5 The values of µ(x, y) when x is the bottom element.

By definition, µ(x, x) = 1. Therefore, we must have µ(x, y) = −1 for all

y covering x. Then we compute all the other values from the bottom up,

using formula (16.1).

Let us compute the value of µ(x, y) for some of the most frequently

encountered posets.

Example 16.18. Let P be the poset of all nonnegative integers, and let

x < y be two distinct elements of P . Then µ(x, y) = −1 if x + 1 = y, and

µ(x, y) = 0 if x+ 1 < y.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

At Least Some Order. Partial Orders and Lattices 391

Solution. This is straightforward by induction on y − x.

Example 16.19. Let P = Bn, and let S and T be two elements of P , that

is, two subsets of [n] so that S ⊆ T . Then

µ(S, T ) = (−1)|T−S|.

Solution. Proof by induction on k = |T − S|. If k = 0, then S = T , so

µ(S, T ) = 1 by definition, and the statement is true. Now let us assume

that the statement is true for all nonnegative integers less than k, and let

|T − S| = k. Then for all natural numbers i satisfying 0 ≤ i ≤ k − 1, the

interval [S, T ] contains
(

k
i

)

elements of P that are |S| + i element subsets

of [n]. If Z is such a subset, then it follows from the induction hypothesis

that µ(S,Z) = (−1)i. Therefore, Theorem 16.15 implies

µ(S, T ) = −
∑

Z∈[S,T )

µ(S,Z) = −
k−1
∑

i=0

(

k

i

)

(−1)i = (−1)k.

The last equality is a direct consequence of Theorem 4.2. It can also be

seen directly, from (1− 1)k = 0.

The induction step is complete, and so our statement is proved.

Example 16.20. Let P be the set of positive integers with the partial

order in which x ≤ y if x is a divisor of y. Then

• µ(x, y) = (−1)k if y
x = p1p2 · · · pk, where p1, p2, · · · , pk are different

primes, and

• µ(x, y) = 0 if y
x is divisible by the square of a prime number.

Solution. First note that the interval [1, y
x ] and the interval [x, y] are iso-

morphic as posets. Therefore, it suffices to prove our statements in the

special case when x = 1. To simplify notation, we will write µ(y) instead

of µ(1, y).

If y = p1p2 · · · pk, where the pi are different primes, then a little thought

shows that the interval [1, y] is isomorphic to the poset Bk. Indeed, a

divisor of y = p1p2 · · · pk is just the product of the elements of a subset of

{p1, p2, · · · , pk}. Therefore, µ(y) = (−1)k as claimed.

We prove the second statement by strong induction on y. If y = 4,

then the statement is true. Now assume that the statement is true for all

positive integers smaller than y. Let p1, p2, · · · , pk be the distinct prime

divisors of y; it then follows that at least one of them occurs in the prime

factorization of y more than once. Let us call a divisor of y good if it is not
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divisible by the square of a prime, and let us call a divisor of y bad if it is

divisible by the square of a prime.

Then Theorem 16.15 implies

µ(y) = −
∑

z<y

µ(z) = −
∑

z good

µ(z)−
∑

z bad

µ(z) = −(0 + 0) = 0.

Indeed, the set of the good elements z is precisely the interval

[1, p1p2 · · · pk], and we know from Theorem 16.15 that
∑

z∈I µ(z) = 0 for

any interval I. On the other hand, µ(z) = 0 for all bad integers z by the

induction hypothesis, so it goes without saying that
∑

z bad µ(z) = 0 as

well.

You could say “Fine, but who cares? What is the Möbius function good

for?” In the following paragraphs, we will try to put our answer to this

question into context.

Let a0, a1, a2, · · · be a sequence of real numbers, and define the sequence

b0, b1, b2, · · · by

bn =
n
∑

i=0

ai.

Then given the numbers ai, one can certainly compute the numbers bi.

Conversely, given the numbers bi, one can certainly compute the numbers

ai by the formula

an = bn − bn−1.

Now let f : Bn → R be a function defined on the subsets of [n], and let

g : Bn → R be another function defined on the subsets of [n] by

g(T ) =
∑

S⊆T

f(S).

Again, given the values of f , the values of g are easy to compute. Given

the values of g, however, the values of f are a little bit harder to compute.

We have done this in Theorem 7.6, showing that

f(T ) =
∑

S⊆T

g(S)(−1)|T−S|.

What was common in these two examples? In both cases, we worked

in a poset. In the first case, it was the poset of all nonnegative integers (a

sequence is just a function that is defined on nonnegative integers), in the

second case it was Bn. We defined a function by setting its value in y to

be the sum of the values of another function for all elements of the poset
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that were smaller than y. Then we showed that the values of the original

function can be computed from the values of the new function.

The major application of the Möbius function, the Möbius Inversion

Formula, will generalize this idea for any locally finite poset P .

Theorem 16.21. [Möbius Inversion Formula] Let P be a poset in which

each principal ideal is finite, and let f : P → R be a function. Let the

function g : P → R be defined by

g(y) =
∑

x≤y

f(x).

Then

f(y) =
∑

x≤y

g(x)µ(x, y).

Proof. Let x1, x2, · · · be a linear extension of P . Let f be the row vector

defined by fi = f(xi), and let g be the row vector defined by gi = g(xi).

Let Z be the zeta matrix of P , and let M be the Möbius matrix of P . Then

the equality g(y) =
∑

x≤y f(x) just means

g = fZ.

Multiplying both sides by M from the right, and using the fact that ZM =

I, we get

gM = f ,

which is equivalent to our claim. �

Just as Theorem 16.15, this theorem also has a dual version.

Corollary 16.22. Let P be a poset in which each principal dual ideal is

finite, and let f : P → R be a function. Let g : P → R be defined by

g(y) =
∑

x≥y

f(x).

Then

f(y) =
∑

x≥y

g(x)µ(y, x).

Proof. This can be proved as Theorem 16.21, replacing the row vectors

by column vectors, and right multiplication by left multiplication. �
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Definition 16.23. Let P and Q be two posets. Then the direct product

P × Q of these two posets is the poset whose elements are all the ordered

pairs (p, q), where p ∈ P , and q ∈ Q, and in which (p, q) ≤ (p′, q′) if p ≤ p′

and q ≤ q′.

The values of the Möbius function in a direct product poset can be

computed by the following Theorem.

Theorem 16.24. Let us keep the notation of Definition 16.23. Then

µP×Q ((p, q), (p′, q′)) = µP (p, p
′)µQ(q, q

′).

Proof. We know that 0 =
∑

z∈[p,p′] µ(p, z), when p 6= p′, and also 0 =
∑

s∈[q,q′] µ(q, s), when q 6= q′. Multiplying these formulae together, we get

0 =





∑

z∈[p,p′]

µ(p, z)



 ·





∑

s∈[q,q′]

µ(q, s)



 .

Note that we also know that µP (p, p
′)µQ(q, q

′) = 1 if and only if p =

p′ and q = q′. Therefore, the function µP (p, p
′)µQ(q, q

′) is the unique

function defined on Int(P ×Q) that sums to zero on all nontrivial intervals

of P ×Q, and takes value 1 on all trivial intervals. That unique function is,

by definition, the Möbius function of the poset P ×Q, and our statement

is proved. �

Applications of this theorem will be provided in the next section, and

also in the Exercises.

16.3 Lattices

There is a natural class of partial ordered sets called lattices for which

additional techniques to compute the values of the Möbius functions are

available. Let P be a poset, and let x ∈ P . If x ≤P a, then we say that

a is an upper bound for x. If b ≤P x, then we say that b is a lower bound

for x. If a is an upper bound for both x and y, then a is called a common

upper bound for x and y. A common lower bound is defined analogously.

Now we are in a position to define lattices. Recall that the minimum

(resp. maximum) element of a set, if it exists, is the element that is smaller

(resp. larger) than any other element of the set.

Definition 16.25. A poset L is called a lattice if any two elements x and

y of L have a minimum common upper bound a, and a maximum common

lower bound b.
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In this case, a is called the join of x and y, and b is called the meet of

x and y. We denote these relations by x ∨ y = a, and x ∧ y = b.

Example 16.26. The poset Bn is a lattice. Indeed, for any two subsets

S ⊆ [n], and T ⊆ [n], the minimum subset of [n] containing both S and T

is S ∪ T , and the maximum subset of [n] that is contained in both S and

T is S ∩ T . Therefore, S ∪ T = S ∨ T , and S ∩ T = S ∧ T .

Example 16.27. The poset of all subspaces of a vector space V is a lattice.

If A and B are two subspaces of V , then A ∧B = A ∩B, and A ∨B is the

subspace generated by A and B.

Example 16.28. The poset shown in Figure 16.6 is not a lattice. Indeed,

elements A and B fail to have a minimum common upper bound since both

C and D are minimal upper bounds for them. Similarly, C and D fail to

have a maximum common lower bound since both A and B are maximal

common lower bounds for them.

A B

C D

Fig. 16.6 This poset is not a lattice.

A finite lattice always has a minimum and a maximum element, as we

show in Exercise 7. This is not necessarily true in infinite lattices. For

example, the lattice of all finite subsets of N does not have a maximum

element, or even a maximal element, for that matter.

The operations ∨ and ∧ can easily be extended to more than two vari-

ables. It is straightforward to check that in a lattice, (a∨b)∨c = a∨ (b∨c),
so we can talk about a ∨ b ∨ c, or, in more generality, a1 ∨ a2 ∨ · · · ∨ an.

The same applies for the operation ∧. The following simple proposition will

be useful shortly. More importantly, it shows a typical lattice-theoretical

argument.
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Proposition 16.29. If x, y, and t are elements of a lattice L, and x ≤ t,

and y ≤ t, then x ∨ y ≤ t also holds. Similarly, if r ∈ L, and x ≥ r, and

y ≥ r, then x ∧ y ≥ r.

Proof. As both x and y are less than or equal to t, we know that t is a

common upper bound for x and y, therefore it must be at least as large as

their minimum common upper bound x∨y. Similarly, r is a common lower

bound for x and y, therefore it must be at most as large as their maximum

common lower bound. �

We have seen that if we want to prove that a poset is a lattice, we have

to show two things: the existence of the meet, and the existence of the join,

for any two elements of the poset. Sometimes, one of these two claims is

much easier to prove than the other. In these cases, the following lemma

can help. Let us say that L is a meet-semilattice if, for any two elements x

and y of L, the maximum common lower bound x ∧ y exists.

Lemma 16.30. Let L be a finite meet-semilattice with a maximum element.

Then L is a lattice.

In other words, if our poset is finite, and has a maximum element, then

we only have to prove the existence of the meet. That of the join will

automatically follow.

Proof. Let x ∈ L and y ∈ L. Let B be the set of all common upper

bounds of x and y. Then B is not empty as 1̂ ∈ B, where 1̂ is the maximum

element of L. We must show that B has a minimum element.

We know that B is a finite set as L itself is finite. Let B =

{b1, b2, · · · , bk}. Then b = b1 ∧ b2 ∧ · · · ∧ bk exists, and is an element of

B by Proposition 16.29. Therefore, b ≤ bi for all i ∈ [k], so b is the mini-

mum element of B. �

Example 16.31. The poset Πn is a lattice. Indeed, we will show that

it is a finite meet semilattice with a maximum element. As Πn has B(n)

elements, it is finite. The maximum element of Πn is obviously the partition

consisting of one block. If α and β are two partitions of [n], then α ∧ β is

the partition in which the elements i and j are in the same block if and

only if they are in the same block in both of α and β. Therefore, Lemma

16.30 shows that Πn is a lattice.

Recall from Chapter 14 that a partition π of [n] is called non-crossing if

there are no four elements a < b < c < d so that a and c belong to a block
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B1 of π, and b and d belong to a block B2 of π. As non-crossing partitions

are partitions, the refinement order Πn defines a partial order on them.

Example 16.32. The poset NCn of non-crossing partitions of [n], ordered

by refinement, is a lattice.

Solution. Again, we show that NCn is a finite meet-semilattice with a

maximum element. Again, the one-block partition is the maximum element

of NCn, and our poset is finite. To see that NCn is a meet-semilattice,

note that if α and β are both non-crossing, then α∧Πn β, as defined in the

previous example, is also non-crossing. Therefore, α ∧Πn β = α ∧NCn β.

Our claim then follows from Lemma 16.30.

We point out that it is not true that the join of two elements of NCn is

also the same in NCn as in Πn. Indeed, let n = 4, and let α = {1}{2, 4}{3},
and let β = {1, 3}{2}{4}. Then α∨Π4

β = {1, 3}{2, 4}, however, {1, 3}{2, 4}
is not even an element of NC4. On the other hand, α∨NC4

β = {1, 2, 3, 4}.
To compute the Möbius functions of these lattices, we will need the

following Theorem.

Theorem 16.33. [Weisner’s theorem] Let L be a lattice with minimum

element 0̂ and with maximum element 1̂. Then for any element a ∈ L−{1̂},

µ(0̂, 1̂) = −
∑

x:x∧a=0̂

x 6=0̂

µ(x, 1̂).

In other words, for lattices, the Möbius function can be obtained by

computing a significantly shorter sum than in the case of general posets.

For posets, when computing µ(0̂, 1̂), in general we have to compute a sum

of n − 1 members, where n is number of elements of the poset. However,

for lattices, Theorem 16.33 shows that it is enough to sum over all elements

whose meet with a is 0̂. If we choose a to be a large element, then the

number of these elements will probably be small.

The remarkably simple proof we present is due to Vincent Vatter.

Proof. (of Theorem 16.33) After rearranging, our statement is equivalent

to

0 =
∑

x:x∧a=0̂

µ(x, 1̂) (16.2)

as 0̂ ∧ a = 0̂.
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Now note that (16.2) is equivalent to

0 =
∑

x∈L

µ(x, 1̂)f(x), (16.3)

where f(x) = 1 if x ∧ a = 0̂, and f(x) = 0 otherwise.

Observe that

f(x) =
∑

y∈[0̂,x∧a]

µ(0̂, y). (16.4)

Indeed, the right hand side of this equation sums the values of µ(0̂, y) for

all y in an interval [0, x ∧ a]. As we know, such a sum is 0 or 1, depending

on whether the interval is non-trivial or trivial, and that is exactly how f

is defined as well. Comparing (16.3) and (16.4) shows that the claim to be

proved is equivalent to

0 =
∑

x∈L

µ(x, 1̂)
∑

y∈[0̂,x∧a]

µ(0̂, y).

Note that y ≤ x∧a if and only if y ≤ x and y ≤ a. Therefore, reversing

the order of summation in the last displayed equation, we conclude that

the claim (16.2) is equivalent to

0 =
∑

y≤a

µ(0̂, y)
∑

x∈[y,1̂]

µ(x, 1̂). (16.5)

Finally, (16.5) clearly holds, since y ≤ a < 1, so the interval [y, 1̂] is non-

trivial, and hence the inner sum on the right-hand side is always 0. �

Now we are in a position to compute the values of µΠn(0̂, 1̂), and

µNCn(0̂, 1̂).

Example 16.34. For all positive integers n,

µΠn(0̂, 1̂) = (−1)n−1(n− 1)!.

Solution. We want to use Theorem 16.33. That theorem works for any

nonzero element a ∈ Πn, but we want to choose an a so that the sum
∑

x:x∧a=0̂

x 6=0̂

µ(x, 1̂) is easy to evaluate. We propose a = {1, 2, · · · , n− 1}{n}.
Then there are relatively few partitions x so that x ∧ a = 0. Indeed, in

such partitions x, no two elements i and j of [n − 1] can be in the same

block. Therefore, x can only be one of the n− 1 partitions which have one

doubleton block {i, n}, and n − 2 singleton blocks. Let x be any of these

partitions. We then claim that

[x, 1̂] ∼ Πn−1.
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Indeed, if {i, n} is the only doubleton block of x, then the elements i and
n are in the same block in any partition from [x, 1]. Therefore, Theorem
16.33 implies,

µΠn(0̂, 1̂) = −
∑

x:x∧a=0̂
x �=0̂

µ(x, 1̂) = −(n− 1)µΠn−1(0̂, 1̂),

and our claim follows by induction on n.

The observation that [x, 1̂] ∼ Πn−1 when x is a partition of [n] with one
doubleton block and n− 2 singletons can be generalized into the following
statement.

Proposition 16.35. Let y be a partition of [n] that has k blocks. Then
[y, 1̄] ∼ Πk.

Proof. If two entries are in the same block in y, they are in the same
block in all elements of [y, 1̄]. Therefore, in the poset [y, 1̄], the blocks of y

play the role of elements, and the statement follows. �

The formula obtained for the Möbius function of the partition lattice is
surprisingly simple. The Möbius function of NCn is even more surprising.
Recall that the number of elements of that lattice is the Catalan number
cn.

Example 16.36. For any positive integer n,

µNCn(0̂, 1̂) = (−1)n−1cn−1.

Solution. We prove the statement by strong induction on n, the initial
case being trivial. Let us assume that the statement is true for all positive
integers less than n.

Let us proceed as in the previous example, with the same choice for a.
What are the elements x so that a ∧ x = 0̂? As we know that a ∧Πn x =
a∧NCn x, it follows that these are again the partitions with n− 2 singleton
blocks, and one doubleton block, that is of the form {i, n}. What can we
say about µ(x, 1̂) if x is the mentioned partition? Since we are working in
NCn, all partitions in [x, 1̂] are non-crossing. Since {i, n} is a block in x,
all partitions in [x, 1̂] can naturally be decomposed as a partition of the set
[i− 1], and a partition of the set {i + 1, i + 2, · · · , n− 1}.

Based on this, we claim that [x, 1̂] ∼ NCi × NCn−i. Indeed, consider
first the sublattice L1 of [x, 1̂] in which in all partitions, each of the elements
of {i + 1, i + 2, · · · , n− 1} forms a singleton block (so all the “action” takes
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place on the partitions of [i]). Then L1 is isomorphic to NCi, because of the

lattice isomorphism f : NCi → L1 defined by f({j}) = {j} if j ∈ [i − 1],

and f({i, n} = {i}. Similarly, the sublattice L2 of [x, 1̂] in which in all

partitions, each of the elements of [i] forms a singleton block is isomorphic

to NCn−i.

As i ranges from 1 to n−1, using our induction hypothesis and Theorem

16.33, we get

µNCn(0̂, 1̂) = −
∑

x:x∧a=0̂

x 6=0̂

µ(x, 1̄) = −
n−1
∑

i=1

(−1)n−2ci−1cn−i−1 = (−1)n−1cn−1.

How many connected simple graphs are there on the vertex set [n]? The

difficulty here lies in enumerating connected graphs. It is certainly clear that

there are 2(
n
2) graphs on these vertices as each of the

(

n
2

)

pairs of vertices

can be connected or not connected by an edge.

At any rate, the connected components of any simple graph on [n] parti-

tion n in a natural way, that is, vertices that belong to the same component

will belong to the same block. This partition will be called the underlying

partition of the graph.

Now let H be any partition of [n], and let us say that the blocks of H

are of size c1, c2, · · · , ch. We cannot directly tell how many graphs on [n]

will have underlying partition V . However, we can easily tell how many

graphs will have an underlying partition D so that D ≤Πn H . Indeed,

these graphs cannot have edges between vertices that belong to different

blocks of H . They can have edges within each block of H . Therefore, their

number is 2
∑h

i=1 (
ci
2 ).

Let f(H) be the number of all graphs on [n] with underlying partition

H , and let g(H) be the number of all graphs on [n] with underlying partition

D so that D ≤Πn H .

Then g(H) = 2
∑h

i=1 (
ci
2 ), and

g(H) =
∑

D≤ΠnH

f(D),

so the Möbius Inversion Formula implies

f(H) =
∑

D≤ΠnH

g(D)µΠn(D,H).

We wanted to compute the number of connected graphs on [n], that is,

graphs whose underlying partition is the one-block partition N . Substitut-
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ing N in the last equation, and using Proposition 16.35, we get

f(N) =
∑

D∈Πn

2
∑d

i=1 (
di
2 )(−1)d−1(d− 1)!,

where d is the number of blocks of D, and d1, d2, · · · , dd, are the sizes of

the blocks in D.

Notes

We recommend [41] for further information on Möbius functions. For a

different approach (dimension theory) on posets, see “Combinatorics and

Partially Ordered Sets. Dimension Theory” by William T. Trotter [44]. Fi-

nally, we mention that Dilworth’s theorem has a far-reaching generalization,

the Greene–Fomin–Kleitman theorem. See [22] for details.

Exercises

(1) Let p be a permutation, and let d be the smallest integer so that p

can be written as the union of d increasing subsequences. Prove that

the longest decreasing subsequence of p consists of d elements.

(2) The dimension of a partial ordered set P is the minimum number of

linear orders of the vertex set of P so that the intersection of these

linear orders is precisely the partial order of P . Find a natural way

to associate a poset of dimension two to each permutation. Will this

mapping be injective?

(3) Let P be the set of all finite permutations, and let p ≤P p′ if p is

contained in p′ as a pattern. Does this poset contain an infinite an-

tichain?

(4) Let P be any locally finite poset and let x1, x2, · · · , xn be a linear

extension of P . Find a formula for the number of all chains from xi

to xj , using the zeta function, or zeta matrix of P .

(5) We define the covering matrix C of a poset P as follows. The rows and

columns are indexed by the vertices, listed according to some linear

extension. Ci,j = 1 if xj covers xi, and Ci,j = 0 otherwise. Prove that

the (i, j)-th entry of the matrix (I − C)−1 is equal to the number of

maximal chains of the interval [x, y].

(6) Let P be any locally finite poset, let xi, xj ∈ P , and assume xi < xj .
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Prove that µ(xi, xj) = c0 − c1 + c2 − c3 + · · · , where ci is the number

of chains of length i from xi to xj . (So c0 = 0 and c1 = 1.)

(7) Prove that a finite lattice always has a minimum element and a max-

imum element.

(8) Find an example for a lattice that does not have a minimum element.

(9) Find a proof for the formula of the Möbius function of Bn using The-

orem 16.24.

(10) Prove that in any lattice, we have (x ∧ y) ∨ y = y.

(11) Prove that it is not true in every lattice that if x ≤ z, then

x ∨ (y ∧ z) = (x ∨ y) ∧ z,

for all y ∈ L. A lattice in which this is true is called modular.

(12) Prove that it is not true in every lattice, not even in every modular

lattice, that

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

for all x, y, z ∈ L. A lattice in which this is true is called distributive.

(13) Prove that the condition of the previous exercise, that is, x∧ (y∨z) =
(x ∧ y) ∨ (x ∧ z), for all x, y, z ∈ L, is equivalent to the condition

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

for all x, y, z ∈ L so the latter can also be used to define distributive

lattices.

(14) Prove that all distributive lattices are modular.

(15) In a lattice, we say that a is a complement of b if and only if a∧ b = 0̂,

and a ∨ b = 1̂. Prove that if L is a distributive lattice, and b ∈ L has

a complement, then b has a unique complement a ∈ L.

(16) Show an example for a distributive lattice L in which each element

has a complement, but L 6= Bn for any n.

(17) Decide whether Bn, Πn, and NCn are distributive lattices.

(18) Let x and y be two given elements of Πn so that x ≤ y. Compute

µΠn(x, y).

(19) Is NCn a modular lattice?

(20) A poset P is called self-dual if there exists a bijection f : P → P

so that f(x) ≥ f(y) if and only if x ≤ y. In other words, the Hasse

diagram of P is invariant to the “turn upside down” operation. The

bijection f is called an anti-automorphism of P .

Decide if the posets Bn, Dn, and Πn are self-dual.

(21) Prove that NCn is self-dual.
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(22) Let Qn be the poset of non-crossing partitions of [n] in which π ≤ π′

if the set of minimal elements of π is a proper subset of the set of

minimal elements of π′. (By minimal element, we mean an element

that is minimal in its block.) Prove that Qn is self-dual.

(23) Keep the notation of the previous two exercises. Prove that if x ≤NCn

y, then y ≤Qn x.

Supplementary Exercises

(24) (-) Find all sixteen 4-element posets.

(25) (-) Prove that Bn is a distributive lattice.

(26) (-) Is it true that every finite poset has as many antichains as ideals?

(27) (-) Let P be a finite poset, and let J(P ) be the poset whose elements

are the ideals of P , ordered by inclusion. Prove that P is a lattice.

(28) Let P be a finite poset, and let J(P ) be defined as in the previous

exercise. Prove that J(P ) is a distributive lattice.

(29) (-) What is P if J(P ) = Bn?

(30) (-) Let p = p1p2 · · · pn be a permutation. Let Pp be the poset whose

elements are the elements of [n], and in which i < j if i < j in the

usual ordering of natural numbers and i is on the left of j in P .

(a) What is p if Pp is the n-element chain?

(b) What is p if Pp is the n-element antichain?

(c) What are the minimal and maximal elements of Pp?

(31) Find the number of all 2-element antichains in Bn.

(32) Find the number of all 2-element chains in Bn.

(33) Let P be the product of a k-element chain and an n-element chain.

What is the size of the largest chain and the largest antichain of P?

(34) Let m and n be two distinct positive integers, and let Dm and Dn be

the (respective) lattices of their divisors. Under what conditions is it

true that the product of Dm and Dn equals Dmn?

(35) Let M(n, k) be the multiset consisting of k copies of each element of

[n]. Define a partial ordering P (n, k) on the set of all sub-multisets of

M(n, k) as follows. Let x ≤ y if for all i ∈ [n], the multiset x contains

at most as many copies of i as y.

Find a general formula for µP (n,k)(x, y). Explain the connection be-

tween this exercise and Example 16.20.
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(36) Prove that the poset Nk does not have infinite antichains for any

k. (Recall that this is the poset of vectors with nonnegative integer

coordinates, x ≤ y if and only if xi ≤ yi for all i.)

(37) Let P be a poset that has a minimum element 0̂, and let x be an

element of P that covers one single element y. Let us assume that

y 6= 0̂. Prove that µ(0, x) = 0.

(38) Let m be any positive integer, and let P be a fixed poset. Let

ΩP (m) be the number of order-preserving maps f from P to the set

{1, 2, · · · ,m}. In other words, if x ≤P y, then f(x) ≤ f(y). Prove

that ΩP (m) is always a polynomial in m. This polynomial is called

the order polynomial of P .

(39) What is ΩP (m) if P is a k-element chain?

(40) What is ΩP (m) if P is a k-element antichain?

(41) What is ΩP (m) if P is the three-element poset consisting of one max-

imum element and two minimal elements?

(42) A chain in a poset is called maximal (or saturated) if it cannot be

extended. Let Bn be the poset of all subsets of {1, 2, · · · , n}. How

many maximal chains does Bn have?

(43) How many linear extensions does the following poset have?

Fig. 16.7 How many linear extensions does this poset have?

(44) Find the number of linear extensions of the direct product of a 2-

element chain and an n-element chain.

(45) Prove that for any finite poset P , the number of elements in any max-

imum chain equals the number of antichains in the smallest antichain

cover.

(46) Let P be a poset having n elements. Prove that P contains either a

chain of at least
√
n elements, or an antichain of at least

√
n elements.

(47) Let us define a partial order on the set of all partitions of the integer

n as follows. If a = (a1, a2, · · · , ak) and b = (b1, b2, · · · , bt), then we
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say that a ≥ b if for all i ∈ [k] the inequality

i
∑

j=1

ai ≥
i
∑

j=1

bi

holds. Note that if k ≤ t, then we set ak+1 = ak+2 = · · · = at = 0.

This order Dn is called the dominance order.

(a) Is Dn a lattice?

(b) Is Dn self-dual?

(48) Let Y be the poset of all partitions of all nonnegative integers ordered

lexicographically. That is, a ≤Y b if ai ≤ bi for all i. Note that this

automatically implies that if a has more (positive) parts than b, then

a cannot be smaller than b in Y .

(a) Explain what this ordering means in terms of Ferrers shapes.

(b) Is Y a lattice?

(c) Prove that if an element x ∈ Y covers k elements, then x is covered

by k + 1 elements.

(49) Is it true that every interval of NCn is self-dual?

(50) An interval order is a poset P that is isomorphic to a poset Q whose

elements are closed intervals of real numbers, with the precedence or-

dering. That is, [a, b] < [c, d] if b < c.

Prove that an interval order cannot contain two chains c1 < c2 and

d1 < d2 so that for any i, j ∈ [2], the elements ci and dj are in-

comparable. (This condition is often expressed by saying that P is

2+2-avoiding.)

We point out that the converse is also known: if P does not contain

four elements like that, then P is an interval order.

(51) A unit interval order is a poset P that is isomorphic to an interval

order Q whose elements are closed intervals of unit length.

Prove that a unit interval order cannot contain a chain c1 < c2 < c3
and an element d so that d is incomparable with ci, for all i ∈ [3].

(These conditions are often expressed by saying that P is both 2+2-

avoiding and 3+1-avoiding.)

We point out that the converse is also known: if P does not contain

four elements like that, then P is a unit interval order.
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Solutions to Exercises

(1) We show that this is a special case of Dilworth’s Theorem. Indeed, let

us introduce a partial ordering P on the elements of our permutation

p = p1p2 · · · pn as follows. Let pi <P pj if pi < pj as integers and

i < j. Then chains in P are the increasing subsequences of p, and

antichains of P are the decreasing subsequences of p.

(2) See the partial ordering defined in the previous exercise. This map

is not one-to-one. For instance, p and p−1 are mapped into the same

poset.

(3) Yes, it does. There are several ways to find an infinite antichain in

this poset, and one of them is this.

Let a1 = 13, 12, 10, 14, 8, 11, 6, 9, 4, 7, 3, 2, 1, 5. We view a1 as having

three parts: a decreasing sequence of length three at its beginning,

a long alternating permutation starting with the maximal element of

the permutation and ending with the entry 7 at the fifth position from

the right (in this alternating part odd entries only have even neighbors

and vice versa. Moreover, the odd entries and the even entries form

two decreasing subsequences so that 2i is between 2i+ 5 and 2i+ 3),

and a terminating subsequence 3 2 1 5.

To get ai+1 from ai, simply insert two consecutive elements right after

the maximum element m of ai, and give them the values (m − 4)

and (m − 1). Then make the necessary corrections to the rest of

the elements, that is, increment all old entries on the left of m (m

included) by two and leave the rest unchanged (see Figure 16.8). Thus

the structure of any ai+1 is very similar to that of ai—only the middle

part becomes two entries longer.

We claim that the ai form an infinite antichain. Assume by way

of contradiction that there are indices i, j so that ai < aj . How

could that possibly happen? First, note that the rightmost element

of aj must map to the rightmost element of ai, since this is the only

element in aj preceded by four elements less than itself. Similarly, the

maximal element of aj must map to the maximal element of ai, since,

excluding the rightmost element, this is the only element preceded by

three smaller elements. This implies that the first four and the last six

elements of aj must be mapped to the first four and last six elements

of ai, thus none of them can be deleted.

Therefore, when deleting elements of aj in order to get ai, we can

only delete elements from the middle part, Mj. We have already
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Fig. 16.8 Elements of our antichain.

seen that the maximum element cannot be deleted. Suppose we can

delete a set D of entries from Mj so that the remaining pattern is ai.

First note thatD cannot contain three consecutive elements, otherwise

every element before those three elements would be larger than every

element after them, and ai cannot be divided into two parts with this

property. Similarly, D cannot contain two consecutive elements in

which the first is even. Thus D can only consist of separate single

elements (elements whose neighbors are not in D) and consecutive

pairs in which the first element is odd. Clearly, D cannot contain

a separate single element as in that case the middle part of resulting

permutation would contain a decreasing 3-subsequence, but the middle

part, Mi, of ai does not. On the other hand, if D contained two

consecutive elements x and y so that x is odd, then let z be the

element that immediately precedes x. Then all elements preceding z

in the remaining permutation are larger than all elements on the right

of z, including z. This is again a contradiction, as our permutations

ai cannot be divided into two parts with this property.

This shows that D is necessarily empty, thus we cannot delete any

elements from aj to obtain some ai where i < j. We have shown

that no two elements in {ai} are comparable, so {ai} is an infinite

antichain.

Note that all elements of our antichain avoid the pattern 123.

(4) Let Z be the zeta matrix of P . We claim that the number of all chains

from xi to xj is equal to the (i, j)-th entry of the matrix (2I − Z)−1.
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Note that 2I − Z = I − (Z − I). Therefore,

(2I−Z)−1 = (I− (Z−I))−1 = I+(Z−I)+(Z−I)2+(Z−I)3+ · · · .

As discussed in Lemma 16.13, the element of (Z − I)k in position

(i, j) is the number of all k-element chains from xi to xj , and the

proof follows.

(5) Note that (I−C)−1 = I+C+C2+ · · · . It follows from the definition

of C that the (i, j)-th element of Ck is the number of all k-element

maximal chains from xi to xj , and the proof follows.

(6) We know from Lemma 16.13 that ck = (ζ − δ)k(xi, xj). In other

words, ck is the (i, j)-entry of the matrix (Z − I)k. Therefore c0 −
c1 + c2− c3 + · · · is the (i, j)-entry of the matrix

∑

k(−1)k(Z − I)k =

(I + Z − I)−1 = Z−1 = M . Therefore,

c0 − c1 + c2 − c3 + · · · = µ(xi, xj)

as claimed.

(7) Let L be a finite lattice, and assume it does not have a minimum

element. Then it has at least two different minimal elements x and y.

Take x ∧ y; it has to be smaller than or equal to both x and y. As

both x and y are minimal, this forces x = x ∧ y and y = x ∧ y. This

contradicts to x 6= y. The existence of a maximum element can be

proved analogously.

(8) Take all subsets ofN that have a finite complement. These subsets are

partially ordered by containment, and form a lattice where the meet

is the intersection, and the join is the union. There is no minimum

element, however. Indeed, if there were such an element K, with com-

plement size k, then we could take any subset of N whose complement

is of size k + 1 to reach a contradiction. This lattice does not even

have a minimal element.

(9) Note that Bn = In2 , where I2 is the chain of two elements.

(10) The left-hand side is an upper bound of y, so it is at least y. On the

other hand, y is a common upper bound for y and x∧y, so it is indeed

their lowest common lower bound.

(11) The lattice shown in Figure 16.9 is a counterexample. Indeed, in that

lattice, x ∨ (y ∧ z) = x ∨ 0̂ = x, and (x ∨ y) ∧ z = 1̂ ∧ z = z.

(12) The lattice shown in Figure 16.10 is a counterexample. Indeed, in that

lattice, x ∧ (y ∨ z) = x ∧ 1̂ = x, and (x ∧ y) ∨ (x ∧ z) = 0̂ ∧ 0̂ = 0̂.

(13) Let us assume that the condition of Exercise 12 holds. Apply this

to the right-hand side of our new condition, considering x ∨ y, the
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Fig. 16.9 A lattice that is not modular.
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Fig. 16.10 A lattice that is not distributive.

expression in the first set of parentheses, as one element. We get

(x ∨ y) ∧ (x ∨ z) = [(x ∨ y) ∧ x] ∨ [(x ∨ y) ∧ z] = x ∨ [(x ∨ y) ∧ z]

= x ∨ [(x ∧ z) ∨ (y ∧ z)] = [x ∨ (x ∧ z)] ∨ (y ∧ z) = x ∨ (y ∧ z),

as claimed. The other implication can be proved in an analogue way.

(14) Let L be distributive, and let x ≤ z. Then

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) = x ∨ (y ∧ z),

which was to be proved.
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(15) Let us assume that the opposite is true, that is, that there is another

element c ∈ L so that c is the complement of b. In that case, we have

(a ∨ b) ∧ (c ∨ b) = 1̂ ∧ 1̂ = 1̂, and also, (a ∨ c) ∧ b ≤ b. So this lattice

could only be distributive if b = 1̂ held, but then b would only have 0̂

for its complement.

(16) Let L be the set of all subset of N that are either finite, or co-finite

(have a finite complement). Then the complement of x is its set-

theoretical complement. As our lattice is infinite, it is not isomorphic

to Bn for any n. (It can be shown that there is no finite example for

L.)

(17) If n ≥ 3, then Πn and NCn are not distributive. Indeed, let a, (resp.

b, and c) be three partitions with n− 2 singleton blocks, and the only

doubleton block {1, 2} (resp. {1, 3}, {2, 3}). Then the distributivity

axioms do not hold for these three elements.

On the other hand, Bn is always distributive. Indeed, for all three

subsets A,B,C ⊆ [n], we have

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

This is because both sides consist of the elements of [n] that are ele-

ments of A, and at least one of B and C.

(18) As x ≤ y, the blocks of y are unions of the blocks of x. Say that y has

k blocks, and they are unions of u1, u2, · · · , uk blocks of x. Then it is

straightforward to see that

[x, y] ∼ Πu1
×Πu2

× · · · ×Πuk
.

Therefore, Theorem 16.24 and Example 16.34 imply

µ(x, y) = Πk
i=1(−1)uk−1(uk − 1)!.

(19) No, NCn is not modular if n ≥ 3. Let n = 4, and let x = {1, 3}{2}{4},
y = {1}{3}{2, 4}, and z = {1, 2, 3}{4}. Then x ≤ z, but x ∨ (y ∧ z) =
x∨ 0̂ = x, and (x∨y)∧z = 1̂∧z = z. If n ≥ 4, then the same example

will work, by adding all the other elements as singleton blocks.

(20) The poset Bn is self-dual as the map defined by f(S) = Sc is an anti-

automorphism. The poset Dn is self-dual as the map g(k) = n/k is an

anti-automorphism. However, Πn is not self-dual if n ≥ 3. If it was, it

would have as many elements covering 0̂ (atoms) as elements covered

by 1̂ (coatoms). That is not the case, as Πn has
(

n
2

)

atoms, namely

the partitions that have one doubleton block, and n − 2 singletons,

and 2n−1 − 1 coatoms, namely the 2-block partitions.
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(21) This result was first proved in [37]. Write the elements 1, 2, · · · , n
clockwise around a circle, and write elements 1′, 2′, · · · , n′ interlaced
in counterclockwise order, so that 1′ is between 1 and n, 2′ is between
n and n − 1, and so on, i′ is between n + 2 − i and n + 1 − i. For

π ∈ NCn, join by chords cyclically successive unprimed elements be-

longing to the same block of π. Then define g(π) to be the coarsest

non-crossing partition on the elements 1′, 2′, · · · , n′ so that the chords

joining primed elements of the same block do not intersect the chords

of π. See Figure 16.11 for an example.

1

2

3

4

5

6

7

8

1’

2’

3’

4’ 5’

6’

7’

8’

Fig. 16.11 The partition π = ({1}, {2, 3, 8}, {4, 5, 7}, {6}) and its image g(π).

The map g is certainly a bijection, and it is order-reversing in NCn

since merging two blocks of π subdivides a block of g(π).

(22) In Exercise 14 of Chapter 14, we have seen that there is a bijection

between non-crossing partitions of [n] with a given set of minimal

elements, and 132-avoiding n-permutations with a given descent set.

Then Exercise 16 of Chapter 14 shows that the latter form a self-dual
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poset when ordered by the strict containment of their descent set.

(23) If x ≤NCn y, then each block of y is the union of some blocks of x.

This means however, that the minimal element of each block of y is

also a minimal element of x. So the set of minimal elements of y is

strictly contained in that of x, and the statement follows.
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As Evenly As Possible. Block Designs

and Error Correcting Codes

17.1 Introduction

17.1.1 Moto-cross Races

The following is a real-life example from moto-cross competitions. There

are sixteen drivers competing for a main prize and various other prizes.

The racetrack can safely accommodate four drivers in any single course,

called a heat. So there will be numerous heats, and at the end of each

heat, participants get points based on their rank in that heat. At the end

of the day, the driver with the highest number of total points is declared

the winner, the driver with the second highest number of points is declared

the runner-up, and so on.

The question is how to schedule the various heats. If there were only a

first prize to be awarded, then we could simply split the set of 16 contestants

into four heats of four contestants each, and then have the four heat-winners

compete in a final. That would be a short and fair race in that the best

driver would win. It would not be fair if a second prize, a third prize,

or additional prizes were awarded. Indeed, if the second-best driver is

unlucky, she could be put in the same heat as the best driver, and so would

not qualify for the final.

The other extreme solution is a race that is very fair, but unreasonably

long. Schedule each of the
(

16
4

)

possible four-driver heats to run once, and

rank the drivers at the end based on their total number of points earned.

The problem is that such a race would consist of
(

16
4

)

= 1820 heats. Even

if one heat took only ten minutes, and there were no down-time between

consecutive heats, this would take more than 12 days. The attention span

of most fans is shorter than that.

Therefore, the challenge is to design the heats so that the race is both fair

413
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and reasonably short (it can be completed in an afternoon). The length of

the race is very easy to measure. The fairness of the race is a little bit more

complex, but participants can agree on a few simple principles. As drivers

earn points in each heat they participate, each driver should compete in

the same number of heats. Each heat should use the available space, that

is, it should contain four drivers. Finally, to avoid situations in which some

drivers had stronger opponents than others, we can require that for any

two drivers, there is at least one heat in which they both competed. If this

“at least one” can be replaced by “exactly one”, that is even better. This

has the additional benefit of being a way to break two-way ties: if, at the

end of the race, two drivers have the same aggregate score, let the one who

beat the other in their only shared heat be ranked ahead of the other.

If such a race can be designed, then each driver needs to participate in

at least five heats. Indeed, each driver needs to compete against 15 others

in at least one heat, but can compete only against three in any one heat.

At least five heats for each of sixteen drivers means at least 80 ordered pairs

(d,H), where d is a driver competing in heat H . Since each heat consists

of four drivers, this means that there would have to be at least 20 heats.

So the question now is whether these minimal values can actually be

attained. That is, can we plan 20 heats of four drivers each so that each

driver participates in exactly five heats, and for any two drivers d1 and d2,

there is a heat in which they both competed? (It follows from the preceding

paragraph that if such a set of 20 heats exists, then for any two drivers d1
and d2, there is a unique heat H in which they both competed.)

It is very far from obvious, but it is possible to design such a race.

An example is shown below. If each heat takes ten minutes to complete,

and there is a two-minute down-time in the 19 breaks between heats, then

it takes only 238 minutes, or slightly less than four hours, for the entire

contest to take place.

Example 17.1. The following collection of heats satisfies all the require-

ments. Every driver is in five heats, every heat consists of four drivers, and

for any two drivers, there is exactly one heat containing both of them.

(1) 1, 2, 3, 4

(2) 5, 6, 7, 8

(3) 9, 10, 11, 12

(4) 13, 14, 15, 16
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(5) 1, 5, 9, 13

(6) 2, 6, 10, 14

(7) 3, 7, 11, 15

(8) 4, 8, 12, 16

(9) 1, 6, 11, 16

(10) 2, 5, 12, 15

(11) 3, 8, 9, 14

(12) 4, 7, 10, 13

(13) 1, 7, 12, 14

(14) 2, 8, 11, 13

(15) 3, 5, 10, 16

(16) 4, 6, 9, 15

(17) 1, 8, 10, 15

(18) 2, 7, 9, 16

(19) 3, 6, 12, 13

(20) 4, 5, 11, 14

At this point, the reader hopefully wants to know how this collection

of heats was built, and for what set of requirements will such a collection

exist. By the end of this chapter, we will find some interesting answers to

these questions.

17.1.2 Incompatible Computer Programs

Let us assume that we have downloaded seven new programs to our com-

puter. We have enough memory to run any three of them at the same

time, but not more. We want to test that the seven programs are pairwise

compatible with each other. That is, we want to make sure that there are

no programs A and B among our seven programs so that running A and

B at the same time always results in a system error (for reasons unrelated

to space or memory availability). Let us assume that all incompatibilities

are caused by a pair of programs, that is, if a subset S of programs cannot

run together, then there is a 2-element subset T ⊂ S so that even the ele-

ments of T cannot run together. What is the most efficient way to do this

if testing the simultaneous operation of any k programs (k ≤ 3) takes one

minute?

Before we start looking for the most efficient way to test all pairs of
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programs, let us discuss some obvious upper bounds for the needed time.

First, it is clear that
(

7
3

)

= 35 minutes will suffice, since we can simply test

all three-element subsets of the seven-element set {A,B,C,D,E, F,G} of

programs. There is a tremendous waste in this method, since every pair of

programs will run together five times (since there are five choices for the

third element of the triple that is being tested). A somewhat better upper

bound is 21 minutes. Indeed, we can just test each of the
(

7
2

)

= 21 pairs of

programs. However, it is easy to see the waste in this method as well. In

each test run, we are only testing a pair, and not a triple, of programs, and

hence we gain information about the compatibility of just one pair, and not

three pairs.

What is the best testing time that we can achieve? First, let us note

that we may assume that in an optimal testing scheme, each run consists

of testing a triple of programs, and not a pair. Indeed, we were told that

testing a triple takes one minute, the same amount of time that it takes to

test a pair, so we do not lose any time by completing all pairs of our testing

scheme to triples.

Let b be the number of all triples used in our testing scheme. In each of

these triples, three pairs are tested, so our scheme tests at most 3b pairs,

exactly that many if all these 3b pairs are different. On the other hand, we

need to test
(

7
2

)

= 21 pairs. Therefore, for any testing scheme, 3b ≥ 21,

and so b ≥ 7. So we need at least seven minutes to test all 21 pairs.

There remains the question whether we can actually construct a testing

system that consists of only seven triples and still tests for every pair. The

following example shows that the answer is in the affirmative.

Example 17.2. The following family F of subsets of the set S =

{A,B,C,D,E, F,G} has the property that for any two elements x and

y of S there is a (necessarily unique) element of F that contains both x and

y.

• {A,B,D},
• {B,C,E},
• {A,F,C},
• {A,E,G},
• {B,F,G},
• {C,D,G},
• {D,E, F}.

One way to verify that the preceding example is correct is by checking



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

As Evenly As Possible. Block Designs and Error Correcting Codes 417

that if x ∈ S, then x occurs in exactly three subsets belonging to F , and

that no element other than x occurs in more than one of those three subsets.

So we can test all pairs using the above scheme in just seven minutes.

Note that the above scheme is free of any waste; each pair is tested once, but

no pair is tested more than once. Usually, it is not possible to completely

eliminate waste like that. For instance, if we had to test all pairs of an eight-

element set of programs using a scheme of triples, then we would have had

to test
(

8
2

)

= 28 pairs. As 28 is not divisible by three, we would have

needed 10 triples, meaning that there would have been pairs tested more

than once. If we had to test all pairs of a six-element set of programs using

a scheme of triples, that would have meant testing
(

6
2

)

= 15 pairs. While 15

is divisible by three, complete elimination of waste is still not possible for

the following reason. Each program has to be part of at least three triples,

since each triple contains two other programs. So placing program A in

just two triples will test it in only four pairs. However, placing A in three

pairs tests A in six pairs. There are only five programs other than A, so at

least one of the pairs containing A gets tested twice.

As we see, there are several reasons for which a completely waste-free

testing scheme may not exist. From a more high-brow point of view, just

because in some cases we may not be able to prove that such a scheme

does not exist, it does not follow that it exists; it could be that it does not

exist for some reason that is unknown to us. This raises a whole family

of questions, such as what the sufficient and necessary conditions of the

existence of a waste-free testing scheme are, and what the most interesting

generalizations of this problem are.

17.2 Balanced Incomplete Block Designs

Let S be a finite set of v elements called vertices. Let B be a collection

of b non-empty subsets of S called blocks. Then the pair (S,B) is called a

block design or just a design. Note that this definition does not exclude the

possibility of some blocks appearing in B more than once, so the repetition

of blocks is allowed. That said, most of our examples will not contain

repeated blocks.

If a design (S,B) contains at least one block that does not contain all

vertices of S, then the design is called incomplete, otherwise it is called

complete. It goes without saying that complete designs are not very inter-

esting, unless some additional structure is placed on them. Our examples
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will all be incomplete designs.

If in a design, each block consists of k vertices, then the design is called

uniform or k-uniform. Note that simple graphs are 2-uniform designs, with

the edges of the graph being the blocks. If each vertex of a design occurs

in exactly r blocks, then the design is called regular or r-regular.

Finally, if in a k-uniform, r-regular incomplete design (S,B), each pair

of vertices occurs together in exactly λ blocks, then we say that (S,B)
is a balanced incomplete block design or BIBD, of parameters (b, v, r, k, λ).

Alternatively, we may simply call such a design a (b, v, r, k, λ)-design, since

the mere existence of the parameters r, k, and λ shows that (S,B) is regular,
uniform, and balanced, and if k < v, then (S,B) is incomplete.

Example 17.3. The design of Example 17.1 is a balanced incomplete block

design of parameters (20, 16, 5, 4, 1). That is, it has 20 blocks, 16 vertices,

each vertex occurs in five blocks, each block consists of four vertices and

each pair of vertices occurs together in exactly one block.

Example 17.4. The design of Example 17.2 is a balanced incomplete block

design of parameters (7, 7, 3, 3, 1). That is, it has seven blocks, seven ver-

tices, each vertex occurs in three blocks, each block consists of three vertices,

and each pair of vertices occurs together in exactly one block.

The following is an even smaller example of a BIBD.

Example 17.5. Let S = {a, b, c}, and let B= {{a, b}, {b, c}, {a, c}}. Then
(S,B) is a balanced incomplete block design with parameters (3, 3, 2, 2, 1).

The preceding example can be easily generalized as follows.

Example 17.6. Let 1 < k < n. Then the family of all k-element subsets

of [n] is a BIBD. The reader is invited to verify that the parameters of this

block design are
(

(

n
k

)

, n,
(

n−1
k−1

)

, k,
(

n−2
k−2

)

)

.

We point out that while all BIBDs have a lot of symmetries built in

them, some have more than others. The BIBDs of Examples 17.2 and 17.5

both satisfy the equalities b = v, and, following from the latter, r = k. If

a BIBD satisfies either (or as we will see very soon, equivalently, both) of

these equalities, then it is called symmetric. So the BIBDs of Examples

17.2 and 17.5 are symmetric, those of the other examples are not.

At this point, you may say, “OK, so there exist a lot of BIBDs. However,

can we have idea about how difficult it is to create one? What are the
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necessary conditions on the parameters for the existence of a BIBD?” The
following two propositions give a partial answer to those questions.

Proposition 17.7. If a (b, v, r, k, λ)-design exists, then bk = vr.

Proof. Let (S,B) be such a design. Then both sides count all ordered
pairs (w, B), where w ∈ S, B ∈ B, and w ∈ B. In other words, these
are ordered pairs consisting of a vertex and a block containing that vertex.
The left-hand side counts these pairs according to the blocks (there are k

such pairs for each of b blocks), and the right-hand side counts these pairs
according to the vertices (there are r such pairs for each of v vertices). �

Note that in the proof of Proposition 17.7, the parameter λ did not
play any role, and even the fact that λ existed, that is, that the design
was balanced, was irrelevant. So the equality bk = vr holds for all regular,
uniform designs.

Proposition 17.8. If a (b, v, r, k, λ)-design exists, then r(k−1) = λ(v−1).

Proof. Let (S,B) be such a design. Let x ∈ V be a fixed vertex. Then
both sides count all ordered pairs (w, B), so that x and w are both vertices
in the block B, with x �= w. The left-hand side counts these pairs by
first choosing one of the r blocks that contain x, then choosing any of the
remaining k− 1 vertices of B for the role of w. The right-hand side counts
these pairs by first choosing w in one of v − 1 ways, then choosing one of
the λ blocks that contain both x and w for the role of B. �

Note that Propositions 17.7 and 17.8 show that the three parameters
v, k, and λ determine the other two in any BIBD. Therefore, it is correct
to refer to BIBDs as (v, k, λ)-designs. In this terminology, the BIBD of
Example 17.1 is a (16, 4, 1)-design, and the BIBD of Example 17.2 is a
(7, 3, 1)-design.

17.3 New Designs From Old

There are several ways to create new designs from ones that we already
have at hand. Perhaps the simplest of these is the complementary design.
For two sets X and Y , let X \ Y denote the set of elements that are in X

but not in Y .

Definition 17.9. Let D = (S,B) be a design. The complementary design
of (S,B) is the design Dc whose set of vertices is S, and whose blocks are
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the complements of the blocks in B in S. That is, B is a block of Dc if and

only if S \B is a block of D.

Example 17.10. If D is the design of Example 17.2, then Dc is the design

on vertex set {A,B,C,D,E, F,G} that has blocks

• {C,E, F,G},
• {A,D, F,G}
• {B,D,E,G},
• {B,C,D, F},
• {A,C,D,E},
• {A,B,E, F},
• {A,B,C,G}.

The reader should spend a moment on verifying that the complementary

design of a regular, uniform design is also regular and uniform. It is a little

bit less obvious, but still straightforward to see that the complementary

design of a BIBD is also balanced, and so it is also a BIBD. You are asked

to prove this in Exercise 5.

We present the next way to define a new design from an old one because

it allows us to talk about the incidence matrix of a design, a concept which

will be useful in the near future.

Definition 17.11. Let D be a design with blocks B1, B2, · · · , Bb and ver-

tices v1, v2, · · · , vv. The incidence matrix of D is the v×b matrix A defined

by

Ai,j =







1 if vi ∈ Bj ,

0 if vi /∈ Bj .

Example 17.12. Let D be the design whose blocks are the two-element

subsets of [4]. Then the incidence matrix of D is

A =









{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
1 1 1 1 0 0 0

2 1 0 0 1 1 0

3 0 1 0 1 0 1

4 0 0 1 0 1 1









.
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Now we are in a position to present the next example of constructing

new designs from old.

Definition 17.13. Let D be a design with incidence matrix A. Then the

dual of D is the design Dd whose incidence matrix is AT , that is, the

transpose of A.

Example 17.14. The dual Dd of the design of Example 17.12 is the design

whose incidence matrix is

A =



















{a, b, c} {a, d, e} {b, d, f} {c, e, f}
a 1 1 0 0

b 1 0 1 0

c 1 0 0 1

d 0 1 1 0

e 0 1 0 1

f 0 0 1 1



















.

That is, if we relabel the rows of AT by the letters a, b, c, d, e, f , then

the blocks of Dd are {a, b, c}, {a, d, e}, {b, d, f}, and {c, e, f}.

Note that Dd of Example 17.14 is not a BIBD since it is not balanced.

This is because some pairs of blocks of D intersect, while some others do

not. Hence some pairs of vertices of Dd do appear together in a block, while

some others do not.

The incidence matrix is a seminal tool in using techniques of linear

algebra to prove facts about designs. Let us start with a simple observation.

Proposition 17.15. Let A be the incidence matrix of a design D with

parameters (b, v, r, k, λ). Then

AAt = (r − λ)Iv + λJv, (17.1)

where Iv is the identity matrix of size v × v and Jv is the matrix of size

v × v whose entries are all equal to 1.

Proof. If i 6= j, then the (i, j)-entry of AAT is the dot product of the ith

and jth rows of A. This dot (scalar) product is the sum of 0s and 1s, with

a 1 for every block that contains both the ith and the jth vertex. There are

λ such blocks. If i = j, then the (i, i)th entry of AAT is the dot product of

the ith row of A by itself. This dot product is a sum of 0s and 1s, a 1 for

each time the ith vertex appears in a block. That happens r times. �
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Recall from linear algebra that the number m is called an eigenvalue of

the square matrix M if there exists a nonzero vector x so that Mx = mx.

In that case, x is called an eigenvector. A subspace spanned by eigenvectors

of M is called an eigenspace of M .

Corollary 17.16. If A is the incidence matrix of a BIBD with parameters

(b, v, r, k, λ), then the eigenvalues of AAT are r−λ with multiplicity v− 1,

and r + λ(v − 1) = rk with multiplicity one. In particular, since none of

these eigenvalues is 0, we have that detAAT 6= 0.

Proof. We have seen in Proposition 17.15 that AAT = (r − λ)I + λJ .

On the one hand, all nonzero vectors are eigenvectors of (r − λ)I, with

eigenvalue r−λ. On the other hand, it is easy to verify that any vector with

coordinate sum 0 is an eigenvector of λJ with eigenvalue 0. Furthermore,

vectors of the form (x, x, · · · , x) also form an eigenspace (a one-dimensional

eigenspace) of J , with eigenvalue λv.

Therefore, the eigenvectors of AAT = (r−λ)I+λJ are the eigenvectors

of λJ , and their associated eigenvalues are the sums of their associated

eigenvalues for the matrix (r − λ)I and the matrix λJ . This proves our

claim. �

We have pointed out immediately after Example 17.14 that the dual of

a BIBD is not necessarily a BIBD because it is not necessarily balanced.

Indeed, it follows from the definition of dual designs that for Dd to be

balanced, the following would have to hold. For any two distinct blocks Bi

and Bj of D, the size of the intersection Bi ∩ Bj should be a fixed integer

l, that is, it should not depend on the choice of Bi and Bj. In that case,

we say that D is a linked BIBD. If D is linked, and only then, Dd will be

balanced, since any two of its vertices will occur together in l blocks.

Proposition 17.15 makes it easy to prove that all symmetric designs are

linked.

Proposition 17.17. All symmetric BIBDs are linked.

Proof. Let D be symmetric with parameters (v, k, λ). Then the adja-

cency matrix A of D is a square matrix, so the product ATA exists. Note

that AT is the adjacency matrix ofDd. So if we can prove that ATA = AAT ,

then we will be done, since all non-diagonal entries of AAT are equal to

λ, which then implies that any two blocks of A intersect in exactly l = λ

vertices.
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Given that AAT = (r − λ)I + λJ , the proof of AAT = ATA is purely

algebraic. Note that JA = AJ , where J is the v × v matrix whose entries

are all equal to 1 . We know from Corollary 17.16 that A−1 exists, otherwise

detAAT would be 0. Multiply both sides of (17.1) by A−1 from the left,

then by A from the right, to get

ATA = A−1((r − λ)I)A + λA−1JA

= (r − λ)I + λJ.

So AAT = ATA as claimed, implying that D is linked. �

In particular, since a symmetric BIBD is linked, its dual is also a BIBD.

The following theorem shows that the opposite is true as well. That is, if

the dual of a BIBD is a BIBD, then that BIBD must be symmetric. This is

because, as we will see, all BIBDs have at least as many blocks as vertices.

Theorem 17.18. (Fisher’s inequality) If D is a BIBD on v vertices and b

blocks, then v ≤ b.

Proof. Let us consider the incidence matrix A of D. We know from

Proposition 17.15 that detAAT 6= 0, so in particular, this v× v matrix has

rank v. On the other hand, the rank of the product of two matrices is never

more than the rank of either matrix, so

v = rank(AAT ) ≤ rank(A).

Finally, the rank of any matrix is the number of its linearly independent

columns, so at most the number of its columns. Hence

rank(A) ≤ b.

The last two displayed inequalities imply our claim by transitivity. �

See Exercise 10 for a very interesting variation of this Theorem.

The following result provides another necessary condition for the exis-

tence of symmetric BIBDs.

Theorem 17.19. If D is a symmetric BIBD with parameters (v, r, λ), and

v is even, then (r − λ) is a perfect square.

Proof. We have seen in Corollary 17.16 that

detAAT = (r + (v − 1)λ) · (r − λ)v−1.

Clearly, the left-hand side is a perfect square since it is equal to (detA)2.

On the right-hand side, using Proposition 17.8 and the fact that our design

is symmetric, we have (r + (v − 1)λ) = r + r(k − 1) = rk = r2. Therefore,

(r−λ)v−1 has to be a perfect square as well. For that to happen, r−λ has

to be a perfect square since v − 1 is odd. �
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Note that Theorem 17.19 has a counterpart for the case of odd v which

is much more difficult to prove. We present that theorem without a proof.

In the Notes section, we give some pointers to more specialized books that

contain the proof of this and other theorems that go beyond the scope of

this book.

Theorem 17.20. If D is a symmetric BIBD with parameters (v, r, λ) ex-

ists, and v is odd, then there exist integers x, y, and z that are not all equal

to zero so that

x2 = (k − λ)2 + (−1)(v−1)/2 · λz2.

Theorems 17.19 and 17.20 are called the Bruck-Ryser-Chowla theorem.

We mention two more ways of creating new BIBDs from existing ones.

For these methods to work, the existing BIBD has to be symmetric.

Definition 17.21. Let D be a symmetric BIBD, and let B be a block of D.
The residual design of D with respect to D is obtained from D by removing

B from D, and removing all vertices of B from all remaining blocks of D.

In Exercise 8, you are asked to verify that this is a correct definition,

that is, that the block design defined by definition 17.21 is indeed a BIBD.

Definition 17.22. Let D be a symmetric BIBD, and let B be a block of D.
The derived design of D with respect to B is obtained from D by removing

B from D, and replacing every other block Bi by Bi ∩B.

You will be asked to justify this definition in Exercise 9.

17.4 Existence of Certain BIBDs

In Section 17.2, we have seen examples of necessary conditions for the

existence of balanced incomplete block designs. Propositions 17.7 and 17.8

provided such conditions in terms of the parameters b, v, r, k, and λ.

Later, these were supplemented by Theorems 17.18, 17.19, and 17.20. In

Section 17.3, we saw examples showing how to obtain new BIBDs from old

ones. However, we have not seen many examples of constructing BIBDs,

especially infinite families of them, of “scratch”, as opposed to constructing

them from other designs. An exception was the rather easy Example 17.6.
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The reason for this is that sufficient conditions on the existence of certain

designs are typically more difficult to prove than necessary conditions. We

will mention some of them here without complete proofs.

Theorem 17.23. Let n = pk be a power of a prime number p, with k ≥ 1.

Then a symmetric BIBD with parameters (n2 + n+ 1, n+ 1, 1) exists.

Reading this, the reader should wonder why the fact that n is a power

of a prime matters. The answer is that if n is a power of a prime, then a

finite field Fn with n elements exists. We can then take the n3− 1 ordered

triples of the form (x, y, z) in which at least one of the three coordinates

is non-zero, and identify two such triples if they are constant multiples

of each other. As there are (n − 1) non-zero constants in Fn, this creates

(n3−1)/(n−1) = n2+n+1 non-identical triples. These will be the vertices

of the BIBD that we are constructing.

Interestingly, the blocks will also be defined as ordered triples (a, b, c)

of the same kind. So (1, 2, 3) labels both a block and a vertex. (One should

think of the block (1, 2, 3) and the vertex (1, 2, 3) as different objects with

the same label– say one is red and the other is blue.) Then we say that

block (a, b, c) contains vertex (x, y, z) if

xa+ yb+ zc = 0.

It can then be shown that these rules define a BIBD with the aforemen-

tioned parameters.

A BIBD described in Theorem 17.23 is called a projective plane of order

n ≥ 2. So Theorem 17.23 shows that if n is a prime power, then a projective

plane of order n exists. This, of course, does not imply that no projective

plane can exist if n is not a prime power. However, no such plane is known,

and it is conjectured that no such projective planes exist.

Note that if we apply Theorem 17.23 with n = 2, then we get that a

symmetric BIBD with parameters (7, 3, 1) exist. We have seen one such

design, that of Example 17.2. We say that designs D and H are isomorphic

if there is a bijection f from the vertex set of D to the vertex set of H
so that {v1, v2, · · · , vk} is a block that appears in D exactly m times if

and only if {f(v1), f(v2), · · · , f(vk)} is a block in H exactly m times. In

Exercise 16, you are asked to prove that all BIBDs with parameters (7, 3, 1)

are isomorphic. So the design of Example 17.2 is the projective plane of

order two. For this reason, that design is called the Fano plane and is often

represented by the diagram shown in Figure 17.1.
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ED

G

F
CB

A

Fig. 17.1 The Fano plane.

In this representation, the blocks are the six straight lines, and the

circle. The fact that a circle is used is not by accident. See Exercise 30 for

an explanation.

17.4.1 A Derived Design of a Projective Plane

As an application, consider a derived design of a projective plane with

parameters (n2 + n+ 1, n+ 1, 1). In Exercise 9, you are asked to compute

the parameters of such a design. For now, we just state that if n = 4, then

the derived design of a (21, 5, 1)-projective plane is a BIBD with parameters

(20, 16, 5, 4, 1). If that 5-tuple seems familiar, then that is because we have

seen such a design, namely in the very first example of this chapter, Example

17.1, that discussed moto-cross races. The design presented there was a

derived design of a projective plane of degree four. It can be shown that

such a derived design can be constructed directly, without constructing the

projective plane, as follows. Consider the 4-element finite field F4, with

elements {0, 1, a, a2}. Let the vertices of our design be the 16 ordered pairs

(x, y), where x and y are elements of F4. Let the blocks be the solutions of

the 16 equations of the form y = mx+ c, where m and c are also elements

of F4, and the solutions of the four equations of the form x = c. It is
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straightforward to show that each of these equations has four solutions of

the form (x, y), so we get 20 blocks of size four. It can be shown that the

other conditions of being a BIBD are also satisfied by the design we have

just defined. You will be asked to fill in the gaps (in a more general form) in

Exercises 31 and 32. A derived design of a finite projective plane is called

a finite affine plane.

17.5 Codes and Designs

17.5.1 Coding Theory

The quest for ways to encode a message reliably, securely, and economically

goes back to at least the Roman empire. Here security means that inter-

cepted messages are only readable by the intended recipients. This excludes

commonly used ways of communication, such as natural languages. Econ-

omy means that a message should not take unreasonably long to encode or

decode, that is, both the number of symbols used to encode a message and

the number of different kinds of symbols used to encode the message should

be kept as low as possible without hurting the other goals of the encoding

process. Third, the coding process should be reliable. In other words, the

recipient should not misinterpret our message. This means that our coding

system should be injective, that is, different messages should be encoded

differently. We may impose the stronger requirement that the recipient be

able to decode our message even if there are a few mistakes in the coded

message that he receives, as long as the number of those mistakes is not

too large.

Coding theory is the huge discipline that studies the above problems

from various aspects. It is the subject of independent graduate and un-

dergraduate courses. We will not even attempt to give an overview of the

topic here; we will just show a few connections between coding theory and

the theory of designs.

17.5.2 Error Correcting Codes

Let us assume that in a crucial moment of a football game, the coach wants

to send a message to one of his players, who is standing far away from him.

Before the game, the coach and a player agreed on signals as follows. If, in

a comparable situation, the coach lifts his left hand, that means that the

player should try to run a (previously discussed) very risky play next time
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he gets the ball; if the coach lifts his right hand, then the player should not

try to run that play.

Given the importance of this decision, but also the short time that is

left to relay the message, the coach will send the same signal three times,

with short pauses in among those times. In the heat of the moment, the

player may misinterpret one of the signals, or may mistake the someone

else’s hand for the coach’s hand. Both of these are rather unlikely, but not

impossible, sources of error. It is extremely unlikely that any of these errors

would occur more than once out of the three signals. Assuming that the

coach will not change his mind between his first and last signal, there are

only two possible series of signals he can send, namely LLL or RRR (L for

raising his left hand, and, yes, R for raising his right hand). If the player

sees one of these sequences, he will immediately know what to do. However,

if he mistakes a signal for its opposite, and he gets a sequence like LRL or

RRL, then he is most likely to take a majority vote. For instance, if the

player reads the sequence LLR, he can argue as follows. It is extremely

unlikely that I misread the signal more than once. Therefore, the two times

I saw the left hand of the coach raised, could not both be in error. So the

correct signal is L, and I will run the risky play.

The previous example was simple since there were only two possible

correct outcomes. Now let us assume that we want to send a message in

the form of a 0-1 string that will encode which of the four friends Anna,

Benjamin, Catherine and David plans to attend a party. This message can

be described by a 0-1 string of length four, in which the first, second, third,

and fourth digit is 1 if, respectively, Anna, Benjamin, Catherine and David

plans to attend the party. So the number of possible correct messages is

24 = 16. If the receiver gets the message 1001 and knows that there is at

most one erroneous digit, then she does not know which digit is erroneous

and needs to be corrected. However, if we send the intended message three

times, and the receiver still knows that at most one digit is erroneous, then

she can easily figure out which digit that is. Indeed, for each of k = 1, 2, 3, 4,

consider the 3-tuple of the kth, k + 4th and k + 8th digits. If they are all

identical, then they are correct, if they are not all identical, then the digit

that occurs only once has to be changed to the opposite digit.

The preceding examples show the important expectations that we have

towards error correcting codes. They should be compact, that is, the words

encoding the messages should be as short as possible, errors should be rec-

ognizable if we know that there are not too many of them, and errors should

be correctable in an unambiguous way. This last expectation suggests that
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in some sense, our legal codewords (the possible correct messages) should

be quite dissimilar, that is, changing a digit in a legal codeword should

not lead to another legal codeword, since then we would be unable to tell

when that digit is correct. These concepts will be formalized in the next

subsection.

17.5.3 Formal Definitions on Codes

Let S and T be two finite alphabets. Let T ∗ be the set of all finite sequences
whose elements are in T . A code c is an injective function c : S → T ∗. If

t ∈ T ∗ is in the range of c : S → T ∗, then t is called a codeword for the code

C. The set C of all codewords for c is also called the code c. If T = {0, 1},
then the code is called binary. The injection c : S → T ∗ can easily be

extended to the set S∗ of all finite sequences (or words) over S by setting

c(s1s2 · · · sn) = c(s1)c(s2) · · · c(sn).

The fact that c : S → T ∗ is an injective function does not in itself guarantee

that the extended function c : S∗ → T ∗ is injective.

Example 17.24. Let S = {x, y, z}, let T = {0, 1}, and let c(x) = 0, c(y) =

1, and c(z) = 01. Then c : S∗ → T ∗ is not injective since c(xy) = c(z) = 01.

That is, a recipient receiving the string 01 could not know whether the

original message was xy or z. If this problem does not occur, that is, if the

extended function c : S∗ → T ∗ is injective, then we say that c is uniquely

decodable.

A good way to make sure that c is uniquely decodable is by making sure

our code c : S → T is prefix-free.

Definition 17.25. We say that a code c : S → T is prefix-free if there are

no two codewords c(x) and c(y) so that c(x) = c(y)q for some string q ∈ T ∗.

Example 17.26. Let S = {x, y, z}, let T = {0, 1}, and let c(x) = 0,

c(y) = 11, and c(z) = 10. Then c is prefix-free.

The following theorem shows the main advantage of prefix-free codes.

Theorem 17.27. If c is prefix-free, then it is uniquely decodable.

Proof. Let c : S → T ∗ be a prefix-free code, and let us say that

c(x1x2 · · ·xk) = c(y1y2 · · · ym) = t1t2 · · · tn,



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

430 A Walk Through Combinatorics

where the xi and the yj are elements of S, and tr ∈ T .

We prove that then k = m, and x1x2 · · ·xk = y1y2 · · · yk, so xi = yi. We

prove this by strong induction on n. For n = 1, the statement is obvious

since c : S → T is an injective function by definition. Now let us assume

that the statement is true for all positive integers less than n. Observe that

c(x1) = c(y1) must hold, otherwise one of c(x1) and c(y1) would be a prefix

of the other. As c is injective on S, this implies that x1 = y1. Hence

c(x2 · · ·xk) = c(y2 · · · ym) = th · · · tn
for some h > 1. In particular, th · · · tn has less than n letters, and as such,

is uniquely decodable by the induction hypothesis. So xi = yi for all i as

claimed. �

The converse of Theorem is not true as you are asked to show in Exercise

33.

One way to make absolutely sure that a code is prefix-free is to choose

all codewords to be of the same length. These codes have many additional

advantages in addition to being uniquely decodable. Therefore, for the rest

of this chapter, all codes will consist of codewords of the same length.

Definition 17.28. Let v and w be two n-letter words over the same finite

alphabet. The Hamming distance of v and w, denoted by d(v, w), is the

number of positions in which v and w differ.

Example 17.29. Let v = (0, 1, 1, 0, 1, 0), and let w = (1, 0, 1, 0, 1, 1). Then

d(v, w) = 3, since v and w differ in their first, second, and sixth entries.

The Hamming distance satisfies the triangle inequality. This is the con-

tent of the next theorem.

Theorem 17.30. Let u, v, and w be three n-letter words over the same

alphabet. Then

d(u,w) ≤ d(u, v) + d(v, w).

Proof. We can turn u to v by changing at most d(u, v) letters, then we

can turn v to w by changing at most d(v, w) letters. So we can turn u to

w by changing no more than d(u, v) + d(v, w) letters. �

If we are to create a code that can correct e errors, or, in what follows,

e-error correcting codes, then it suffices to choose the codewords in such a

way that the distance between any two of them is at least 2e + 1. That
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makes sure that if a codeword is transmitted by no more than e errors, then

it will be closer to one codeword w than all others. The receiver can then

conclude that w was the intended message.

A geometric way to describe the above idea is as follows. Let us say

that the ball B(w, e) whose center is the codeword w and whose radius is e

is the set of all words v so that d(v, w) ≤ e. A code c is e-error correcting if

the balls of radius e around any two of its codewords w and w′ are disjoint.
In other words, a code is e-error correcting if and only if the distance of

any two codewords is at least 2e+ 1.

Definition 17.31. An (n,m, d)-code is a code that consists ofm codewords

of length n so that the Hamming distance of any two codewords is at least

d.

Intuitively, the key of creating efficient e-error correcting codes is to

“pack” the codewords as closely as possible while making sure that the

balls of radius e centered at each codeword remain disjoint. It is plausible

to think that highly symmetric structures will be useful in the creation of

such codes. For instance, one can try to build an error correcting code using

the incidence matrix A of the BIBD of Example 17.2, that is, the matrix























{ABD} {BCE} {ACF} {AEG} {BFG} {CDG} {DEF}
A 1 0 1 1 0 0 0

B 1 1 0 0 1 0 0

C 0 1 1 0 0 1 0

D 1 0 0 0 0 1 1

E 0 1 0 1 0 0 1

F 0 0 1 0 1 0 1

G 0 0 0 1 1 1 0























.

First, we note that the Hamming distance of any two distinct rows is four,

since any two vertices of the (7, 3, 1)-design at hand occur together in ex-

actly one block. So for any two rows, there is exactly one position in which

both rows contain a 1, and two positions in which both rows contain a 0.

Therefore, the two rows differ in four positions. Hence, the seven rows of

the above matrix form a (7, 7, 4)-code. In particular, this code is 1-error

correcting.

At this point, the reader should feel some discomfort since the code we

have just created is wasteful. Indeed, having the codewords four apart is

not any better than having them three apart for error correcting purposes.
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Both constructions lead to 1-error correcting codes. So it is natural to ask

whether the (7,7,4) code above can be extended in some natural way.

The answer is yes. This is the content of the next theorem. If v is

a vector of length n whose entries are all 0 or 1, then the complement of

v is the 0-1 vector of the same length whose coordinates disagree with

the corresponding coordinates of v in every position. In other words, the

complement of v is equal to 1− v in the binary arithmetic, where 1 is the

vector of length n whose entries are all equal to 1.

Theorem 17.32. Let T be the incidence matrix of a (7, 3, 1)-design D.
The following 16 codewords form a (7, 16, 3)-code over the binary alphabet.

(1) The seven rows of the matrix T ,

(2) the complements of the seven rows of T ,

(3) the word 0000000, and

(4) the word 1111111.

Proof. All we need to show is that the distance between any two code-

words is at least three. Let v and w be two codewords. If they both

correspond to a row of T , then they both correspond to a vertex in D.
As D is linked with link number 1, this implies that there is exactly one

position in which v and w both have a 1. Hence there are two positions in

which they both have a 0, so d(u, v) = 4. If u and v are both complements

of rows of T , then the same argument, applied to the complement of u and

v, proves that again, d(u, v) = 4.

If u is a row of T , and v is the complement of another row of T , then

for parity reasons, d(u, v) is an odd number. So it suffices to show that

d(u, v) 6= 1. However, d(u, v) = 1 would imply that v contains a 1 in each

position where u does, meaning that the vertices corresponding to u and

the complement of v do not appear together in any block of D, which is a

contradiction.

In all other cases, the statement d(u, v) is obviously true. �

The reader is probably wondering why we stopped at 16 codewords

instead of trying to extend our code even further. The answer is that the

addition of further codewords is not possible without losing the 1-error

correcting property.

Indeed, if c is a binary code whose codewords are of length seven, then

the ball B(w, 1) centered at the codeword w and of radius 1 consists of eight

words, namely w itself, and the seven words obtained from w by changing

exactly one letter of w. If c is 1-error correcting, then the m balls B(w, 1)
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are all disjoint, showing that their total volume is at most the total number

of 7-letter binary words, that is, 27 = 128. As the volume of each such ball

is eight, there can be no more than 128/8 = 16 balls, and so, there can be

at most 16 words in such a code.

The following example was a special case of some general phenomena.

The first is a simple upper bound for the number of codewords in an e-error

correcting code.

Proposition 17.33. Let c be an r-error correcting code over the binary

alphabet in which all codewords are of length n. Then the number |C| of
codewords in c is at most

2n
∑r

i=0

(

n
i

) .

You are asked to provide the proof in Exercise 11.

Second, the (7,16,3)-code we created from the (7,3,1)-BIBD was as good

as it could be in that the balls of radius 1 centered at the codewords filled

the entire vector space B7 (the seven-dimensional vector space over the

binary field) with no gaps. This is an important concept that has its own

name.

Definition 17.34. Let c be an r-error correcting code over Bn. We say

that c is perfect if each word v ∈ Bn belongs to a ball Bw(r) for some

codeword w.

So the code of Theorem 17.32 is perfect. For perfect codes, the state-

ment of Proposition 17.33 can be strengthened as follows.

Lemma 17.35. Let c be a perfect code over Bn that is r-error correcting.

Then

|C| = 2n
∑r

i=0

(

n
i

) .

You are asked to provide the proof in Exercise 12.

In particular, a perfect r-error correcting code over Bn does not exist

unless 2n is divisible by
∑r

i=0

(

n
i

)

. In other words, for such a code to exist,

it is necessary for
∑r

i=0

(

n
i

)

to be a power of 2.

So a perfect 1-error correcting code overBn that is not 2-error correcting

can exist only if
(

n
0

)

+
(

n
1

)

= n+1 is a power of 2, that is, when n = 2k − 1

for some positive integer k. The code we created in Theorem 17.32 was

the special case of k = 3. The special case of k = 2 also yields a perfect
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1-error correcting code, namely the somewhat unexciting code consisting

of the two words 000 and 111.

The last paragraph raises two interesting questions. First, we have seen

that a perfect 1-error correcting code over Bn that is not 2-error correcting

can only exist in very limited circumstances, namely when n = 2k − 1. Is

this necessary condition sufficient?

Question 17.36. Is it true that for all integers k ≥ 2, there exists a 1-error

correcting code over Bn = B2k−1 that consists of

2n

n+ 1
=

22
k−1

2k
= 22

k−k−1

codewords?

Second, are there other r-error correcting binary codes that are perfect?

Note that this question can be broken down into the following two parts.

Question 17.37. Are there any pairs of positive integers (n, r) so that

n > r > 1 and
∑r

i=0

(

n
r

)

is a power of 2?

If yes, are there any r-error correcting codes over Bn that are perfect?

The answer to Question 17.36 is in the affirmative. In order to be able

to prove that, we need a few simple definitions. A code c over Bn is called

linear if the set of codewords forms a subspace of the vector space Bn. In

other words, c is a linear binary code if the binary sum of any two codewords

is also a codeword. Note that the sum of two codewords is computed letter

by letter, in the binary arithmetic, without carries. So the sum of 101 and

011 is 110. The weight of a codeword is simply the sum of its letters. If the

code is binary, then this means the number of letters equal to 1 in a given

codeword. We are now ready to state the next theorem.

Theorem 17.38. For all positive integers k ≥ 2, there exists a perfect

binary (2k − 1, 22
k−k−1, 3) code.

The codes described in Theorem 17.38 are called Hamming codes, to

honor their inventor, Richard Hamming. It follows from the parameters of

these codes that they are 1-error correcting codes.

Proof. (of Theorem 17.38) Let A be any (2k − k − 1)× k matrix whose

rows are the 2k − k− 1 binary strings of length k that contain at least two

digits equal to 1. Note that in particular, the rows of A are all different.

Now consider the matrix H = I|A, where I is the identity matrix of size
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(2k − k − 1)× (2k − k − 1), and I|A simply means that A is placed on the

right of I. So H is a (2k−k−1)× (2k−1) matrix over the binary alphabet,

and each row of H contains at least three digits equal to 1.

Now let c be the binary code whose codewords are the 22
k−k−1 possible

linear combinations of the rows of H with coefficients 0 or 1. Note that all

these linear combinations are different, since even their (2k−k−1)-prefixes

are different. Indeed, for i ≤ 2k − k− 1, a linear combination will have a 1

in the ith position if and only if the coefficient of the ith row in that linear

combination is 1.

The rows of H are obviously of length 2k − 1 as claimed, hence so are

all their linear combinations, so all the codewords of c. There remains to

show that the distance of any two codewords is at least three.

We claim that every nonzero codeword of c has weight at least three.

Indeed, every codeword obtained by adding at least three rows ofH contains

at least three 1s among its first 2k−k− 1 entries, every codeword obtained

by adding two rows of H contains two 1s among its first 2k − k − 1 entries

and at least one 1 after that, while the rows of H contain, by definition,

one 1 among their first 2k − k − 1 entries and at least two 1s after that.

Now let us assume that v and w are two distinct codewords so that

d(v, w) < 3. Then d− v = d+ v is also a codeword, and the weight of d− v

is less than 3, since d − v can have a 1 only in the positions where v and

w differ. That contradicts to the fact proved in the previous paragraph,

namely that all codewords in c have weight at least three.

Therefore, c is indeed a (2k − 1, 22
k−k−1, 3) binary code as claimed. �

The answer to Question 17.37 is not as positive as that to the previous

question. It is easy to notice that if n is odd, and r = (n− 1)/2, then

r
∑

i=0

(

n

i

)

= 2n−1.

However, this is not too exciting, since this equality simply means that there

is a perfect binary (n, 2, n) code, in other words, a perfect binary code that

is (n − 1)/2-error correcting, but which consists of only two codewords of

length n. This is obvious, since any word and its opposite will do, such as

11 · · · 1, and 00 · · · 0.
Interestingly, there are not many other pairs (n, r) so that 1 < r < n

and
∑r

i=0

(

n
r

)

is a power of two. It turns out that the only such pairs

are (23, 3) and (90, 2). As far as these pairs of parameters are concerned,

there does exist a perfect binary code, called the Golay code with n = 23
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and r = 3, but there does not exist a perfect binary code with parameters

n = 90 and r = 2.

Notes

The topic of design theory is huge, and is the subject of many books at

different levels. At the introductory level, a recent and readable volume is

Introduction to Combinatorial Designs [46] by W. D. Wallis. For a compre-

hensive reference material, we recommend the Handbook of Combinatorial

Designs [14].

The theory of designs is closely connected to other areas in combina-

torics. The reader got a glimpse of one of those areas, coding theory, in

this chapter. For further reading in that subject, a very reader-friendly

possibility is Codes by Norman Biggs [5].

Another related topic is that of Latin squares. These interesting struc-

tures have not been discussed in our text, but they are the subject of

Exercises 18-22, and of Exercise 43 of this chapter.

Exercises

(1) (-) Does there exist a BIBD with parameters (120, 10, 36, 3, 9)?

(2) (-) Does there exist a BIBD with parameters (120, 10, 36, 3, 8)?

(3) (-) Does there exist a BIBD with b = 35, k = 3, and r = 4?

(4) (-) Recall from Chapter 9 that a regular graph is a simple graph in

which each vertex has the same degree. So, regular graphs are regular,

2-uniform designs, with the edges of the graphs playing the role of

blocks. Which regular graphs are BIBDs?

(5) (-) Prove that the complementary design of a BIBD is also a BIBD.

What are the parameters of this BIBD?

(6) What is the largest possible number of blocks in a uniform design on v

vertices if no block is repeated?

(7) Describe all symmetric BIBDs with 3 ≤ v ≤ 12 and λ = 1.

(8) Prove that the residual design of a symmetric BIBD is a BIBD. What

are the parameters of a residual design of a symmetric design with

parameters (v, k, λ)? (See Definition 17.21 for the definition of the

residual design of a symmetric BIBD.)

(9) Prove that the derived design of a symmetric design is a BIBD. What
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are the parameters of a derived design of a symmetric BIBD of pa-

rameters (v, k, λ)? (See Definition 17.22 for the definition of derived

designs.)

(10) Let D be a block design without repeated blocks with b blocks and v

vertices. Let us assume that each block is a proper subset of the set

of vertices, and that every pair of distinct vertices appears together in

exactly one block. Prove that v ≤ b.

Note that unlike in Theorem 17.18, D is not assumed to be regular or

uniform. On the other hand, the number of times each pair of vertices

appears together in a block is not just equal to some fixed λ, but to 1.

(11) Prove Proposition 17.33.

(12) Prove Lemma 17.35.

(13) Let c : S → {0, 1}∗ be a prefix-free code in which bi codewords have

length i. Prove that
∑

i
bi
2i ≤ 1.

(14) Let c be a Hamming code with parameters (2k − 1, 22
k−k−1,3, 3) as

constructed in the proof of Theorem 17.38. Let us assume that k ≥ 3.

Let A be the matrix whose columns are the weight-3 codewords of c.

Consider the design D whose incidence matrix is A.

(a) Prove that D is uniform and incomplete.

(b) Prove that D is balanced.

(c) Conclude that D is a BIBD, and determine the parameters of D.
(15) A t-design is a design in which every t-element set of vertices appears

together in exactly λ blocks. So BIBDs are 2-designs. Prove that if D
is a t-design with parameters (b, v, r, k, λ), then

b

(

k

t

)

= λ

(

v

t

)

.

(16) Prove that all (7, 7, 3, 3, 1)-designs are isomorphic.

(17) If D is a design, then an automorphism of D is a bijection f from the

vertex set of D into the vertex set of D so that if {v1, v2, · · · , vk} is a
block with multiplicity m, then {f(v1), f(v2), · · · , f(vk)} is also a block

with multiplicity m, and vice versa.

How many automorphisms does the Fano plane have?

(18) A Latin square is an n×nmatrix in which each row and column contain

exactly one copy of each element of [n]. Let L(n) be the number of Latin

squares of side length n. Find L(n) for all positive integers n ≤ 4.

(19) Magic cubes were defined in Exercise 10 of Chapter 11. Prove that the

number of magic cubes of side length n having line sum 1 is equal to

L(n).
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(20) Two Latin squares A and B are called orthogonal if for each ordered

pair (x, y) ∈ [n]×[n], there is exactly one position (i, j) so that Ai,j = x

and Bi,j = y. A set S of several n×n Latin Squares is called mutually

orthogonal if every pair (A,B) of Latin squares with A ∈ S, and B ∈ S,

is orthogonal. Let N(n) be the highest number so that there exists

N(n) mutually orthogonal Latin squares of side length n. Find N(n)

for all positive integers n ≤ 4.

(21) Prove that if a k-element set of mutually orthogonal Latin squares exist,

then k < n.

(22) The affine plane of order four was defined in Subsection 17.4.1. The

general definition is analogous. If q is a power of a prime, then the

affine plane Aq of order q is the BIBD whose vertices are the ordered

pairs (x, y), where x and y are elements of the q-element field Fq, and

whose blocks are the solutions (x, y) of the q2 equations of the form

y = mx+ c, where m and c are elements of Fq, and the solutions of the

q equations of the form x = c.

(a) Prove that the q2 + q blocks Aq can be classified into q + 1 classes

so that each class has q blocks in it, blocks in the same class are

pairwise disjoint, and if two blocks are in two distinct classes, then

they have exactly one vertex in common.

(b) (+) Prove that if q > 1 is a power of a prime, then q − 1 mutually

orthogonal Latin squares of side length q do exist.

Supplementary Exercises

(23) (-) Prove that every 3-element subset S of the 5-element set

{b, v, r, k, λ} of parameters of a BIBD determines the value of the

two parameters that are not in S.

(24) (-) Let D be a BIBD with parameters (b, v, r, 3, 1). Prove that either

v = 6i+ 1 or v = 6i+ 3 for some non-negative integer i.

(25) (-) Prove that a balanced, uniform incomplete design is regular.

(26) (-) Construct a BIBD with parameters (12, 9, 4, 3, 1).

(27) (-) Give an example for a BIBD with no repeated blocks in which

λ > k.

(28) How many different (7,7,3,3,1)-BIBDs are there on vertex set [7]? Note

that two such designs are different if their sets of blocks are different.
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That is, we do not require that the BIBDs be non-isomorphic; we

simply require that they be non-identical.

(29) We are given five distinct positive integers, and we are told that they

are the five parameters of a BIBD. We are not told which number

corresponds to which parameter. Can we find it out?

(30) Let S be a set of points in the plane so that not all points of S are

on the same straight line. Prove that there exists a straight line that

contains exactly two points of S.

(31) In Exercise 22, we define a design on q2 vertices and q2 + q blocks,

where q is a power of prime. Why is that design D uniform? Why is

it regular?

(32) Why is the design D discussed in the previous exercise balanced?

(33) Show an exampe for a code that is not prefix-free but still uniquely

decodable.

(34) State and prove the version of Proposition 17.33 for an alphabet of

size k instead of the binary alphabet.

(35) Prove that in a linear binary code, either all codewords have even

weight, or at most half of the words have even weight.

(36) Let c be a linear code. Prove that the minimum distance between

any two codewords of c is equal to the minimum weight of nonzero

codewords in c.

(37) Let c be a code over the binary alphabet in which every codeword has

the same length. Let c̄ be a code obtained by the rule

c̄(s) =







c(s)0 if c(s) has even weight,

c(s)1 if c(s) has odd weight.

Let us assume that the minimum distance between any two codewords

in c is d. What is the minimum distance between any two codewords

of c̄?

(38) Recall that t-designs are defined in Exercise 15. Prove that if D is a

t-design with parameters (b, v, r, k, λ), then

r

(

k − 1

t− 1

)

= λ

(

v − 1

t− 1

)

.

(39) (+) Prove that if D is a t-design, then it is also a u-design for all

integers u ∈ [2, t].

(40) (+) Let D be a design with no repeated blocks. A subdesign of D
is a design F so that the set of vertices of F is a subset of the set



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

440 A Walk Through Combinatorics

of vertices of D, and the set of blocks of F is a subset of the set of

vertices of D.
Let D be a (v, k, λ)-design, and let F be a (w, k, λ)-subdesign of D,
with w < v. Prove that then w ≤ v−1

k−1 .

(41) Show two non-isomorphic BIBDs with parameters (14, 7, 6, 3, 2).

(42) (+) Show four non-isomorphic BIBDs with parameters (14, 7, 6, 3, 2).

(43) (+) Prove that if n− 1 mutually orthogonal Latin squares exist, then

there exists an (n2 + n, n2, n+ 1, n, 1)-design.

Solutions to Exercises

(1) No. The first four parameters force the equality λ = 8 by Proposition

17.8.

(2) Yes. The design of all 3-element subsets of [10] is a BIBD with these

parameters.

(3) No. By Proposition 17.7, if bk is odd, then so is vr.

(4) If a simple graph is a BIBD, then any pair of its vertices must occur

together in the same number of edges (0 or 1). Only the complete

graph and the empty graph have this property.

(5) Let D be a BIBD with parameters (b, v, r, k, λ). Then the blocks of Dc

are all of size v − k since they are complements of k-element blocks.

Each vertex x of Dc is part of b− r blocks (the complements of those

that did not contain x in D). Finally, if x and y are two vertices, then

in D, they each belonged to r blocks, and there were λ blocks that

contained both. So, by the Priciple of Inclusion-Exclusion, there were

2r − λ blocks that contained at least one of them, hence there were

b − 2r + λ blocks that contained neither. The complements of these

blocks will contain both of them, so any two vertices appear together

in exactly b− 2r + λ blocks in Dc. So Dc is a BIBD with parameters

(b, v, b− r, v − k, b− 2r + λ).

(6) If the design is k-uniform, and has no repeated blocks, then it cannot

have more than
(

v
k

)

blocks, and we have seen in Chapter 4 that for a

given v, the binomial coefficient
(

v
k

)

is maximal when k = ⌊v/2⌋. So

we have b ≤
(

v
⌊v/2⌋

)

.

(7) For symmetric BIBDs, the claim of Proposition 17.8 reduces to λ(v−
1) = k(k − 1). We know that v ≤ 12, so v − 1 ≤ 11. That means
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that if λ = 1, then k(k − 1) = v − 1 has to be 2 or 6, since these are

the only allowed numbers that are of the form k(k − 1). In the first

case, v = 3, and k = 2, and we recognize the design of all 2-element

subsets of [3]. In the second case, k = 3 and v = 7, and we recognize

the design of Example 17.2.

(8) Let D be a symmetric BIBD with parameters (v, k, λ). The residual

designR of D will have one less blocks than D. The size of these blocks
will be k − λ, since any two blocks of D intersect in λ vertices, so in

particular, B intersects any other block in λ vertices. (See the proof of

Proposition 17.17 for this fact.) The number of vertices decreases by

k, to v−k, since the vertices of B are removed. The remaining vertices

still occur in all r blocks they occurred before, and any pair of them

still occurs together λ times. So we conclude that R has parameters

(b− 1, v − k, r, k − λ, λ).

(9) As D is linked with link number λ, any given block intersects B in D in

λ vertices. So the blocks of the derived design D′ will be of size λ. The
number of vertices will be k since vertices outside B will disappear.

The number of blocks will be b−1 = v−1 since B disappears, all other

blocks intersected B, so their intersection with B will be in D′. Any

two vertices will appear together in λ−1 blocks, (all those blocks that

contain both them in D, except for the block B). Finally, all vertices

will appear in r− 1 = k− 1 blocks (all blocks in which they appeared

before, except B). So D′ has parameters (v − 1, k, k − 1, λ, λ− 1).

(10) Proceed as in the proof of Theorem 17.18. We get that AAT = D+J ,

where D is a v× v matrix whose non-diagonal entries are all 0, (since

any pair (v1, v2) of vertices appears together in exactly one block),

and whose ith diagonal entry is rvi − 1, where rvi is the number of

blocks in which vertex vi appears.

Then D has the positive integers rvi − 1 for eigenvalues, while J has

v and 0 for eigenvalues. Hence, D + J = AAT has only positive

eigenvalues, so in particular, it is invertible. So AAT has rank v. As

rank(AAt) ≤ rank(A), this implies that rank(A) = v. The rank of a

matrix cannot be more than the number of its columns. Applying this

fact for the matrix A, we get v ≤ b.

(11) As c is r-error correcting, the balls centered at the codewords and

having radius r must all be disjoint. Therefore, their total volume

is the sum of their individual volumes, which is |C| ·∑r
i=0

(

n
i

)

. This

cannot be more than the total number of strings of length n over the

binary alphabet.
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(12) Continuing the line of thought of the previous exercise, if c is perfect,

then the union of the balls centered at the codewords and having

radius r must be the Bn.

(13) Let t be a randomly selected binary string of length n, where n is at

least as long as all the codewords of c. Let w be a given codeword of

c of length i. Then the probability of the event Aw that w is a prefix

of t is 2−i. The probability of the event that any codeword of c is a

prefix of t is

P

(

⋃

w

Aw

)

=
∑

w

P (Aw) =
∑

i

bi
2i
.

This number cannot be more than 1 since it is a probability. The

fact that the code is prefix-free is crucial, since that fact assures that
⋃

w Aw is a disjoint union of events, hence its probability is equal to

the sum of the probabilities of the Aw.

(14)(a) As the columns of A are the weight-3 codewords, each column con-

tains three 1s, and so each block contains three vertices, hence D
is uniform. As k ≥ 3, the number of v of vertices of D is at least

2k − 1 ≥ 7, so D is incomplete.

(b) We show that any two vertices of D appear together in exactly one

block. In other words, we show that for any i 6= j, there is exactly

one position in which both the ith and jth row of A contain a 1.

There cannot be more than one such position, since if the ath and

bth position were both like that, then the ath and bth columns

would differ in at most two positions, contradicting the fact that

any two columns (codewords) differ in at least three positions. Now

we show that there is indeed column that contains a 1 in positions

i and j. Let wij be the word of weight two in B2k−1 that has a 1 in

positions i and j and 0 everywhere else. As c is a perfect code, wij

belongs to the ball of radius 1 of exactly one codeword x of c. By

the definition of Hamming codes, x has weight at least 2. However,

as x is at distance 1 from wi,j , the weight of x cannot be exactly

two, so it is at least three. As x has weight three, it must contain

a 1 in positions i and j, otherwise it would be at distance at least

two from wi,j . This proves that D is balanced, and λ = 1.

(c) We know that D is a balanced, uniform design, hence by Supple-

mentary Exercise 25 it is regular. As the codewords are of length

2k − 1, we have v = 2k−1. Then Proposition 17.8 implies

r =
λ(v − 1)

k − 1
=

2k − 2

2
= 2k−1 − 1,
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and then 17.7 implies

b =
vr

k
=

(2k − 1)(2k−1 − 1)

3
.

(15) Both sides count the same objects, namely pairs (S,B), where S is

a t-element subset of vertices that are all part of the block B. The

left-hand side first chooses B in b ways, then S ⊂ B. The right-hand

side first chooses S in
(

v
t

)

ways.

(16) We show that every design with those parameters has to be built up

the same way. This will imply a stronger statement. Let D be a design

with those parameters, and let A, B, and C be three vertices in D that

do not form a block. Then any pair of these three vertices appears

together in a block, and each of those three blocks has a separate third

vertex. Let us say that {A,B,D} is a block, {B,C,E} is a block, and

{A,C, F} is a block. Finally, D has a seventh vertex, which we will

call G. As λ = 1, G has to appear together with each of the other

six vertices in exactly one block. What can be the third vertex of

the block that contains A and G? It cannot be anything that already

shares a block with A, so it can only be E. So {A,E,G} is a block.

Similarly, the third vertex of the block containing B and G must be

F , so {B,G, F} is a block. Finally, the third vertex containing C and

G must be D, so {C,D,G} is a block.

We have found six of the seven blocks of D. The seventh block must

be formed by the vertices that have not been used in three blocks yet,

so {D,E, F} is a block.

Note that we have not used anything other than the parameters of D
in this argument. So any (7, 7, 3, 3, 1)-design can be built up this way,

from starting by any three vertices A, B, and C that do not form a

block. So we have in fact proved that if D and H are two (7, 7, 3, 3, 1)-

designs, then they are isomorphic, and an isomorphism can be found

by choosing three vertices A, B, and C that do not form a block, and

mapping them to any three vertices A′, B′, and C′ ofH that are not in

the same block. These three images will determine the isomorphism.

(17) By the previous argument, f is determined by the images of any three

vertices A, B, and C that do not form a block. There are seven

possible choices for f(A), six possible choices for f(B), then four pos-

sible choices for f(C) since we cannot choose the vertex that forms a

block with f(A) and f(B). Hence the Fano-plane has 7 · 6 · 4 = 168

automorphisms.
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(18) It is obvious that L(1) = 1 and L(2) = 2. In order to construct a

Latin square of side length 3, first we need to place the three 1s on

the board in one of 3! = 6 ways, then the three 2s in one of two

ways, and fill the remaining boxes by 3s. So L(3) = 12. In order to

determine L(4), note that in any Latin square of side length 4, we

can permute the columns so that the top row becomes 1234, then we

can permute the top three rows so that the leftmost column becomes

1234. There remains to fill out the remaining 3× 3 grid, and it is easy

to verify that there are four ways to do that. Recalling the operations

that made sure that the first row and column were in increasing order,

this implies that L(4) = 4! · 3! · 4 = 576.

Note that a Latic square in which both the first row and first column

is increasing is called a reduced Latin square.

(19) If L is a Latin square of side length n, then let its entries 1 correspond

to the 1s at the bottom floor of the magic cube M , let the entries 2

of L correspond to the 1s on the second floor of M , let the entries 3

of L correspond to the 1s on the third floor of M , and so on.

(20) Clearly, N(1) = 1 and N(2) = 1. We claim that N(3) = 2. On the one

hand, there exist two orthogonal Latin squares of side length three,

as can be seen from the examples of

A =





1 2 3

2 3 1

3 1 2



 and B =





1 2 3

3 1 2

2 3 1



 .

Now we prove that N(3) < 3. Let us assume that P , Q, and R are

mutually orthogonal Latin squares of side length three. As P and Q

are orthogonal, there is a position in which they both contain a 1. Let

us assume without loss of generality that this is the position (1, 1).

Then, again without loss of generality, P has a 1 in (2, 2) and (3, 3),

while Q has a 1 in (2, 3) and (3, 2). The set of positions in which R has

a 1 must intersect the set of positions in which P has a 1 in exactly

one position, and the set of positions in which Q has a 1 in exactly

one position. This is impossible.

(21) Permute the columns of each of the mutually orthogonal Latin squares

S1, S2, · · · , Sk so that each of these squares has an increasing top row.

This does not change orthogonality. Now consider the first entry of the

second row of each of these squares. This is a collection T of k entries,

none of which is equal to 1, since the entry just above them is 1. No

two entries of T can be equal, say b, since if Si and Sj both contained b
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in the (2, 1)-position, then Si and Sj would not be orthogonal. Indeed,

the pair (i, i) would occur in both the (2, 1)-position of both of these

squares, and in their (1, i)-positions.

(22) The reader may want to use Example 17.1 to illustrate the concepts

explained here.

(a) Let all blocks that were defined by keeping m fixed and by letting

c vary over all elements of Fq belong to the class Cm. For instance,

C0 is the class of all blocks defined by the equations c = y. This

defines q classes indexed by the q elements of Fq; let Cq+1 be the

class of blocks defined by the equations x = c, where c varies over

all elements of Fq. First, it is straightforward to see that two blocks

of the same class are always disjoint. Indeed, if two blocks of Cm

(for m 6= q+1) had a non-empty intersection containing the vertex

(x, y), that would mean that c1 = mx + y = c2 for two different

values of c1 and c2, which is absurd. Similarly, if two blocks of

Cq+1 had a non-empty intersection containing the vertex (x, y),

then c1 = x = c2 would have to hold for two distinct values c1 and

c2.

Now let B and B′ be blocks from two different classes. First, con-

sider the case when they are respectively defined by the equations

m1x + c1 = y and m2x + c2 = y, with m1 6= m2. Then it is

straightforward to check that the system of those two equations

has a unique solution (x, y), so |B ∩B′| = 1. If B′ is from the class

Fq+1, then the second equation has to be replaced by x = c2, and

then y = m1c2 + c1 from the first equation. So again there is one

(x, y) that is in B ∩B′.
(b) If q is a power of a prime, then the finite field Fq does exist, and

the affine plane over Fq can be created as explained in part (a) of

this exercise. This affine plane is a (q2 + q, q2, q + 1, q, 1)-design,

and its set of blocks can be partitioned into classes as explained in

part (a).

Now we create q− 1 mutually orthogonal Latin squares from q− 1

of these classes. The classes that will not correspond to a Latin

square will be C0 and Cq+1. In each class Ca, number the blocks

in some arbitrary way Ca1, Ca2, · · · , Caq. Let (i, j) ∈ [q]× [q]. Find

the unique vertex v in the intersection of blocks C0i and C(q+1)j .

This v lies in exactly one block of each of the remaining q−1 classes.
If, in the class Ca, the vertex v lies in the block Cak, then we put



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

446 A Walk Through Combinatorics

the number k in the (i, j)-position of the Latin square Sa that we

are creating.

This procedure defines q− 1 square matrices of side length q. Each

of these squares S1, S2, · · · , Sq−1 is a Latin square. Indeed, the jth

column of Sa will contain all the numbers k of blocks Cak in the

class Ck that contain a vertex of C(q+1)j . Given that each vertex

of C(q+1)j is part of one block of Ca, each element of [q] will occur

once in this column. A dual argument shows that the ith row of

Sa also contains each element of [q] once.

Finally, we must show that Sa and Sb are orthogonal if a 6= b.

Consider the q squares where Sa has an entry x. These squares were

filled in instances when the vertex v of the above algorithm was part

of the block Cax. The block Cax has a one-element intersection with

the block Cb1, and one-element intersection with the block Cb2, and

so on, a one-element intersection with each block Cbk, for k ∈ [q].

Therefore, in the q positions where Sa has an entry x, the Latin

square Sb contains the q different elements of [q]. So Sa and Sb are

indeed orthogonal.
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Chapter 18

Are They Really Different? Counting

Unlabeled Structures

18.1 Enumeration Under Group Action

18.1.1 Introduction

Let us assume that we have a garbage can whose base has the shape of a

regular hexagon. We see this garbage can every day, and one day, we start

thinking about the following problem. How many different ways are there

to paint the six sides of the can using only the colors red, blue, white, and

green?

This question is easy if the faces are distinguishable. Indeed, in that

case, we have four choices for each of the six sides, resulting in a total of

46 = 4096 paint jobs. However, what can we say if the sides are indis-

tinguishable as is often the case in practice? That is, what if two paint

jobs are considered identical if one can be obtained from another by simply

rotating the can around a vertical axis going through its center?

This is a much more difficult problem than the problem of counting

the ways of coloring six distinguishable objects using a finite set of colors.

Clearly, some general theory would be helpful, since a naive way of counting

would probably consist of considering too many cases. In this section, we

will learn such a technique. First, we need to learn about a structure from

Abstract Algebra that will enable us to precisely describe how one paint

job can be turned into another.

447
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18.1.2 Groups

18.1.2.1 Groups in General

Definition 18.1. A group G is a set endowed with an operation called

multiplication defined on ordered pairs of elements of G so that all of the

following conditions hold.

(1) The set G is closed under multiplication. That is, for all elements a

and b of G, the product a · b and the product b · a are elements of G.

(2) There exists an identity element id ∈ G so that for all g ∈ G, the

equalities

id · g = g · id = g

hold.

(3) Multiplication is associative, that is, (a·b)·c = a·(b·c), for all elements

a, b, and c of G.

(4) Each element g ∈ G has an inverse, that is, there exists a unique

element g−1 so that g · g−1 = g−1 · g = id.

Example 18.2. The set Z of all integers is a group if the usual addition of

integers is defined as the operation on Z.

It is easy to see why Z is not a group with the usual multiplication of

integers as the operation. No elements other than 1 and −1 would have an

inverse if we used that definition, so the last criterion in the definition of

groups would not be satisfied.

Example 18.3. The set R − {0} of non-zero real numbers forms a group

with the usual multiplication of the real numbers as the operation.

Note that it is important that we exclude 0 from our set. Indeed, 0 does

not have an inverse under usual multiplication (there is no real number x

so that x · 0 = 1), so the last criterion would not be fulfilled.

We point out that the definition of groups does not require that in a

group, multiplication be commutative. That is, it is possible in a group

that ab 6= ba. In fact, it turns out that most groups are non-commutative.

Example 18.4. Let SL2(R) be the set of 2× 2 matrices with real entries

that have determinant 1. Then SL2(R) is a non-commutative group.
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Solution. It is easy to verify that all the group axioms are satisfied by

SL2(R), so SL2(R) is indeed a group. Indeed, the fact that the elements

of SL2(R) have determinant 1 assures that their set is closed under mul-

tiplication. The fact that their determinant is nonzero assures that all

elements have an inverse. Matrix multiplication is known to be associative

and the identity matrix serves as the identity element of the group.

On the other hand, let A =

(

1 0

a 1

)

, and let B =

(

1 b

0 1

)

. Then we have

AB =

(

1 b

a 1 + ab

)

, and BA =

(

1 + ab b

a 1

)

,

and so AB 6= BA if ab 6= 0.

Two groups G and M are called isomorphic if there exists a bijection

f : G → M that preserves the group operation. That is, if g and g′ are
elements of G, then f(g · g′) = f(g) · f(g′).

18.1.2.2 Subgroups and Cosets

If a subset H of the elements of a group G forms a group with the same

operation of G restricted to H as the operation, then H is called a subgroup

of G. This is denoted by the symbols H ≤ G.

Equivalently, H is a subgroup of G if it contains the identity element of

G, and is closed under the operation of G and under taking the inverse of

each element of H in G.

Example 18.5. Let GL2(R) be the set of all 2 × 2 matrices with real

entries and non-zero determinants. Then SL2(R) ≤ GL2(R).

If H is a subgroup of G, and a ∈ G, then we define

aH = {ah|h ∈ H}.

In other words, aH is the set of elements of G that can be obtained by left-

multiplying the elements ofH by a. The set aH is then called a coset ofH in

G. We point out that HH denotes the set of all two-term products formed

by elements of H , and that clearly, HH = H . The following property of

cosets is what makes them interesting.

Proposition 18.6. Let H ≤ G. Let a ∈ G and b ∈ G. Then either

aH = bH, or aH ∩ bH = ∅.
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Proof. Let us assume that c ∈ aH ∩ bH . Then there exist elements

h1 ∈ H and h2 ∈ H so that ah1 = c = bh2. In other words, ah1h
−1
2 = b,

so, since h1h
−1
2 in H , we have that b ∈ aH . However, that implies that

bH ⊆ aHH = aH . In an analogous way, aH ⊆ bH , proving our claim. �

Corollary 18.7. If G is a finite group and H is a subgroup of G, then |G|
is divisible by |H |.

Proof. We claim that the different cosets of H partition the set of ele-

ments of G. Indeed, each element g of G belongs to a coset of H , namely

to the coset gH . It follows from Proposition 18.6 that the different cosets

of H do not overlap. As each of these cosets has size |H |, the Corollary is

proved. �

Note that the ratio |G|/|H | is called the index of H in G, and is denoted

by G : H .

18.1.3 Permutation Groups

In Chapter 6, when we first defined permutations as bijections on a finite

set, we mentioned how to multiply two permutations together. For easy

reference, if f : [n] → [n] and g : [n] → [n] are permutations, then the

permutation fg is simply the permutation that is obtained by first applying

the bijection f to [n], then the bijection g to [n]. In other words, fg is the

composition of f and g, that is, (fg)(x) = g(f(x)).

The following proposition shows that permutations of length n form a

group. This will be the most important group for us in this chapter.

Proposition 18.8. The set of n! permutations of [n] forms a group with

the multiplication of permutations as its operation.

Proof. The identity map id of [n] (the permutation 12 · · ·n) has the

property that id · p = p · id = p for all permutations p of length n. Each

permutation is a bijection from [n] to [n], and so has an inverse permutation

p−1 that satisfies p · p−1 = p−1 · p = id. Multiplication of permutations is

associative, since if p, q, and r are permutations, p(i) = j, q(j) = k, and

r(k) = m, then

((p · q) · r)(i) = r((p · q)(i)) = r(q(p(i))) = r(q(j)) = r(k) = m,

while

(p · (q · r))(i) = (q · r)(p(i)) = r(q(p(i))) = r(q(j)) = r(k) = m.
�
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The group of n! permutations of length n is called the symmetric group

of degree n and is denoted by Sn.

Definition 18.9. Let H be a subgroup of Sn for some n. Then H is called

a permutation group.

Recall that we defined automorphisms of graphs in Chapter 9. For easy

reference, an automorphism of a simple graph G is a bijection f from the

set of vertices of G onto that same set so that uv is an edge in G if and

only if f(u)f(v) is an edge in G.

Example 18.10. The set of all automorphisms of a graph G, with com-

position of functions as the operation, forms a permutation group, denoted

by Aut(G), and called the automorphism group of G.

Solution. By definition, the elements of Aut(G) are permutations of the

set of vertices of G. As the elements of Aut(G) are multiplied as permu-

tations, multiplication in Aut(G) is associative. The identity map of the

vertex set of G is always an automorphism. Let f−1 be the inverse of

f ∈ Aut(G) as a permutation. If uv is an edge of G, then f−1(u)f−1(v)

must be an edge as well, otherwise f would map the non-edge f−1(u)f−1(v)

into the edge uv. So f−1 ∈ Aut(G), proving our claim.

Permutation groups are of seminal importance for theory we present in

this chapter. Therefore, we spend a paragraph to put them in context. In

some sense, permutation groups are not different objects from groups in

general (which are sometimes called abstract groups). Indeed, each permu-

tation group is a group, and it can be shown that each group of n-elements

is isomorphic to a subgroup of Sn, that is, each finite group is isomorphic to

a permutation group. However, what is different between abstract groups

and permutation groups is the way we view them. An abstract group, such

as the set of all real numbers with addition as the operation, stands on its

own. There is no need to consider any other objects to understand and

describe this group. On the other hand, a permutation group, such as Sn

or one of its subgroups, consists of bijections (permutations) on the set [n].

So the elements of the set [n], that is, the numbers 1, 2, · · · , n are present.

The elements of Sn act on [n]; they permute these elements among each

other. They move them around. So a permutation group always acts on

some set of objects. For instance, the automorphism group of a graph acts
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on the set of vertices of that graph (and, for that matter, also on the set of

edges of that graph).

At this point, the reader may well start seeing where we are going with

this. Recalling the introductory example of this chapter, we point out

that the rotations of the hexagon-based garbage can that turn a paint

job into another one will be part of a permutation group. We do need

some additional machinery before we can make this observation useful in

counting.

Definition 18.11. Let G be a permutation group acting on a set S, and

let i ∈ S. Then the set

Gi = {g ∈ G|g(i) = i}

is called the stabilizer of i.

Example 18.12. Let G = S6, acting on the set S = [6]. Let i = 1. Then

Gi is the set of all permutations in S6 that keep 1 fixed. In other words, this

is the group of all permutations on the set {2, 3, 4, 5, 6}, which is isomorphic

to S5.

Example 18.13. Let G = Aut(Cn) be the automorphism group of a cycle

on n ≥ 3 vertices. Let i be any vertex of Cn. Then Gi = S2 is the two-

element group.

Solution. Indeed, let j and k be the neighbors of i. Then any automor-

phism f of Cn that fixes i must either fix both of j and k, or interchange

them. In either case, the rest of f is determined by f(j) and f(k). So Gi

is isomorphic to the 2-element group S2 acting on j and k.

Proposition 18.14. For any group G acting on the set S, and any i ∈ S,

we have Gi ≤ G. That is, the stabilizer of i in G is a subgroup of G.

Proof. We verify that all conditions listed in the definition of groups hold

for Gi. As Gi ⊆ G, the associtiavity of the operation automatically holds.

Furthermore, Gi has an identity element, namely the identity element of

G, which fixes all elements of S, including i. If both f and g fix i, then

g(f(i)) = g(i) = i, so Gi is closed under multiplication. Finally, if f(i) = i,

then applying f−1 ∈ G to both sides of the preceding equation, we get

i = f−1(i), so f−1 ∈ G as well. �
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A notion that is somewhat complementary to that of the notion of

stabilizers is that of orbits.

Definition 18.15. Let G be acting on a set S and let i ∈ S. Then the

orbit of i by G, denoted by iG, is the set of all elements of S to which i can

be moved by an element of G. That is

iG = {g(i)|g ∈ G}.

The following lemma connects the notions of the orbit and the stabilizer

of G. Roughly speaking, if the orbit of i is big, then the stabilizer of i is

small, and vice versa.

Lemma 18.16. Let G be a finite permutation group acting on a set S, and

let i ∈ S. Then
|G|
|Gi|

=
∣

∣iG
∣

∣ .

Example 18.17. If G and i are as in Example 18.12, then |G| = 6! = 720,

G1 = 5! = 120, and iG = [6] and so
∣

∣iG
∣

∣ = 6.

Example 18.18. If G and i are as in Example 18.13, then |G| = 2n,

|Gi| = 2, and
∣

∣iG
∣

∣ = n since iG is the entire vertex set of the cycle C.

Proof. We have seen in the proof of Corollary 18.7 that the left-hand

side is the number of different cosets of Gi in G. We show that these cosets

are in bijection with the elements of iG.

Indeed, let C be a coset of Gi in G. Then C = gGi for some g ∈ G. We

then set f(C) = g(i) ∈ iG.

Before we prove that f is a bijection, we need to prove that f is well-

defined. That is, we need to prove that for each C, it defines one and only

one object f(C). This is not obvious since there could be several candidates

for g that satisfy C = gGi. However, Exercise 3 shows that any two such

candidates will only differ by an element of Gi, so they will have the same

effect on i. That is, if gGi = g′Gi = C, then g′−1g ∈ Gi, so g′−1g(i) = i,

which implies that g(i) = g′(i). So indeed, f is well-defined, that is, it is a

function on the cosets of Gi in G, and it does not depend on the choice of

the element g of a given coset.

It is straightforward to prove that f is a bijection. Indeed, if j ∈ iG,

then there exists an element g ∈ G so that g(i) = j. Then it is a direct

consequence of the definition of f that j = f(gC). Again, there are several

candidates for g, but if g(i) = g′(i), then g′−1g(i) = i, so g′−1g ∈ Gi, and

by Exercise 3 the cosets gGi and g′Gi are identical. �
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The following notion is complementary to the notion of stabilizers in

a different sense. It collects the objects that are fixed by a given element

of the permutation group as opposed to the stabilizer, which collects the

elements of the permutation group that fix a given object.

Definition 18.19. Let G be a permutation group acting on a set S, and

let g ∈ G. Let

Fg = {i ∈ S|g(i) = i}.

The following theorem will be our fundamental tool in counting objects

that cannot be moved into one another by a given permutation group. It

is sometimes called Burnside’s lemma, or Burnside’s theorem.

Theorem 18.20. Let G be a permutation group acting on a set S. Then

the number of orbits of S under the action of G is equal to

1

|G|
∑

g∈G

|Fg|.

Proof. As we have defined two distinct notions, Gi and Fg, that related

to pairs (g, i) so that g ∈ G, i ∈ S, and g(i) = i, it is perhaps not surprising

that the proof of this important result consists of counting these pairs in

two different ways, and equating the resulting formulae.

Let n be the number of orbits of S under the action of G. It then suffices

to show that

|G| · |n| =
∑

g∈G

|Fg|. (18.1)

Here the right-hand side is clearly the number of ordered pairs (g, i) so that

g ∈ G, i ∈ S, and g(i) = i, summed first for each fixed g, then summed as

g ranges over G.

Summing the number of these same pairs first for each fixed i, then

summing as i ranges over S, we get
∑

g∈G

|Fg| =
∑

i∈S

|Gi|

=
∑

i∈S

|G|
|iG|

= |G|
∑

i∈S

1

|iG|
= |G| · n.
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Here we applied Lemma 18.14 in the second step. In the last step, we noted

that each orbit of size k contributes k fractions equal to 1/k each to the

sum, for a total contribution of 1 from that orbit. So the sum evaluates to

the number of orbits. �

Corollary 18.21. Let the finite permutation group G act on the finite set

S. Then the average number of fixed points of this action is equal to the

number of orbits of this action.

Proof. The displayed chain of equations in the proof of Theorem 18.20

shows that |Gi| = n|G|, where n is the number of orbits of the action of G

on S. Dividing both sides by |G|, we get our claim. �

The following example illustrates Theorem 18.20 in a very simple case.

Example 18.22. Let us color the edges of K3 red or blue. Let us con-

sider two colorings equivalent if they can be moved into each other by an

automorphism. How many inequivalent colorings are there?

Solution. The key is to put the problem into a context where Burnside’s

lemma can be applied, that is, where the number we are looking for is

precisely the number of orbits of a set under an appropriate group action.

In this case, this is easy. Let S be the set of all colorings of the edges of

K3 with colors red or blue, and let G be the automorphism group of K3.

Then G acts as a permutation group on the set S (it moves colorings into

other colorings). Under this group action, two colorings belong to the same

orbit precisely when they are equivalent, so the number of inequivalent

colorings is precisely the number of orbits.

Note that G = Aut(K3) consists of the identity permutation, two 3-

cycles, and three permutations that have a fixed point and a 2-cycle.

All we need to do now is to find the numbers |Fg| for all six elements

of G. Clearly, the identity permutation fixes all eight colorings, the two

3-cycles fix only the two colorings in which all edges have the same color,

and the remaining three permutations fix four colorings each. Indeed, the

permutation (AB)(C) fixes all four colorings in which the color of AB and

the color of BC agrees.

Therefore, the number of orbits, and so the number of inequivalent

colorings is

1

|G|
∑

g∈G

|Fg| =
8+ 2 + 2 + 4 + 4 + 4

6
= 4.
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This result is very easy to verify since the four inequivalent colorings

are precisely those with 0, 1, 2, or 3 blue edges. Once the number of blue

sides is determined, the coloring is determined. This, of course, would not

be true for regular polygons with more than three sides.

We can now see that in order to answer the question asked in the intro-

duction of this chapter, we have to compute Fg for each of the 6 elements

of the group of rotations of the regular hexagon, viewed as a permutation

group acting on the set of the 46 colorings of the six sides of the hexagon

using the four available colors.

The identity permutation (rotation by zero degrees) will keep all 46 col-

orings fixed. Rotations by 60 or 300 degrees will only fix the four colorings

that use one color each. Indeed, such a rotation moves a side of the hexag-

onal can into a neighboring side, so if a coloring is fixed by such a rotation,

then in that coloring, each side must have the same color as its neighbors.

By a similar argument, if a coloring is fixed by a rotation by 120 or 240

degrees, then in that coloring second neighbors must have the same color.

There are 16 colorings like that, since there are four possible choices for

the color of the first, third, and fifth sides, and four possible choices for the

color of the second, fourth, and sixth sides.

An analogous argument shows that rotation by 180 degrees fixes 43 = 16

colorings. Therefore, Theorem 18.20 shows that the number of inequivalent

colorings is

1

|G|
∑

g∈G

|Fg| =
46 + 2 · 4 + 2 · 42 + ·43

6
= 700.

Example 18.23. Let H be the graph shown in Figure 18.1. Find the

number of ways to color the edges of H using only the color red, blue, and

green if two colorings are considered identical if H has an automorphism

that takes the first coloring into the second one.

Solution. It is easy to see that H has six automorphisms, and that all

these automorphisms keep all vertices that have degree more than one fixed.

Therefore, the automorphisms keep a coloring fixed if and only if it keeps

the coloring of the five edges leading to the degree-one vertices fixed. The

other three edges will never be moved by an automorphism, so all their 27

colorings will always be fixed.

As far as the five edges leading to the degree-one vertices go, the identity

will keep all their 35 = 243 colorings fixed, and the two automorphisms of

degree six keep nine of their colorings fixed (one color for the three edges on
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H

Fig. 18.1 Count the ways to color the edges of this graph with three colors.

the left, one color for the three edges on the right). The two automorphisms

of degree three keep 27 colorings of these five edges fixed (one color for the

three edges on the left, one color for each of the two edges on the right).

Finally, the only automorphism of degree two keeps 81 coloring of these five

edges fixed, since the two edges on the right must have the same color.

Therefore, by Theorem 18.20, the edges of the graph H have

27(243 + 2 · 9 + 2 · 27 + 81)

6
=

27 · 396
6

= 1782

non-identical colorings.

Classic applications of Theorem 18.20 include the enumeration of col-

orings of the five regular polyhedra that were discussed in Chapter 12. We

will encounter some of those problems in the Exercises section.

18.2 Counting Unlabeled Trees

18.2.1 Counting Rooted Non-plane 1-2 trees

In Chapter 8, we have learned various techniques to use generating func-

tions in order to solve enumeration problems. These techniques were ap-

plicable in many situations. However, there was something common in all

the circumstances in which our methods were useful. The structures to be

enumerated were always labeled structures. That is, there was an n-element

set of distinct objects, and the task was to compute the number of ways

to carry out a task on that set. Using different objects for a given role re-
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sulted in new structures. Examples of these structures were permutations,

set partitions, and graphs with labeled vertices.

In this section, we will learn a technique to enumerate certain unlabeled

structures. The tools we present will not always lead to exact enumeration

formulae, but they will provide a way to obtain the number of our structures

recursively. Techniques of Analytic Combinatorics, which are beyond the

scope of this book, can be used to obtain the approximate number of the

studied structured from the formulae that we deduce. Unless otherwise

stated, in the rest of this section all graphs are unlabeled graphs.

As our first example, we consider the problem of enumerating rooted

trees on n vertices in which each non-leaf vertex has at most two children.

Let us call these trees non-plane 1-2 trees. The word “non-plane” empha-

sizes the fact that our trees are not embedded in the plane, that is, there

is no notion of the “left child” and the “right child” of a vertex.

Let bn be the number of non-plane 1-2 trees on n vertices. Set b0 = 1.

The reader is invited to verify that b1 = b2 = 1, b3 = 2, and b4 = 3. The

six non-plane 1-2 trees on five vertices are shown in Figure 18.2, and we

conclude that b5 = 6.

Fig. 18.2 The six non-plane 1-2 trees on five vertices.

Cutting off the root of an n-vertex non-plane 1-2 tree, we get a multiset

of two non-plane 1-2 trees (one of which may be a 0-vertex tree) that

together have n− 1 vertices. The word multiset is of double importance in
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the preceding sentence. First, as our trees are non-plane, the order of the

obtained two trees is insignificant. This is why we do not get an ordered

pair of two trees. Second, we cannot even say that we get a set of two trees,

since it is possible that the two obtained trees are identical. This is why

we get a multiset of two trees.

Note that the advantage of setting b0 = 1 was that now we do not have

to treat the case when the root has only one child separately. When the

root has one child, we can still say that the root has two subtrees, one of

which is empty.

Let B(x) =
∑

n≥0 bnx
n be the ordinary generating function of the se-

quence bn.

If the order of the two subtrees of the root mattered, then we could use

the Product Formula (Theorem 8.5) to get the generating function xB2(x).

However, in our setup the two subtrees of the root are unordered. It would

be tempting to say that since the two subtrees of the root form an unordered

pair, the number of possible such pairs is half of what it would be if they

formed an ordered pair, and so the generating function for non-plane 1-2

trees is 1
2xB

2(x). The problem with this argument is that sometimes the

two subtrees of the root are identical. See Figure 18.3 for an illustration.

Trees with this property are counted by xB2(x) only once and not twice,

hence 1
2xB

2(x) slightly undercounts our trees.

Fig. 18.3 A non-plane 1-2 tree in which the root has two identical subtrees.

How many non-plane 1-2 trees are there on n vertices that fall in this

exceptional class, that is, how many non-plane 1-2 trees are there on n

vertices in which the two subtrees of the root are identical? If n is even,

then there are no such trees (since there are n − 1 non-root vertices), and

if n = 2k + 1, then there are bk such trees, since there are bk choices for
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one subtree of the root, and the other subtree must be identical to the

first. Hence the generating function of trees in this exceptional class is
∑

k≥0 x · bkx2k = xB(x2).

So we have proved the following theorem.

Theorem 18.24. Let B(x) be defined as above. Then we have

B(x) = 1 +
x

2

(

B2(x) +B(x2)
)

. (18.2)

You could ask what the use of this theorem is, given that we cannot

obtain an explicit formula for the numbers bn from (18.2). A recurrence re-

lation can certainly be deduced from (18.2), but that could be done without

introducing generating functions. You are asked to prove such a relation in

Exercise 28.

The real advantage of Theorem 18.24 is that it makes it possible to

evaluate, in the asymptotic sense, how large the numbers bn are. The

methods needed to do this are beyond the scope of this book. The result

is that there exists a constant c so that

bn ∼ c · an

n3/2
,

where a = 2.4832535.... The constant c is close to 0.791.

Compare this to the case of unlabeled binary plane trees on n vertices.

Their number is the Catalan number

cn =

(

2n
n

)

n+ 1
∼ π−1/2 · 4n

n3/2
.

So the binary plane trees are about 1.6n times as numerous as the non-plane

1-2 trees. This agrees with our intuition. Indeed, in a binary plane tree,

if a vertex is the only child of its parent, it can be its left or right child;

in a non-plane tree, there is no such issue. For vertices with a sibling, this

issue comes up only if the two siblings have non-identical subtrees, which

happens often if the subtrees are large, but not so often if the subtrees are

small, and never if they are empty. So we expect the set of binary plane

trees be more numerous than the set of non-plane 1-2 trees, by a number

between 1 and 2n, and that is indeed the case.

18.2.2 Counting Rooted Non-plane Trees

What if we drop the condition that each vertex has at most two children?

In that case, our method needs some significant modification. Indeed, as
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long as a vertex has two children, there are only two cases, in that the

subtrees rooted at those children are either identical or not. However, if a

vertex can have 17 children, then it could happen that out of the 17 subtrees

rooted at those children, there is a set of five subtrees that are identical to

each other, there are another two subsets of three subtrees each that are

identical to each other, and the rest of the subtrees are all different. We

need a method that can keep track of all these cases.

The method we present will be somewhat similar to the method we used

in Chapter 8 when we proved that the generating function of the sequence

p(n) counting partitions of the integer n is

∑

n≥0

p(n)xn =
∏

i≥1

1

1− xi
= (1+x+x2+ · · · ) ·(1+x2+x4+ · · · ) · · · . (18.3)

Indeed, if a partition of n has mi parts equal to i, then it is accounted

for on the right-hand side by the summand xmii of the ith infinite sum.

The task of finding the ordinary generating function of the sequence

Tn, where Tn is the number of rooted non-plane trees is somewhat similar

to finding the above generating function for the sequence p(n). Indeed,

cutting of the root of such a tree that has n vertices, we get a multiset of

trees whose numbers of vertices add up to n − 1. However, the difference

is that among these smaller trees, there could be some that have the same

size but are different. This did not happen for integer partitions; indeed all

parts of size i were identical.

For instance, there are two rooted non-plane trees on three vertices. (In

one, the root has one child, in the other one, the root has two children.)

Therefore, a formula for T (x) =
∑

n≥1 Tnx
n similar to (18.3) will contain

not one but two factors of the form (1 + x3 + x6 + · · · ) = 1
1−x3 . One of

these factors will account for the number of 3-vertex subtrees of the first

kind, and the other one will account for the number 3-vertex subtrees of

the second kind.

Extending this argument, we see that

T (x) = x
∏

i≥1

(

1

1− xi

)Ti

. (18.4)

Again, the factor x on the right-hand side accounts for the root. Equation

(18.4) seems to be interesting, but somehow needing more work. In par-

ticular, the right-hand side contains all Ti, but in a way which does not

make it clear how T (x) can appear on the right-hand side. Fortunately,

some purely algebraic manipulations will resolve this issue. First, using the
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fact that y(x) = exp(ln y(x)), and the rule stating that the logarithm of

a product equals the sum of the logarithms of the factors, (18.4) can be

written in the form

T (x) = x exp





∑

n≥1

Tn ln

(

1

1− xn

)



 . (18.5)

The reader is invited to verify that the first few numbers Tn, starting

with n = 1, are 1, 1, 2, 4, 9, and 20.

At this point, the reader might point out that (18.5) is even worse than

(18.4), especially if we note that ln
(

1
1−xn

)

is an infinite sum, so the right-

hand side involves an infinite sum of infinite sums. This is true, but further

simplification is possible. Indeed, we know that ln(1/(1 − x)) =
∑

k≥1
xk

k ,

so

log

(

1

1− xn

)

=
∑

k≥1

xnk

k
,

and therefore,

∑

n≥1

Tn ln

(

1

1− xn

)

=
∑

n≥1

Tn

∑

k≥1

xnk

k

=
∑

k≥1

∑

n≥1

Tn
xnk

k

=
∑

k≥1

T (xk)

k
.

Comparing the last displayed chain of equations to (18.5), we see that we

have proved the following theorem.

Theorem 18.25. Let T0 = 0, and let Tn be the number of all rooted non-

plane trees on n vertices. Let T (x) =
∑

n≥1 Tnx
n be the ordinary generating

function of the sequence {Tn}n≥1. Then

T (x) = x exp





∑

k≥1

T (xk)

k



 . (18.6)

Again, using methods of analytic combinatorics, it is possible to show

from (18.6) that

Tn ∼ c · an

n3/2
, (18.7)
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where c = 0.439924 · · · and a = 2.95576 · · · .
Compare this with Cayley’s formula, proved in Chapter 10. That for-

mula implies that the number of rooted labeled trees on n vertices is nn−1.

If every rooted unlabeled non-plane tree on n vertices could be labeled in

n! different ways, then the number of labeled trees would be n! times larger

than Tn. However, there are a few trees that can be labeled in less than

n! ways (think of a star rooted at its center). So we expect this ratio to

be a little bit less than n!. This intuition proves to be correct. Indeed, by

Stirling’s formula (see formula (3.1)),

nn−1

n!
∼ en√

2πn3/2
,

which is a little bit less than Tn since e = 2.718 < a = 2.95576. We also

point out that the number of rooted unlabeled plane trees on n vertices

is the Catalan number cn−1, as you were asked to prove in Exercise 43

of Chapter 14. Catalan numbers grow roughly as fast as powers of 4, so

somewhat faster than the numbers Tn that grow roughly as fast as powers

of 2.95. The difference in growth rates is the effect of the difference between

plane trees and non-plane trees.

18.2.3 Counting Unrooted Trees

What can we say about the number of all unlabeled trees, that is, unlabeled

trees that are not rooted? This seems to be a difficult question since some

trees can be rooted in many non-equivalent ways (the path is an example

for this), while some others can only be rooted in a few ways (the star can

only be rooted in two ways).

The following famous result of Richard Otter establishes a surprisingly

close connection between the number of rooted and unrooted trees on n

unlabeled vertices.

Theorem 18.26. Let t0 = 0, let tn be the number of unrooted trees on n

unlabeled vertices for n ≥ 1, and let t(x) =
∑

n≥1 tnx
n. Then we have

t(x) = T (x)− 1

2

(

T (x)2 − T (x2)
)

. (18.8)

Theorem 18.26 is surprising for more than just its simple form. The

right-hand side of (18.8) contains the number 2 three times, in ways that

are similar to what we have seen in formula (18.2) for rooted non-plane 1-2

trees. This is unexpected, since the trees counted by Theorem 18.26 do not

have limits on their vertex degrees.
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The reader can get familiar with the problem at hand by verifying that

the first few values of the sequence of the numbers tn, starting with n = 1,

are 1, 1, 1, 2, 3, and 6.

Proof. (of Theorem 18.26) In order to prove Theorem 18.26, we need a

few definitions. If v and w are two vertices of the tree T , and T has an

automorphism f so that f(v) = w, then we call v and w similar vertices.

In other words, v and w are similar if they are in the same orbit of the

action of Aut(T ) on T . The number of orbits of this action will be called

the number of non-similar vertices of T . In an analogous way, Aut(T ) acts

on the set of all edges of T . Edges of T that are in the same orbit of this

action are called similar edges, and the number of non-similar edges is the

number of orbits of the action of Aut(T ) on the set of edges of T .

A symmetry edge of T is an edge that connects two similar vertices of

T . Let v and w be the two endpoints of a symmetry edge L of the tree

T . In Exercise 30, the reader is asked to prove that each f ∈ Aut(T ) that

satisfies f(v) = w must also satisfy f(w) = v. It then follows easily (see

Exercise 31) that no tree can have more than one symmetry edge.

The following, somewhat technical lemma is (almost) the only graph-

theoretical part of the proof of Theorem 18.26.

Lemma 18.27. Let T be a tree, and let T0 be a subtree of T so that no two

vertices of T0 are similar in T . Let P be a vertex of T that is not in T0,

and let P be adjacent to a vertex Q in T0.

Let f ∈ Aut(T ) so that P ′ = f(P ) ∈ T0. Set Q′ = f(Q). Denote by e

the edge between P and Q, and denote by e′ the edge between P ′ and Q′.
Then either Q = Q′ or e = e′.

See Figure 18.4 for an illustration. It is easy to see that in that particular

example, the function f interchanging P and P ′ and keeping all other

vertices fixed is an automorphism of T .

Proof. (of Lemma 18.27) We show that if e 6= e′, then Q = Q′. If we

remove the edge e = PQ from T , we get the trees TP and TQ, where TP is

the tree containing P . In a similar manner, if we remove e′ from T , we get

the trees TP ′ and TQ′ .

We will now prove that the edge e′ is in T0. That, in turn, implies that

Q′ ∈ T0 since Q′ is an endpoint of e′. As f(Q) = Q′, this forces Q = Q′,
since T0 does not contain two distinct vertices that are similar in T .

Let us assume by way of contradiction that e′ /∈ T0. That means that
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T

T0

P

Q

P’

e

e’

Fig. 18.4 An instance of the situation in Lemma 18.27.

the removal of e′ leaves T0 intact, so T0 is part of TP ′ or TQ′ . However,

by definition, P ′ ∈ T0, so T0 ⊆ TP ′ since P ′ is an endpoint of e′. Since by

definition, Q ∈ T0, this implies that Q ∈ TP ′ . As Q is adjacent to P (by

way of e), this implies that e ∈ TP ′ , since we know that e is not identical

to the removed edge e′. The fact that e ∈ TP ′ implies that e /∈ TQ′ since

TP ′ and TQ′ are disjoint.

In a similar manner, e = PQ is by definition not part of T0 (since P is

not part of T0), so its removal leaves T0 intact. This means T0 is a subtree

of TP or TQ, but since Q ∈ T0, therefore T0 ∈ TQ. In particular, P ′ ∈ TQ

since P ′ ∈ T0. As the removed edge e is not identical to the edge e′ = P ′Q′,
this implies that Q′ ∈ TQ, and also e′ ∈ TQ.

Finally, because Q′ ∈ TQ, and the removed edge e = PQ is not in TQ′ ,

it follows that TQ′ ⊆ TQ. This containment is strict, since TQ contains

the edge e′, while TQ′ by definition does not. This is a contradiction,

since f(TQ) = f(TQ′), so TQ and TQ′ have the same number of edges. So

e′ ∈ T0, and, as we explained in the second paragraph of this proof, that

forces Q = Q′. �

Note that if e = e′, that means that the edge PQ and the edge P ′Q′ are
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identical. As P 6= P ′, this means that P = Q′ and P ′ = Q. In particular,

P and Q are similar, and the edge PQ is a symmetry edge. Also note that

f(P ) = P ′ = Q, and f(Q) = Q′ = P , so f reverses the edge e.

The following, perhaps surprising, lemma shows that the number of

non-similar vertices and the number of non-similar edges of a tree are very

closely connected, almost in the same way as the number of all vertices and

the number of all edges.

Lemma 18.28. In any tree T , the number of non-similar vertices is one

larger than the number of non-similar edges (symmetry edge excluded).

The reader should verify this claim for the tree T shown in Figure 18.4

before reading further.

Proof. (of Lemma 18.28) Let T0 be a maximal (that is, non-extendible)

subtree of T that contains no two vertices that are similar in T . Let T0

consist of m vertices. See Figure 18.5 for an illustration.

0T

T

Fig. 18.5 The tree T0 has no two vertices that are similar in T , but no other vertices
of T can be added to T0 without destroying that property of T0.

We will prove two claims, which will together imply the statement of

Lemma 18.28.
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(1) We claim that T has exactly m non-similar points. We claim that this

is true since each vertex v of T is similar to a vertex of T0.

We prove this claim by induction on k, the distance of a vertex v ∈ T

from T0. For k = 1, the claim is obvious. Indeed, in that case, v is a

neighbor of a vertex of T0, so if v were not similar to a vertex of T0,

then v could be added to T0, contradicting the maximality of T0.

Now let us assume that we know that our claim holds for k and prove it

for k+1. Let v be at distance k+1 from T0, and let u be the neighbor

of v on the unique path from v to T0. Then u is at distance k from

T0, so by the induction hypothesis, u is similar to a vertex u0 ∈ T0.

So the neighbors of u (including v) are similar to the neighbors of u0,

which are vertices at distance at most one from T0. By transitivity,

(and because the claim holds for k = 1), this implies that all neighbors

of u, including v, are similar to a vertex in T0. This completes the

induction step and the proof of our claim.

(2) We claim that T has m − 1 non-similar edges that are not symmetry

edges. We claim that this is true since each non-symmetry edge of T

is similar to an edge of T0.

Let pq be an edge of T . By the previous claim, q is similar to a vertex

in T0, so we may assume that q ∈ T0 (since there is an automorphism

of T that maps q into a vertex of T0). If p ∈ T0 as well, then our

claim is obviously true. If p /∈ T0, then p is similar to a vertex p′ ∈ T0,

otherwise p could be added to T0, contradicting the maximality of T0.

Now apply Lemma 18.27, with the vertices p, p′, and q playing the roles

of the vertices P , P ′ and Q, and f ∈ Aut(T ) being an automorphism

such that f(p) = p′. Then Lemma 18.27, and the remark after it imply

that either f(q) = q, or pq is a symmetry edge. So if pq is not a

symmetry edge, then f(pq) = p′q, which is an edge of T0 since both p′

and q are in T0, and the automorphism f of T preserves edges. So pq

is similar to the edge p′q of T0.

The statement of the Lemma is now obvious since m− (m− 1) = 1. �

Now let vn be the total number of non-similar vertices of all n-vertex

unlabeled trees, and let en be the total number of all non-similar edges

(that are not symmetry edges) of all n-vertex unlabeled trees. In other

words, vn is the sum of the number of non-similar vertices taken over all

n-vertex unlabeled trees, and en is the sum of the number of all non-similar

edges (excluding symmetry edges) of all n-vertex unlabeled trees.

The following proposition expresses the number of our unrooted trees
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in a way that will be useful in our enumeration efforts.

Proposition 18.29. For all positive integers n ≥ 2, we have

tn = vn − en.

Proof. (of Proposition 18.29) Let v(t) (resp. e(t)) denote the number of

non-similar vertices (resp. edges) of the unrooted tree t. Then by Lemma

18.28, we have

vn − en =
∑

t

(v(t) − e(t))

=
∑

t

1

= tn.

Here t ranges all unrooted trees on n unlabeled vertices. �

In order to use Proposition 18.29 to compute tn, we need to determine

both vn and en. First, we have

vn = Tn, (18.9)

since rooting the unlabeled tree t at its vertex x will result in a rooted tree

different from the rooted tree obtained from rooting t at its vertex y if and

only if x and y are non-similar vertices.

Second, en is equal to the number of rooted trees t on n unlabeled

vertices in which one edge that is not a symmetry edge is colored blue. We

claim that the number of the latter is

en =
1

2

∑

i6=j
i+j=n

TiTj +

(

Tn/2

2

)

,

where Tn/2 = 0 if n is odd.

Indeed, removing the colored edge (but not its vertices) from t will

result in two smaller rooted trees, the endpoints of the removed edges being

the roots. If these trees have a different number of vertices, then they are

counted by the first summand of the right-hand side, and if they have the

same number of vertices, then they are counted by the second term of the

right hand side. (Since the removed edge was not a symmetry edge, the

two obtained smaller trees are always different.)

A routine rearrangement of the last displayed equation yields

en =

∑

i+j=n TiTj

2
− Tn/2

2
. (18.10)
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Substituting the expressions that we obtained for vn and en in formulae

(18.9) and (18.10) into the formula of Proposition 18.29, we get

tn = Tn −
1

2









∑

i+j=n

TiTj



− Tn/2



 ,

which is equivalent to the claim of Theorem 18.26. �

The asymptotics of tn are not surprising, given that each unrooted tree

on n vertices can be rooted in at least one and at most n different ways.

So tn ≤ Tn ≤ ntn clearly holds. This implies that tn must be of the same

exponential order as Tn. A more precise analysis, whose scope is beyond

this book, leads to the result

tn ∼
an

n5/2
b, (18.11)

where a = 2.95576 just as in formula (18.7), and b = 0.534949.

Notes

For an introducton to Analytic Methods in Combinatorics, we refer the

reader to Chapter 5 of Generatingfunctionology by Herb Wilf [49]. For a

more detailed treatment, we recommend Analytic Combinatorics [18] by

Philippe Flajolet and Robert Sedgewick.

A central part of these methods is a theorem that claims that (with

suitable conditions), the exponential order of the coefficients of the power

series A(x) equals 1/a, where a is the singularity of A(x) that is closest to

0. Singularity is an important concept in complex analysis, and the reader

is encouraged to read about it in the aforementioned books. For instance,

if a = 1/4, then the coefficients of A(x) grow roughly as fast as 4n.

Exercises

(1) (-) Prove that the group of all real numbers with addition as the oper-

ation is isomorphic to the group of all positive real numbers as multi-

plication as the operation.

(2) (-) Prove Proposition 18.14.

(3) (-) Let H be a subgroup of G, and let a and b be two elements of G.

Prove that aH = bH if and only if b−1a ∈ H .
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(4) We say that the action of the group G on the set S is transitive if for
any two elements s, t ∈ S, there is a g ∈ G so that g(s) = t. Give an
example of a regular graph R such that the action of Aut(R) on the
vertex set of R is not transitive.

(5) Show an example of a graph G such that the action Aut(G) on the set
of vertices of G is transitive, but the action of Aut(G) on the set of
edges of G is not transitive.

(6) Let H be a regular hexagon. Let us color the six sides of H using only
red, white, blue, and green, and consider two colorings equivalent if
one can be moved into the other by rotating H around its center, or
reflecting H through one of its six symmetry lines (three of which are
diagonals, and the other three of which connect midpoints of opposing
sides). How many non-equivalent colorings are there?
Note that in the next three exercises, we consider two colorings equiv-
alent if there is an automorphism of the graph at hand that moves one
coloring into the other.

(7) Find the number of non-equivalent ways to color the vertices of a tetra-
hedron using only red, blue or green.

(8) Find the number of non-equivalent ways to color the vertices of an
octahedron using only red or blue.

(9) Find the number of non-equivalent ways to color the vertices of a cube
using only red or blue.

(10) Let us say that two n-permutations q and r are c-equivalent if there
exists a natural number j ≤ n−1 and a bijection between the cycles of
q and the cycles of r so that each cycle of r can be obtained from the
corresponding cycle of q by adding j (modulo n) to each entry of the
corresponding cycle of q. For instance, q = (413)(52) and r = (241)(35)
are c-equivalent, as can be seen by selecting j = 3.

(a) Describe, in the language of group theory, what it means for q and
r to be c-equivalent. Your description should be in terms of multi-
plying permutations within the symmetric group.

(b) (+) Analyze the sizes of the equivalence classes created by the c-
equivalence relation to prove that if n is a prime, then (n− 1)! + 1
is divisible by n. (This statement is called Wilson’s theorem.)

(11) Let P be any of the five regular polyhedra. For f ∈ Aut(P ), let X(f)
be the number of vertices fixed by f . Find E(X).

(12) A non-plane 2-tree is a rooted tree in which each non-leaf vertex has
exactly two children.
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(a) (-) Prove that all non-plane 2-trees have an odd number of vertices.

(b) Let dn be the number of non-plane 2-trees on 2n+1 vertices. Prove

that dn = b2n+1, where bm is the number of non-plane 1-2 trees on

m vertices.

(13) Recall from Chapter 6 that a permutation p is called an even per-

mutation if it has an even number of inversions, or, equivalently, if

detAp = 1. See Exercise 11 of Chapter 6 for a definition of Ap.

What is the average number of fixed points in all even permutations of

length n?

(14) We have seen in Chapter 14 that the number of decreasing binary trees

on vertex set [n] is n!. Recall that those trees were plane trees. Now

let Nn be the number of decreasing binary non-plane trees on vertex

set [n]. In such a tree, the root has label n, and each non-leaf vertex v

has at most two children, and the labels of these children are less than

the label of v. The order of the children of v is insignificant, so there

is no “left child” and “right child”.

Let N0 = 1, and let N(x) =
∑

n≥0 Nn
xn

n! . Prove that N2(x) + 1 =

2N ′(x).
(15) Deduce from the result of the previous exercise that N(x) = tanx +

secx.

(16) Let En be the number of permutations of length n whose descent set

is [2, 4, · · · ].
(a) Characterize the decreasing binary trees (the plane version) of such

permutations.

(b) Prove that En = Nn, where Nn is defined in the previous exercise.

(17) (+) Find a bijective proof of the result of part (b) of the previous

exercise.

(18) Let d0 = 0, let dn be the number of all decreasing non-plane trees

on vertex set [n] if n ≥ 1. In these trees, each non-leaf vertex v can

have any number of children, as long as the labels of these children are

smaller than the label of v. The children of v are unordered.

Let D(x) =
∑

n≥1 dn
xn

n! .

(a) Let Dk(x) be the exponential generating function for the sequence

counting decreasing non-plane trees in which the root has exactly k

children. Prove that

D′
k(x) =

Dk(x)

k!
.
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(b) Use the result of part (a) to find a closed form for D(x), and then

for dn.

(19) Find a combinatorial proof of the result of part (b) of the previous

exercise.

(20) Let gn be the number of plane 1-2 trees on n unlabeled vertices. In

such trees, each non-leaf vertex v has either one or two children. If v

has two children, then the order of those children matters, that is, v

has a left child and a right child. However, if v has only one child, that

child is not a left child or right child (unlike in decreasing binary trees).

Set g0 = 0, and verify that g1 = 1, g2 = 1, g3 = 2, g4 = 4, and g5 = 9.

Find a closed form for the generating function G(x) =
∑

n≥0 gnx
n.

Supplementary Exercises

(21) A permutation group G acting on the set S is called transitive if for

any two elements s, t ∈ S, there exists g ∈ G so that g(s) = t.

Let R be a regular simple graph (meaning that all vertices of R have

the same degree. Is Aut(R) a transitive permutation group as it acts

on the vertex set of R?

(22) A permutation group G acting on the set S is called primitive if there

is no non-trivial partition of S that is preserved under the action of G.

That is, there is no partition π of S other than the 1-block partition

and the |S|-block partition with the property that for all g ∈ G and

all blocks B of π, the set g(B) is a block of π.

Now let S be the set of vertices of a cube, and let G be the automor-

phism group of the cube. Is G primitive over S?

(23) Let H be a simple graph on n vertices. Let l(H) be the number

of different ways to label the vertices of l using each element of [n]

exactly once. Two labelings are considered identical if the labeled

graphs defined by them have identical sets of edges. That is, for all

i, j ∈ [n], the edge ij is either part of both labeled graphs, or of neither

labeled graphs.

Find a formula for l(H) in terms of Aut(H).

(24) Euler’s theorem states that if p is a prime and x is a positive integer,

then xp − x is divisible by p. Use Theorem 18.20 to prove Euler’s

theorem.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Are They Really Different? Counting Unlabeled Structures 473

Note that in the next three exercises, we consider two colorings equiv-

alent if there is an orientation-preserving automorphism of the graph

at hand that moves one coloring into the other.

An automorphism f of a graph G is called orientation preserving if

the orientation (positive or negative, clock-wise or counter-clockwise)

of each cycle A1A2 · · ·Ak of G agrees with the orientation of the cycle

f(A1)f(A2) · · · f(Ak). Note that the orientation-preserving automor-

phisms of regular polyhedra are precisely those automorphisms that

correspond to three-dimensional movements. This group is sometimes

called the rotation group of the polyhedron.

(25) Find the number of non-equivalent ways to color the vertices of a cube

using only red or blue.

(26) Find the number of non-equivalent ways to color the vertices of an

octahedron using only red or blue.

(27) Find the number of non-equivalent ways to color the vertices of a

tetrahedron using only red, blue or green.

(28) Let bn be the number of unlabeled non-plane 1-2 trees on n vertices.

Prove that

(a) bn =
∑i−1

k=0 bkbn−1−k if n = 2i, and

(b) bn = 1
2bi(bi + 1) +

∑i
k=0 bkbn−1−k if n = 2i+ 1.

(29) (-) Show an example of a tree on six vertices with a symmetry edge,

and of a tree on six vertices without a symmetry edge.

(30) Let v and w be the endpoints of a symmetry edge L of the tree T . Let

f ∈ Aut(T ). Prove that if f(v) = w, then f(w) = v.

(31) Prove that a tree can have at most one symmetry edge.

(32) Let p = p1p2 · · · pn be a permutation. Let us define two families of

operations on p.

(a) For 1 ≤ i ≤ n, let Hi(p) = pipi+1 · · · pnp1 · · · pi−1, and,

(b) for 0 ≤ i ≤ n − 1, let Vi(p) = (p1 + i)(p2 + i) · · · (pn + i), where

integers larger than n are taken modulo n.

In other words, Hi(p) shifts p “horizontally” and Vi(p) shifts p “ver-

tically”, by i units.

Let us call two permutations equivalent if one can be obtained from

the other by a series of operationsHi and Vj , where i and j are allowed

to change. Find the number of equivalence classes of n-permutations

under this equivalence relation.

(33) (-) Let P be any of the five regular polyhedra. Let f ∈ Aut(P ). Let

Y (f) be the number of edges of P fixed by Y . Find E(Y ). (We say
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that f ∈ Aut(P ) fixes the edge e if f either leaves both endpoints of

e fixed, or interchanges them.)

(34) (+) Recall that in Chapter 16, we proved that if Πn is the lattice of

partitions of [n] ordered by refinement, then

µΠn(0̂, 1̂) = (−1)n−1(n− 1)!.

Use this fact to give an alternate proof of Wilson’s theorem, which is

stated in Exercise 10, part (c).

(35) (-) Recall that tn is the number of unlabeled trees on n vertices. An un-

labeled forest is a forest whose components are unlabeled trees. Let fn
be the number of such forests on n vertices, and let f(x) =

∑

n≥0 fnx
n,

with f0 = 1. Express f(x) in terms of the numbers tn.

(36) (-) A rooted unlabeled non-plane forest is a forest on unlabeled vertices

whose components are rooted non-plane trees. Let Fn be the number

of such forests on n vertices, and set F0 = 0. Find a simple expression

for F (x) =
∑

n≥0 Fnx
n in terms of one of the generating functions

discussed in this chapter.

(37) Let h0 = 0, and let hn be the number of rooted non-plane trees on n

unlabeled vertices in which each vertex has at most three children if

n ≥ 0. Find a functional equation satisfied by the generating function

H(x) =
∑

n≥0 hnx
n.

(38) Let n ≥ 3, and let un be the number of graphs on n unlabeled vertices

that contain exactly one cycle and that cycle is a triangle. Express the

generating function U(x) =
∑

n≥3 unx
n in terms of some generating

functions introduced in this chapter.

(39) Let an be the number of rooted plane 1-2 trees on vertex set [n] in

which every non-leaf vertex v has a label that is larger than the label

of its children. If v has two children, then one of them is the left child

of v and the other one is the right child of v, but if v has only one

child, that child is not a left child or right child (unlike in decreasing

binary trees). Let a0 = 1, and let A(x) =
∑

n≥0 an
xn

n! . Prove that

A′(x) = A2(x)−A(x) + 1.

(40) Let an be the number defined in the previous exercise. Find a (simply

defined) class of permutations of length n that has an elements.

Solutions to Exercises

(1) The map f(x) = ex is an isomorphism between these two groups.
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(2) If g and g′ both fix i, then so does gg′ since (gg′)(i) = g′(g(i)) = g′(i) =
i. The inverse of g reverses the action of g, so if g takes i to i, then

g−1 takes i to i as well. The identity permutation fixes every element

of S, including i. Finally, multiplication is automatically associative,

since it is associative in the group G.

(3) If aH = bH , then multiplying both sides by b−1 from the left, we get

b−1aH = H . If b−1a /∈ H , then this cannot hold, since H contains

the identity element of G. So aH = bH implies that b−1a ∈ H .

Now let us assume that b−1a ∈ H . Let x ∈ bH . Then x = bh for some

h ∈ H . Note that

x = b(b−1a)(a−1b)h = a(a−1b)h ∈ aH.

Indeed, if b−1a ∈ H , so is its inverse, a−1b. So bH ⊆ aH . Applying

the same argument for the a−1b, which is in H if and only if its inverse,

b−1a is, we get the inclusion aH ⊆ bH .

(4) Let R be an octogon, with its vertices labeled 1 through 8 in circular

succession, and with the diagonals 15, 28, 37, and 46. Then R is a

regular graph since each of its vertices has degree three. However,

the action of Aut(R) on the vertex set of R is not transitive, since

some vertices of R are not part of any triangles (3 and 7), while other

vertices are.

(5) Let G have vertices ABCA′B′C′, where ABC and A′B′C′ are tri-

angles, and AA′, BB′ and CC′ are edges. One can think of G as a

triangular prism. It is clear that Aut(G) acts transitively on the set

of vertices. However, Aut(G) does not act transitively on the edges,

since edges AA′, BB′ and CC′ are not part of any triangles, while the

other edges are.

(6) Let G be the automorphism group of a regular hexagon. It follows

from Exercise 8 (c) of Chapter 9 that G has 12 elements, which can be

identified as six rotations around the center of the hexagon (by angles

iπ/3, for i = 0, 1, · · · , 5) and six reflections (through three maximal

diagonals and three lines connecting the midpoints of opposite faces).

Let us start with the easy cases. If g is the identity element of G, then

it of course fixes all colorings, so Fg = 46 = 4096. If g is a rotation

by π/3 or 5π/3, then it only fixes colorings in which all sides have

the same color (four colorings each). If g is a rotation by π, then g

fixes the colorings in which opposite faces have the same color (there

are 43 = 64 such colorings). If g is a rotation by 2π/3 or 4π/3, then

g fixes the colorings in which second neighbors have the same color.

There are 42 = 16 such colorings.
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If g is a reflection, then we distinguish two cases. If g is a reflection

through a maximal diagonal, then it fixes 43 = 64 colorings, and if g

is a reflection through a line connecting the midpoints of two opposite

sides, then g fixes 44 = 256 colorings.

So

1

|G|
∑

g∈G

|Fg| =
46 + 2 · 4 + 43 + 2 · 42 + 3 · 43 + 3 · 44

12
= 430.

(7) The automorphism group of the tetrahedron is S4, the group of all

permutations of length 4. The elements of this group can be of five

different cycle types.

(a) Four 1-cycles. This permutation fixes all 81 colorings.

(b) Two 1-cycles and one 2-cycle. Such permutations fix 27 colorings,

since the two colors in the 2-cycle have to be identical.

(c) Two 2-cycles. By the same argument as in the preceding case,

such permutations fix nine colorings.

(d) One 1-cycle and one 3-cycle. Such permutations fix nine colorings.

(e) One 4-cycle. Such permutations fix three colorings.

The number of permutations of each type is, 1, 6, 3, 8, and 6 as

we learned in Chapter 6. Therefore, Theorem 18.20 yields that the

number of inequivalent colorings is

81 + 6 · 27 + 3 · 9 + 8 · 9 + 6 · 3
24

= 15.

(8) Burnside’s theorem is not the simplest way to solve this problem. Let

us consider the possible distributions of colors. There is one coloring

in which all vertices are red, one coloring in which all vertices are

blue, one coloring in which five vertex is red and one is blue, and one

coloring in which five vertices are blue and one is red.

If four vertices are red and two are blue, then those two blue ver-

tices may be at distance one or two from each other, leading to two

inequivalent colorings. The same holds for four blue and two red ver-

tices. Finally, if there are three red and three blue vertices, then the

three red vertices may or may not contain an opposite pair, leading to

two more colorings. So there are altogether ten inequivalent colorings.

(9) There is one such coloring with zero, one, seven, or eight red vertices.

There are three inequivalent colorings with two red vertices, since the

two red vertices may be at distance 1,
√
2, or

√
3. The same goes for

colorings with two blue vertices.
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Now consider colorings with three red vertices. One possibility is that

all three red vertices are on the same face. Another one is when two

red vertices are endpoints of the same edge, and the third is the unique

vertex at distance
√
3 from one of them. The only remaining case is the

one in which no edge has two red endpoints, that is, the red vertices

are the three neighbors of a given vertex. This means there are three

inequivalent colorings with three red vertices, and three inequivalent

colorings with three blue vertices.

Finally, there is the case of four red vertices and four blue vertices.

There is one coloring in which all red vertices are on one face. There

are three colorings in which three red vertices and a blue vertex are

on one face. The only remaining case is when each face has two red

and two blue vertices. That can happen in two ways, namely either

there will be an edge with monochromatic vertices, or not. So there

are a total of six colorings with four vertices of each color.

So altogether, there are 1+1+1+1+3+3+3+3+6 = 22 inequivalent

colorings.

(10) (a) Let q and r be c-equivalent by way of the integer j, and let q(a) =

b. Then r(a+ j) = b+ j. Now let gj(i) = i+ j modulo n (that is,

n+ t is identified with t for positive t). Then gj is a permutation

(a “cyclic translation”) on [n]. Furthermore, r(a+ j) = b+ j just

means that r(gj(a)) = gj(q(a)). So we have that gj · r = q · gj as

permutations, or r = g−1
j · q · gj . This fact is referred to by saying

that r and q are conjugates by way of a cyclic translate gj.

(b) The n cyclic translates gj form a group G that acts on the set of

all n-permutations by the conjugate relation. That is, the action

of gj on q sends q to r = g−1
j · q · gj . The size of this group is n,

and so, by Lemma 18.16, the sizes of the orbits of its action, that

is, the sizes of c-equivalence classes, are divisors of n. If n is a

prime, that means that the orbit sizes are 1 or n.

It is easy to characterize the c-equivalence classes of size 1. The

reader is invited to verify that these correspond to powers of the

n-cycle (12 · · ·n). In particular, if a permutation p is not the

identity, and not an n-cycle, then the size of its equivalence class

is n. The number of such permutations is n! − [(n − 1)! + 1], so

this number is divisible by n, but then so is (n− 1)! + 1.

(11) By Corollary 18.21, the average number of fixed points of the action

of a finite group G on the finite set S is the number of orbits of that

action. The automorphism group of each regular polyhedron acts
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transitively on the vertex set of that polyhedron, which means that it

has only one orbit. So E(X) = 1.

(12)(a) This is true for the one-vertex tree, then it follows by induction,

since each non-plane 2-tree consists of a left subtree, a right subtree,

and a root.

(b) Let T be a tree counted by dn. Remove all n+ 1 leaves of T . This

leaves us with a tree f(T ) counted by bn. We are going to show

that f is a bijection by showing that it has an inverse. Let U be

a tree counted by bn. Let us add two leaves to be the children of

each leaf of U , and one extra child to each vertex of U that has one

child. Let g(U) be the obtained non-plane 2-tree with n non-leaf

vertices. Then g and f are inverses of each other.

(13) Even permutations of length n form a group (called the alternating

group and denoted by An). It is straightforward to see that An is

transitive over the set [n] if n ≥ 3. So by Corollary 18.21, the average

number of fixed points is 1 if n ≥ 3. By trivial considerations, it is 1

if n = 1, and 2 if n = 2.

(14) By Theorem 8.21, N2(x) is the generating function counting two-

element sequences binary non-plane trees (on a combined vertex set

[n − 1]) obtained by cutting of the root of such a tree on vertex set

[n]. If, instead of sequences, we count 2-element sets of such trees,

this generating function turns into (N2(x)+1)/2. (The reader should

explain why the addition of 1 is needed.) On the other hand, the

number of such 2-element sets of trees on [n−1] is equal to the number

of such trees on [n], that is, Nn, so their generating function is also

equal to
∑

n≥1 Nn
xn−1

(n−1)! = N ′(x).
(15) Note that N(x) = tanx + secx does solve the initial value problem

2N ′(x) = N2(x) + 1, with N(0) = 1. It is well-known in the theory of

differential equations that the solution of a (correctly stated) initial

value problem is unique, so N(x) must equal tanx+ secx.

(16)(a) If n is odd, then these are precisely the permutations whose de-

creasing binary tree has the property that every non-leaf vertex

has exactly two children. If n is even, then the right-most ver-

tex has one (left) child, other non-leaf vertices have two children.

These claims are easy to prove by induction on n.

(b) We show that the sequences En and Nn satisfy the same recurrence

relation, namely 2Nn+1 =
∑n

i=0

(

n
i

)

EiEn−i for n ≥ 0, with N(0) =

1. For the sequence Nn, this is equivalent to the result of Exercise

14. For the sequence En, we proceed as follows. It is clear that
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En is also the number of permutations of length n with descent set
{1, 3, · · · }. So the number of permutations of length n + 1 with
descent set {1, 3, · · · } plus the number of permutations of length
n + 1 with descent set {2, 4, · · · } is 2En+1. On the other hand,
we get such a permutation by placing the entry n + 1 into the
(i + 1)th position, selecting the i entries that will be on the left of
that position, then placing one of the En−i permutations of length
n− i with descent set {2, 4, · · · } on the right of n + 1, and placing
the reverse of one of the Ei permutations of length i with descent
set {2, 4, · · · } on the left of n + 1.

(17) The first such proof was found by R. Donaghey [17].
(18)(a) By the Product Formula of Exponential Generating Functions

(Theorem 8.21), we know that Dk(x) is the generating function
of the sequence counting ordered lists of k such trees so that the
vertex set of their union is [n]. Therefore, Dk(x)/k! is the gen-
erating function for the sequence counting k-element sets of such
trees.
On the other hand, by cutting off the root n of a decreasing non-
plane tree in which the root has k children, we get a set of k de-
creasing binary trees so that the union of their vertex sets is [n−1].
This shows that the coefficient of xn/n! in Dk(x)/k! agrees with
the coefficient of xn+1/(n + 1)! in Dk(x), proving our claim.

(b) Summing the result of part (a) over all k, we get D′(x) = eD(x), or,
equivalently, D′(x)e−D(x) = 1. Integrating both sides, we obtain
−e−D(x) = x− 1, since the constant of integration must be chosen
to −1 to conform with the fact D(x) = 0. So e−D(x) = 1−x, hence

D(x) = ln
(

1
1− x

)
=
∑
n≥1

xn

n!
.

So dn = (n− 1)!.
(19) Let p = p1p2 · · · pn−1 be a permutation. Define the decreasing non-

plane tree Dp by making pi the parent of pj if, when walking from
pj to the right, pi is the first entry we meet that satisfies pi > pj . If
there is no such pi, then let n be the root of pj . It is straightforward
to verify that the map p→ Dp is a bijection.

(20) As the root has either one or two children, the Product formula (The-
orem 8.5) implies that G(x) = 1 + xG(x) + xG2(x). This leads to

G(x) =
1− x−√1− 2x− 3x2

2x
.
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Note that these numbers are theMotzkin numbers that we have seen in

Exercise 16 of Chapter 8. The indexing is shifted by 1, so gn = Mn−1.



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Chapter 19

The Sooner The Better.

Combinatorial Algorithms

19.1 In Lieu of Definitions

In all preceding parts of this book, when we considered a problem, we were

interested in enumerating certain structures, finding the number of ways in

which a certain task could be carried out, or deciding whether a structure

with a certain set of properties can exist.

In this chapter, we will consider combinatorial problems from a new

aspect. Instead of finding the number of ways in which we can carry out a

task, we will be asking how fast we can carry out that task.

For our purposes, an algorithm is a finite sequence of unambiguously

defined steps that carries out a task. We will not attempt to define an

algorithm better than that sentence as that would be a topic for a logic

course. Let us nevertheless point out that one could question what “unam-

biguously defined” means. Consider for instance the following definition.

“Let N be the smallest positive integer that cannot be defined using the

English language and writing less than one thousand letters.”

Now is N defined or not? The above sentence took less than one thou-

sand letters to write, so it would seem that after all, it does define N within

the allowed limits. However, N , by definition, cannot be defined with those

limits.

The above paradox, which is sometimes called the typewriter paradox,

is caused by the fact that the meaning of the word “defined” is not precise.

As we said, we will not attempt to resolve that problem in this class, we

will simply work with algorithms in which each step will be defined with

no room left for ambiguity.

The above “pseudo-definition” of an algorithm nevertheless made it

481
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clear that an algorithm must consist of a finite number of steps. So if

a procedure ever gets into an infinite loop, then that procedure is not an

algorithm.

Example 19.1. The following procedure is not an algorithm as it contains

an infinite loop.

# start with a_1=1

# for i larger than 0 do

# a_{n+1} = -a_n

The data that the algorithm is given at the beginning is called the input

of the algorithm, and the data that the algorithm returns is called the

output.

19.1.1 The Halting Problem

In order to further illustrate the difficulties of properly defining an algo-

rithm, consider the following. Let us assume that we formally defined what

an algorithm is. Then if somebody gives us a text T , we can surely decide

whether T is an algorithm or not, can we not? Even more strongly, we can

surely find a generic way, that is, an algorithm that decides whether T is

an algorithm or not, can we not? In particular, we can surely decide that

if we give a specific input t to T , then T will eventually halt or go into an

infinite loop, can we not?

It turns out that no, we cannot. Let us assume that we can, that is,

that there exists an algorithm Halt(T, t) so that

Halt(T, t) =







“Yes” if T halts when given t as input,

“No” if T goes into an infinite loop when given t as input.

What we do next will sound familiar to readers who took a course on Set

Theory. We will present a proof by the so-called diagonalization method.

Write a program Diagonal so that

Diagonal(s) =







returns “Yes” and halts if Halt(s, s) is “No”,

goes into an infinite loop if Halt(s, s) is “Yes”.

Now we are making one more step of this strange, self-referring kind.

We feed Diagonal to itself as input. Will Diagonal(Diagonal) stop or not?

Let us consider both possible answers.
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(1) Let us assume first that Diagonal(Diagonal) halts. By the defini-

tion of Diagonal, that means thatHalt(Diagonal,Diagonal) is “No”.

However, by the definition of Halt, that means that Diagonal does

not halt on itself. This is a contradiction.

(2) Let us now assume that Diagonal(Diagonal) goes into an in-

finite loop. By the definition of Diagonal, that means that

Halt(Diagonal,Diagonal) is “Yes”. However, by the definition of

Halt, that means that Diagonal does halt on itself. This, again, is a

contradiction.

So our original assumption thatHalt exists led to a contradiction, there-

fore Halt does not exist.

It is important to point out that all we proved is that there is no algo-

rithm that would decide whether any given text T is an algorithm, that is,

whether T will halt on an arbitrary input t. For a specific text T , we can

very often decide whether T halts on t or not.

19.2 Sorting Algorithms

One of the classes of algorithms used most often in real life are sorting

algorithms. These arrange certain objects in a line according to a specified

property of the objects. In our examples, we will most often sort sets of

real numbers. In order to simplify the discussion, we will assume that all

the real numbers to be sorted are all distinct, but if we allowed multisets of

real numbers, the algorithms would still work, with minor modifications.

19.2.1 BubbleSort

There are n children standing in a line, and they are of all different heights.

We would like to rearrange the line so that the children are in increasing

order of their height. What is the best way to achieve that goal?

The question at the end of the last paragraph is very imprecise. What

makes it imprecise is the word best, that is, we have not said what we mean

by the best way. We will revisit this problem in the next chapter, when we

will formalize our ways of describing the efficiency of various algorithms.

However, for now, let us say that we measure efficiency by the number

of pairwise comparisons an algorithm makes. That is, the less pairwise

comparisons an algorithm makes, the better it is. So the best algorithm is

the one that makes the smallest number of comparisons.
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One idea that naturally comes to mind is the following. Let

a1, a2, · · · , an denote the heights of the n children, with ai being the height

of the child who is currently in the ith place of the line. Let us compare a1
and a2. If a1 < a2, then the relative order of the first two children is the

desired one, and we do nothing. If a1 > a2, then the relative order of the

first two children is not the desired one, and we ask them to change places.

Note that in either case, we have made one comparison so far.

After making sure that the relative order of the first two children in

the original line was the desired one, we compare the heights of the two

children who are currently in the second and the third position of the line.

If it is the desired one, that is, the second child is shorter than the third,

then we do nothing, otherwise we ask them to change places.

We then continue the same way, that is, we compare the third and the

fourth children of the current line, and if they are in the wrong order, we ask

them to change places, then we compare the fourth and the fifth children,

and if they are in the wrong order, we ask them to change places, and so

on. The first part of the algorithm will end after we compared the two

last children of the then-current line, and made sure they were in the right

order. After that is done, we can be sure that the tallest child is indeed in

the last place of the line. Indeed, no matter where he was in the line, once

our swapping procedure reached him, he moved back on place in each step,

until he reached the end of the line.

Example 19.2. If n = 5, and originally, the children’s line corresponded to

4, 1, 5, 2, 3, then this first round of comparisons will take place as follows.

(1) Start with 4, 1, 5, 2, 3.

(2) As 4 > 1, interchange these two children, to get 1, 4, 5, 2, 3.

(3) As 4 < 5, do nothing.

(4) As 5 > 2, interchange these two children, to get 1, 4, 2, 5, 3.

(5) As 5 > 3, interchange these two children, to get 1, 4, 2, 3, 5.

(6) End of first round.

Unfortunately, the tallest child is the only one who is surely in his right

place after this part of our algorithm. Indeed, it could even happen that

the second-tallest child is in the first place! The reader is invited to check

that this could happen if a1 is the largest of all ai, and a2 is the second

largest, or if a2 is the largest and a1 is the second largest. The reader is

also invited to check that for any positions i and i + 1, with i ≤ n− 2, we

cannot know for sure that the child in position i is shorter than the child
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in position i+ 1.

Therefore, we will now repeat almost all the steps of the first part of

the algorithm. That is, we compare the first two children of the current

line, and if they are in the wrong order, we ask them to change places, then

we compare the second and the third children of the then-current line, and

proceed in an analogous way, and so on. The last pairwise comparison we

will make in this round is comparing the (n − 2)nd and (n − 1)st children

of the then-current line. Indeed, there is no need to compare the n − 1st

and nth children of the line, since we already know that the latter is the

tallest of all n children.

After this second round of comparisons, we can be sure that the second-

tallest child is at her right place (since she was taller than anybody who

got compared to anyone in this round). Again, nothing more is assured.

Therefore, we need to run another round of comparisons on the first n− 2

children of the current line again. That will make sure that the third-

tallest child gets in his right place, and so on. When we run the ith round

of comparisons, the ith-tallest child will get in his right place. Therefore,

when we run the n − 1st run, of comparisons, the (n − 1)st-tallest (or

second-shortest) child gets in his right place. At that point, our task is

done since the remaining child is automatically in his right place, namely

the first place.

Example 19.3. Continuing the process started in Example 19.2, we would

proceed as follows.

(1) Our starting point for the second round would be the line 1, 4, 2, 3, 5.

(2) As 1 < 4, we would do nothing.

(3) As 4 > 2, we would interchange these two children, to get 1, 2, 4, 3, 5.

(4) As 4 > 3, we would interchange these two children, to get 1, 2, 3, 4, 5.

(5) This would end the second round of comparisons. In this particular

case, no further comparisons would result in any changes, since we

have reached the increasing order.

How many comparisons will we have to make while rearranging the line

of n children? The first round will take n−1 comparisons, the second round

will take n − 2, comparisons, and so on, with the ith round taking n − i

comparisons. Therefore, the total number of comparisons that we will have

to make is
∑n−1

i=1 (n− i) =
∑n−1

i=1 i =
(

n
2

)

. Another way of seeing this is by

considering that every pair of elements gets compared exactly once.

As we mentioned before, the procedure of arranging n objects in a line
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in a previously specified order is called sorting. The sorting algorithm we

presented above that used subsequent comparisons of adjacent elements is

called Bubble Sort. (If we imagine that the objects are arranged vertically,

then the largest, second-largest, third-largest elements, will rise to their

correct positions as bubbles in water.)

In a generic programming language often called pseudo-code, the Bubble

Sort algorithm can be described as follows.

# for i := 1 to n - 1

# do for j := 1 to n - i

# do if a_j > a_{j+1}

# then t := a_j

# a_j := a_{j+1}

# a_{j + 1} := t

Here the variable i tells in which round of comparisons we are, and the

variable j tells which comparison of that round we are currently carrying

out. The temporary variable t is needed so that while we declare the new

aj to be equal to the old aj+1, we do not lose the value of the old aj before

we assign it as the new value of aj+1.

A “generic programming language”, or pseudo-code is a loosely defined

concept. It describes algorithms in a way programming languages do, but

without the formal constraints. It helps to get a quick overview of what

the algorithm does.

19.2.2 MergeSort

We have seen in the previous section that BubbleSort can sort an array of

n real numbers in
(

n
2

)

steps, even in the worst case. It is natural to ask

whether we can find a better algorithm, that is, an algorithm that uses

less pairwise comparisons, even in the worst case. Every element needs

to get compared to another element at least once throughout any sorting

procedure, otherwise we will have no information about the size of that

element. So we cannot expect to find an algorithm that uses less than

n/2 comparisons. This leaves a rather big gap between the two bounds we

currently have, that is, the (trivial) lower bound n/2 and the proved upper

bound
(

n
2

)

.

It turns out that the truth is much closer to the lower end. There

exist several sorting algorithms that can sort n elements in no more than

cn log2 n steps, for some positive constant c.
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One of these algorithms is called MergeSort. This is because this algo-

rithm will first split the list of n objects in two parts which are as equal in

size as possible, then sort both parts, and then merge the two sorted lists

together. OK, you could say, but how will this algorithm sort those two

partial lists? The answer to this is the most self-contained answer possible.

MergeSort will sort those two lists by Mergesort again, that is, by splitting

each of them into two sublists, sorting each of them by MergeSort, and

then merging each pair of ordered lists into an ordered list. In other words,

MergeSort is a recursive algorithm that calls unto itself in each step.

There is one more detail that we must discuss. How do we merge two

sorted lists, say a1 < a2 < · · · < am and b1 < b2 < · · · < bk? We can

do this efficiently as follows. Compare a1 to b1. If a1 < b1, then a1 is the

smallest of all m + k elements at hand, and we can put it to the front of

the merged list. Then we can continue with the lists a2 < a3 < · · · < am
and b1 < b2 < · · · < bk and repeatedly use the merging procedure we are

describing. If a1 > b1, then b1 is is the smallest of all m + k elements

at hand, and we can put it to the front of the merged list. Then we can

continue with the lists a1 < a2 < · · · < am and < b2 < · · · < bk, and use

the same procedure again.

Example 19.4. The following shows MergeSort at work on the list 3, 1, 4,

2.

(1) Start with the list 3, 1, 4, 2.

(2) Split the list into the partial lists 3, 1 and 4, 2.

(3) Sort the partial lists, to get the sorted partial lists 1, 3 and 2, 4.

(4) Merge the partial lists 1,3 and 2, 4 to get 1, 2, 3, 4.

(5) End.

In the above example, the procedure worked in a very “symmetric” way

since the number of elements to sort, four, was a power of two. This does

not have to be the case for MergeSort to work.

Example 19.5. The following shows MergeSort at work on the list 4, 2, 1,

5, 6, 3.

(1) Start with the list 4, 2, 1, 5, 6, 3.

(2) Split the list into the partial lists 4, 2, 1 and 5, 6, 3.

(3) Sort the partial lists as follows.

(a) Split them into the partial lists 4, 2, and 1; and 5, 6, and 3.
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(b) Sort the partial lists, to get the sorted lists, 2, 4, and 1; and 5, 6,

and 3.

(c) Merge the partial lists 2, 4, and 1; and 5, 6, and 3, to get the sorted

lists 1, 2, 4 and 3, 6, 5.

(4) Merge the sorted partial lists 1, 2, 4 and 3, 6, 5 to get the sorted list 1,

2, 3, 4, 5, 6.

(5) End.

In pseudo-code, MergeSort can be implemented as follows.

# MergeSort(i=1..n)

# if 1<n do

# m=[(1+n)/2];

# Mergesort(1,m);

# Mergesort(m+1,n);

# merge(1,m,n)

# end

Here merge(1,m, n) is the subalgorithm that merges two sorted partial

lists. It can be implemented for instance by copying the two ordered partial

lists into a temporary list (so that the original lists are not overwritten),

and then by moving the smallest elements still in the two lists into the new,

sorted list. In pseudo-code, this can be done as follows.

# merge(1, m, n)

# for i=1..n do

# b_i=a_i;

# i=1; j=m+1; k=lo;

# while (i<=m && j<=n)

# if (b_i<b_j)

# a_{k+1}=b_{i+1};

# else

# a_{k+1}=b_{j+1};

# end

How many comparisons will MergeSort make when it sorts an n-element

list? Let M(n) denote this number. Then M(1) = 0 and M(2) = 1. For

the general case, we claim that if n = 2k, then

M(2k) = 2M(k) + 2k − 1, (19.1)
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and when n = 2k + 1, then

M(2k + 1) = M(k) +M(k + 1) + 2k. (19.2)

Both of these formulae are easy to explain. Indeed, the first two terms

of the right-hand side are the number of comparisons needed to sort the

two partial lists, and the last term is the number of comparisons needed

to merge the two sorted partial lists. Indeed, after each comparison, we

are able to place one element to its right place in the merged list, so n− 1

comparisons will place the first n − 1 elements in their right place, which

then will force the last element into its right place.

Note that (19.1) and (19.2) can be comprised in the formula

M(n) = M(⌊n/2⌋) +M(⌈n/2⌉) + n− 1. (19.3)

These cumbersome divisibility issues suggest that we first try to find an

exact formula for M(n) in the special case when n = 2t. In that case, set

mt = M(2t). Then (19.3) translates to

mt = 2mt−1 + 2t − 1 (19.4)

for t ≥ 1, and m0 = 0. Let m(x) =
∑

t≥0 mtx
t be the ordinary generating

function of the sequence mt. Multiplying both sides of (19.4) by xt and

summing over t ≥ 1, we get

m(x) = 2xm(x) +
2x

1− 2x
− x

1− x
.

This implies

m(x) =
2x

(1− 2x)2
− x

(1− x)(1 − 2x)
=

x

(1− x)(1 − 2x)2

=
1

(1− 2x)2
+

1

1− x
− 2

1− 2x
.

Therefore, mt = (t− 1)2t + 1. This means that if n = 2t, then

M(n) = M(2t) = n(log2 n− 1) + 1.

If n is not a power of 2, then we can add new objects to the list which

are larger than all existing objects until n does become the closest power

of 2 that is not smaller than n, that is, n1 = 2⌈log2⌉. We can then sort

the new list in n1(log2 n1 − 1) + 1 steps as above. The obtained sorted list

will contain the original n elements in the right order, at the beginning of

the list. Finally, note that n1 < 2n, and log2 n1 < log2 n+ 1, therefore, in

terms of n, the sorting algorithm will never take more than 1 + 2n log2 n

comparisons.
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At this point, we would like to stress that MergeSort is a very significant

improvement compared to BubbleSort. Indeed, the ratio of the numbers of

steps in the two algorithms is not more than

gn =
1 + 2n log2 n

(

n
2

) =
1
(

n
2

) + 4
log2 n

n− 1
.

Therefore limn→∞ gn = 0, so for large n, the number of comparisons Merge-

Sort needs is negligible when compared to the number of comparisons that

BubbleSort needs.

19.2.3 Comparing the Growth of Functions

In the rest of this chapter, we will define ways to describe good estimates

of the number of steps an algorithm makes. As the example of MergeSort

shows, these estimates can often be obtained much faster than a precise

formula, and will still provide a good measurement of the efficiency of the

algorithm. In order to facilitate discussion of these estimates, we make the

following three definitions, which are all very widely used in approximation

theory.

Definition 19.6. Let f : Z+ → R be a function, and let g : Z+ → R be

another function. We say that f(n) = O(g(n)) (read “f is big O of g”) if

there exists a positive constant c so that

f(n) ≤ cg(n)

for all n ∈ Z+.

In other words, f(n) = O(g(n)) means that f(n) is at most a constant

factor larger than g(n), for all n. In other words, g(n) approximates f(n)

up to a constant factor.

Example 19.7. Let M(n) be defined as above. Then M(n) = O(n log2 n).

Solution. We have seen that M(n) ≤ 1+2n log2 n for all n. Furthermore,

M(1) = 0, and 1 ≤ n log2 n if n ≥ 2. Therefore, M(n) ≤ 3n log2 n.

Example 19.8. Let f(n) = 100
(

n
2

)

+
(

n
3

)

. Then f(n) = O(n3).

Solution. Use c = 51.

Example 19.9. Let f(n) =
(

n
2

)

and let g(n) = 1000n. Then f(n) 6=
O(g(n)).
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Solution. No matter what c we choose, f(n) > cg(n) will hold when n >

2000c+ 1.

Let us return for a minute to the functionM(n) that counted the number

of comparisons MergeSort needed to make in order to sort an n-element

list. Then the statement that M(n) = O(n2) is certainly correct since n2

grows much faster than 2n log2 n+ 1. However, this statement is not very

informative since it is not very sharp. It simply says that M(n) is smaller

than another function, but it does not say how much smaller. There are

other notions that can make this statement more precise.

Definition 19.10. Let f : Z+ → R and g : Z+ → R be two functions. We

say that f(n) = Ω(g(n)) (read “f is omega of g”) if there exists a positive

constant c so that

f(n) ≥ cg(n)

for all n ∈ Z+.

Example 19.11. Let f(n) = 0.001n and let g(n) = 100 log2 n. Then

f(n) = Ω(g(n)).

Solution. Choose c = 10−5.

Finally, our last notation brings the previous two together.

Definition 19.12. Let f : Z+ → R and g : Z+ → R be two functions.

We say that f(n) = Θ(g(n)) (read “f is theta of g”) if f(n) = O(g(n)) and

f(n) = Ω(g(n)).

Example 19.13. Let f(n) = n2 + n log3(n). Let g(n) = n2. Then f(n) =

Θ(g(n)).

Solution. On the one hand, f(n) = O(g(n)) as can be seen by choosing

c = 2. On the other hand, f(n) = Ω(g(n)) as can be seen by choosing

c = 1.

19.3 Algorithms on Graphs

19.3.1 Minimum-cost Spanning Trees, Revisited

We saw an algorithm on graphs in Chapter 10. That algorithm, called

Kruskal’s algorithm, took a connected simple graph whose edges were as-
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signed a cost (or weight) as the input and returned a minimum-cost span-

ning tree of G as an output. In Chapter 10, we were concerned about the

greedy property of the algorithm, that is, the fact that in each step, the

algorithm took the edge that increased the short-term costs the least. In

each step, the algorithm chose an edge that did not create a cycle and had

the minimum cost of all edges with that property.

Now we will consider that algorithm from a different aspect. Our goal

is to decide how many steps the algorithm takes. Foretelling the need for

a unified approach that we will introduce in the next section, we point out

that what a step is needs a little bit of explanation. In the sorting algo-

rithms of the previous section, we simply counted comparisons. However,

in Kruskal’s algorithm, it is not so clear what we should count. Indeed,

choosing an edge from a graph is easy, but choosing an edge that does not

create a cycle is more difficult (in a very large graph), because we need to

make sure that indeed, no cycle is created, and that in itself can take a long

time if we do not have an efficient method to do it.

Let us discuss an efficient way of running the Kruskal algorithm. As

we said, each round of that algorithm will look for the lowest-cost edge

that can be added to the set S of edges already selected without creating

a cycle. This means that if there are several edges that can be added

without creating a cycle, then we have to look for the one with minimum

cost. Finding a minimum-cost edge in each round, and then forgetting

the results of all comparisons made in the process seems wasteful. It is

therefore sensible to sort all edges of G at the beginning of the algorithm.

As we have seen in the previous section, this can be done in O(E log2 E)

steps, where E is the number of edges of G. Let edges = {e1, e2, · · · , eE}
be the obtained list of all edges of G in non-decreasing order of their costs.

Now in the first round of Kruskal’s algorithm, we choose the edge e1,

and in the second round, we choose e2. As G is simple, e1 and e2 never form

a cycle. The third round is more complicated as e1, e2, and e3 could form

a cycle. If that happens, e3 is rejected, and e4 is selected. However, as we

proceed further, we need an efficient approach to decide whether the next

edge of edges is eligible to be chosen or not, that is, whether its addition

would create a cycle or not. It would take very long to consider every

possible subset of edges containing the newly chosen edge and verify that

they do not contain a cycle. Instead, we propose the following. From the

beginning of the algorithm, let us keep track of the connected components

of the graph T of selected edges.

That is, when we choose e1, let us put the two endpoints of e1 into a
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new set C1, indicating that they are in the same component of T . After

selecting e2, put its endpoints in C1 if the two-edge graph with edges e1
and e2 is connected, and put them into a new set C2 if that graph is not

connected.

Continue this way. That is, in round i, scan the still unused edges of

edges until you find the first edge whose endpoints are not in the same

component Ci. (It could be that they are in different components, or it

could be that one or both of them are not in any components yet.) Add

that edge eh to T . Discard the edges preceding eh from edges. If they could

not be added to T before without forming a cycle, they cannot be added

to T now without forming a cycle.

Then update the list of components. That is, if neither endpoint of eh
was included in any Ci before, create a new component with the endpoints

of ei. If one of them was in Cj , and the other one was in no component,

add that other one to Cj . Finally, if one endpoint of eh was in Ci and

the other one in Cj , then unite Ci and Cj , and add both ei and ej to the

obtained component. Rename that component so that it inherits the label

of the larger of its predecessors, that is, the component which had more

vertices in it.

This assures that the graph T remains cycle-free since we never join two

of its vertices in the same component by an edge.

Before counting the steps in this second part of the procedure, let us

consider an example.

Example 19.14. The above implementation of Kruskal’s algorithm ap-

plied to the graph of Figure 19.1 runs as follows.

(1) Start with the graph shown in Figure 19.1 (with the costs assigned to

the edges, but not yet the labels ei).

(2) Sort the edges according to their cost. Obtain the list edges =

{e1, e2, · · · , e11}.
(3) Select e1. Create the component C1 = {A,B}.
(4) Select e2. Create the component C2 = {G,H}.
(5) Select e3. Add E to C1, to get C1 = {A,B,E}.
(6) Select e4. Unite C1 and C2 to get C1 = {A,B,E,G,H}.
(7) Select e6. (Note that e5 is ineligible since its endpoints both belong to

C1.) Add F to C1 to get C1 = {A,B,E, F,G,H}.
(8) Select e8. Note that e7 is ineligible since its endpoints both belong to

C1. Add D to C1 to get C1 = {A,B,D,E, F,G,H}. Select e12, since
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Fig. 19.1 The graph G with its cost function and sorted edges.

e9, e10, and e11 are ineligible as their endpoints both belong to C1.

(9) End with the tree whose edges are e1, e2, e3, e4, e6, e8 and e12.

Returning to the question of how many steps the Kruskal algorithm

takes, let us say that for this algorithm, a step is whenever we do some-

thing, that is, put a vertex in a component, unite two components, or check

whether two vertices are in the same component. Note that in each round,

we have to scan at most E edges before finding the minimal-cost edge that

is eligible. After finding this edge e, there are two possibilities. If e will not

unite two existing components, but create a new component of two vertices,

or add one vertex to an existing component, then we can record that in a

constant number of steps. Indeed, we spend at most two steps adding a

vertex to one or two components. If e unites two components, say Ci and

Cj , then we change the label of the vertices in the smaller component to

the label of the other component. This may take as many as n/2 steps.

However, if x is a vertex whose label changed this way, then the component

containing x at least doubled in size. This cannot happen more than log2 n

times for any x. So each x will change labels no more than log2 n times,

therefore the number of all changes of labels is not more than n log2 n.

To summarize, it takes O(E log2 E) steps to sort the edges according to

their costs, then it takes O(E + n log2 n) steps to find the minimum-cost

tree. Therefore, the total number of steps needed is O(E log2 E) since our

graph is connected, so E ≥ n− 1.
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19.3.2 Finding the Shortest Path

The next problem we consider is one that everyone with a driver’s license

has faced before. Given a starting point s, an endpoint t, and a network of

one-way streets, find the shortest path from s to t.

We will present an algorithm that will find not simply the shortest path

to t, but the shortest path to any point on the map. The algorithm is called

the Dijkstra algorithm, after its inventor, the Dutch mathematician Edsger

W. Dijkstra.

Our input is a directed simple graph G. The edges of G all have a

positive cost; the cost of ei will be denoted by d(ei). One can think of d(ei)

as the “length” of ei.

While looking for the shortest path from s to any given vertex t, we will

associate a number δ(vi) to each vertex vi. This number can be thought of

as the “length of the shortest discovered path” from s to vi. Originally, we

set δ(s) = 0 and δ(t) = ∞ for all t 6= s, since we have not yet discovered

any paths from s to t.

In what follows, we split the vertex set V (G) of G into two parts, the

set S vertices to which we already have a path from s, and the set T of

vertices to which we do not yet have a path. So at the beginning, S = {s}
and T = V (G)− s.

For all edges sv, set δ(v) = d(s, v) replacing the original δ(t) =∞. This

makes perfect sense, since it expresses the fact that if there is an edge from

s to v, then the minimum distance from s to v is the length of that edge.

Now we describe a generic step of the algorithm. This step will be

applied several times, following the initial step described in the previous

paragraph.

Find a vertex v ∈ T for which δ(v) is minimal. Put v into S, and

proceed with all the edges leaving v and going to a vertex outside S as you

proceeded with the edges leaving s. More precisely, if vr is an edge with

r ∈ T , and δ(v)+d(v, r) ≥ δ(r), then do nothing. Otherwise replace δ(r) by

δ(v) + d(v, r), corresponding to the fact that we have just found a shorter

path to r, namely the path that consists of a shortest path to v, and the

edge vr. This step is often described by saying that we relax the edge vr.

When this is done, iterate this procedure. That is, find the vertex v′ ∈ T

for which δ(v′) is minimal, and start over. Stop when all vertices are in S,

and therefore, all edges are relaxed, or when there are no edges going from

S to T (the latter can happen when G is not strongly connected).

Throughout the algorithm, ties can be broken in any way. An example
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is shown below.

Example 19.15. For the graph shown in Figure 19.2, Dijkstra’s algorithm

works as follows.

s t
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F G
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I

2

7

D

Fig. 19.2 We will use the Dijkstra algorithm on this graph.

(1) Start with the graph shown, and set S = {s}.
(2) Relax the edges leaving s. Set δ(A) = 4 and δ(B) = 5. Put A in S.

(3) Relax the edges leaving A. Set δ(C) = 8 and δ(F ) = 9. Put B in S.

(4) Relax the edges leaving B. Set δ(D) = 10, and δ(F ) = 7 (so δ(F ) is

being reset). Put F in S.

(5) Relax the edges leaving F . Set δ(G) = 12 and δ(I) = 16. Put C in S.

(6) Relax the only edge leaving C. Set δ(E) = 12. Put D in S.

(7) Relax the only edge leaving D. This happens to have no effect, since

δ(G) = 12. Put G in S.

(8) Relax the only edge leaving G. Set δ(H) = 17. Put H in S.

(9) Relax the only edge leaving H . This has no effect. Put I in S.

(10) End.

Figure 19.3 shows the graph of Figure 19.2 with the values of δ written

next to the vertices in italics, and the weights of the edges written on the

edges in Roman font.

Several questions are in order. First, how do we read off a shortest path

from s to some t from the output of this algorithm? (We say a shortest
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Fig. 19.3 The Output of the Dijkstra algorithm.

path, not the shortest path, since there could be times when there are

several paths of minimum length.) Second, why is it that the final value of

δ(t) is indeed the length of a shortest path from s to t. Third, how many

steps does it take to run this algorithm?

We are going to answer the first two questions at once, by one theorem.

Before we can announce the theorem, we need one more notion. Let us say

that for a given vertex t, every time an edge vt is relaxed and the value

of δ(t) decreases, we set prev(t) = v. This expresses the fact that at that

point, there is a shortest path from s to t that ends in the edge vt. Note

that prev(t) is always a vertex that got placed into S before t, and that

when the Dijkstra algorithm is finished, prev(t) is defined for all t 6= s.

Therefore, as G is finite, for all vertices t 6= s, there exists a positive integer

k so that prevk(t) = s. Here prevk simply means k successive applications

of prev.

Theorem 19.16. For any simple graph G, and for any pair of distinct

vertices s and t, the Dijkstra algorithm will either produce a shortest path

from s to t and compute its length, or show that there is no path from s to

t, as follows.

(a) Once the algorithm is finished, the path whose edges listed from the

end are (prev(t), t), (prev(prev(t)), prev(t)), and so on, (s, prevk(t))

is a shortest path from s to t. If prev(t) is not defined, then there is
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no path from s to t.

(b) Furthermore, the length of any shortest path from s to t is equal to the

value of δ(t) when the algorithm is finished. If there is no path from

s to t, then this value will be ∞.

Proof. We first prove part (b). In fact, we prove the following, even

stronger statement. We claim that at each stage of the Dijkstra algorithm,

(i) if t ∈ S, then δ(t) is the length of a shortest path from s to t, and

(ii) if t /∈ S, then δ(t) is the length of a shortest path from s to t whose

last edge is an edge from S to t.

We prove these claims by induction on the size of S. If |S| = 1, that is

S = {s}, then (i) holds since δ(s) = 0. Claim (ii) holds since if (s, t) is an

edge, then δ(t) = d(s, t) is the length of a shortest path from (s, t) with the

desired property, and if (s, t) is not an edge, then δ(t) =∞.

Now let us assume that the claims hold for the case of |S| = k, and

prove them for the case of |S′| = k + 1. Let S′ = S ∪ x, that is, x is the

new vertex added to S in this step of the Dijkstra algorithm. We first show

that (i) holds for x. Before this step, x was outside S, so by the induction

hypothesis, δ(x) was the length of a shortest (s, x) path q whose last edge

was from S to x. Note that every path p from s to x has to first leave S

and then arrive at x. If the first vertex of p outside S is some y 6= x, then

p is not a shortest (s, x) path. See Figure 19.4 for an illustration.

s

S

y

x
q

p

Fig. 19.4 The path p is longer than the path q.
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Indeed, the part of p that is between s and y cannot be shorter than

q since if it were, then y, not x, would be selected to be added to S in

this step. (Recall that by the induction hypothesis, we know that δ(x) is

minimal for x /∈ S, and that δ(x) is the length of a shortest (s, x) path

ending in an edge from S to x.) We would then have to get from y to x,

which would make p longer than q.

Also note that adding x to S will not change the label of the vertices

that are already in S since, by the definition of the Dijkstra algorithm,

edges within S are not being relaxed. Therefore, (i) is proved.

In order to prove (ii), let h ∈ V (G)−S′. Note that if there is a shortest

(s, h) path ending in an (S′, h) edge that does not end in an (x, h) edge,

then the placement of x into S′ did not change anything, so our claim

holds by the induction hypothesis. If all the shortest (s, h) paths ending in

an (S′, h) edge do end in an (x, h) edge, then the Dijkstra algorithm sets

δ(h) = δ(x) + d(x, h), and our claim is proved since in all such paths, the

path from s to x must be a shortest path from s to x, and so have length

δ(x).

This proves part (b) of the theorem. Part (a) is now not difficult to see.

Indeed, now that we know that the Dijkstra algorithm correctly computes

the minimum distances to all vertices, we see that part (a) simply describes

how we can keep track of the way those minimum distances are actually

achieved. A minimum distance is achieved by a shortest path, and the path

described in part (a) is a path achieving the minimum distance from s to

t, therefore it is a shortest path. �

Note that the Dijkstra algorithm takes O(n2) steps. Indeed, in each

stage, we add one vertex to S, so there are at most n stages, and in each of

those stages, we must find the vertex v /∈ S for which δ(v) is minimal. This

can be done in O(n) steps, (as you are asked to prove in Supplementary

Exercise 14) proving our claim.

The Dijkstra algorithm has several refinements and enhanced versions.

Perhaps the most widely used special case is breadth first search. This is

the special case when all edges have weight one, and the task is reduced to

finding the path from s to t that contains the minimum number of edges.

The name “breadth first search” refers to the fact that the algorithm will

first reach all the neighbors of s, before going deeper into the graph. This

is in contrast to another approach, depth first search, which we define in

Exercise 8.
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Notes

A very readable introduction to the topics of this chapter and the next one is

Herb Wilf’s book Algorithms and Complexity [50]. A classic comprehensive

textbook on algorithms is Introduction to Algorithms, by Cormen et al.

[16]. In this book, the reader will find several sorting algorithms which are

roughly as effective as MergeSort, as well as a detailed analysis of the two

graph traversal algorithms that we mentioned here, breadth first search,

and depth first search.

Exercises

(1) Consider the following sorting algorithm. First, sort n − 1 objects

recursively with the algorithm we are defining. Then insert the nth

object an to its correct place as follows. First, compare an to the

middle element of the sorted list L of n − 1 elements. Depending on

the result of that comparison, an needs to be inserted into the first or

second half of L. Whichever half it is, insert an into it by the same

procedure. That is, compare an to the element in the middle of that

half of L, and conclude in which quarter of L the correct place of an is.

Let b(n) be the number of steps this sorting algorithm will take in the

worst case. Prove that b(n) = O(n log2 n).

(2) Prove that if A is any sorting algorithm that uses only pairwise com-

parisons, and f(n) is the number of comparisons that A makes in the

worst case when sorting n elements, then f(n) = Ω(n log2 n). Conclude

that the best sorting algorithms based on comparison make Θ(n log2 n)

comparisons.

(3) Let us assume that we have a machine that can do k-wise comparisons

in one step, for a fixed positive integer k. That is, if we give k distinct

real numbers to the machine as input, it will output the sorted list of

those numbers in one step.

Let g(n) be the number of times we have to run this machine in order

to sort n distinct real numbers. Is it true that g(n) = Ω(n log2 n)?

(4) Construct an algorithm that finds the largest and the second largest

elements of an n-element set of real numbers using at most 3
2n + 2

pairwise comparisons.

(5) Let k be a positive integer. Construct an algorithm that finds the
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kth largest of an n-element set of real numbers using O(n) pairwise

comparisons.

(6) Construct an algorithm that will list all n! permutations of length n.

Each element of the list should be obtained from the previous one by

at most n− 1 steps.

(7) Let G be a directed graph which contains no directed cycles. Prove

that then the vertices of G can be listed in some order v1, v2, · · · , vn so

that if i > j, then there is no directed path from vi to vj .

(8) Let G be a directed graph. The following algorithm, called depth first

search obtains all vertices t that are reachable from vertex s of G by a

directed path. First, go from s to a vertex s1 using an edge (s, s1), then

go from s1 to vertex s2 different from s and s1 using an edge (s1, s2),

and so on, as long as this is possible. Let us assume that we are forced

to stop after k vertices s, s1, · · · , sk−1, that is, there is no edge leaving

sk−1 that ends in a vertex that we have not reached before. Then we

go back to the predecessor of sk−1, the vertex sk−2, and continue the

algorithm from there the same way. (This is called backtracking.) Each

time we get stuck at some vertex, we backtrack to the predecessor of

that vertex.

Now let G be a directed graph with no loops so that each vertex of

G is reachable from vertex s by a directed path. Find a sufficient and

necessary condition for G not containing any directed cycles, in terms

of the depth first search algorithm, starting at s.

(9) Decide if the following statements are true or false.

(a) If a > 0, then n logn = O(n1+a).

(b) 2n
2

= O(n!).

(c) n! = Θ
(

nn

en

)

.

(10) Consider the following algorithm. Let G be a connected simple graph

whose edges have non-negative costs assigned to them. Start with the

one-vertex subgraph v, for any v ∈ G. Build a graph from v as follows.

In each step, if T is the vertex set of the graph that has already been

built, find the lowest-cost edge between T and V (G)−T whose addition

will not form a cycle in the graph that is being built. Add that edge

to the graph being built. Stop when T = V (G).

Prove that this algorithm constructs a minimum-cost spanning tree for

G.

(11) Let S be a finite set of n elements. Consider the following sorting

algorithm. Pick an element s ∈ S at random. Compare the remaining
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n− 1 elements of S to s, and based on the results, break up S − s into

the sets A and B, where A = {i ∈ S|i < s}, and B = {i ∈ S|i > s}.
Now S is “partially sorted”, as AsB. Next, use the same procedure

recursively, first on A and B, and then on the obtained smaller blocks,

until a completely ordered list is obtained.

(a) Prove that sorting by this algorithm will take no more than
(

n
2

)

comparisons.

(b) When will this sorting procedure take exactly
(

n
2

)

comparisons?

(12) (+) Keep the definitions of the preceding exercise. Let X(p) denote the

number of comparisons it takes to sort S using a given set p of picks.

Prove that E(X) = O(n log n).

Supplementary Exercises

(13) Give a simple proof using graph theory for the fact that there is no

algorithm that sorts n objects with less than n− 1 steps.

(14) Find two different algorithms to find the largest element of an n-

element list of real numbers. Both algorithms should use n − 1 com-

parisons.

(15) A group of 64 ping-pong players want to find the best and second best

players among themselves. Show that they can achieve this by playing

a total of 68 games, in the following sense. After 68 games, there will

be two players A and B so that all other 62 players lost a game to A

or B, and neither A nor B lost a game to any of the other 62 players.

(16) LetX be a random variable defined on the set of all n-permutations by

setting X(p) to be the number of times that BubbleSort interchanges

two elements while sorting the entries of p. Compute E(X).

(17) The depth first search algorithm, defined in Exercise 8 can be applied

to undirected graphs as well. Note that if G is a connected undirected

graph, then the algorithm will in fact find a spanning tree T of G that

will be rooted at the vertex s in which the algorithm started.

Let us say that vertex a is a descendant of vertex b in T if the only

path in T connecting b to the root s goes through a.

Prove that if e is an edge of G, then one endpoint of e is a descendant

of the other.
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(18) Prove that if a connected graph on n vertices does not contain a path

of length k, then it has at most (k − 1)n edges.

(19) Explain how the Dijkstra algorithm can be used to decide whether an

undirected graph G is connected.

(20) Decide whether the following statements are true or false.

(a) sinn = O(1),

(b) sinn = Θ(1),

(c)
(

n
log2 n

)n

= O(n!).

(21) The diameter of a graph was defined in Exercise 29 of Chapter 10.

Find an algorithm that computes the diameter of a graph G on n

vertices in O(n3) steps.

(22) Write a pseudo-code for Kruskal’s algorithm.

(23) Write a pseudo-code for the Dijkstra algorithm.

(24) LetM be a list of n positive integers which are not necessarily distinct,

such that no element of M is larger than k. Give an algorithm that

lists the n elements of M in non-decreasing order that uses O(n+ k)

steps.

(25) Set n = k in the preceding exercise. Then the result of that exercise

is an algorithm that sorts an input of size n in O(n) steps.

Solutions to Exercises

(1) Let us first assume that n = 2t. Let us compute how many compar-

isons it takes to find the correct place of the nth element a of the list

once the (n − 1) other elements are sorted. The reader is invited to

verify that in the first step, we compare a to the middle element of

a list of length 2t − 1, in the second step, we compare a to the mid-

dle element of a list of length 2t−1 − 1, and so on, and in step i, we

compare a to the middle element of a list of length 2t+1−i. Therefore,

in the tth step, we compare a to the “middle” element of a “list” of

length one, after which we know the correct place of a. So the correct

place of a could be found in t = log2 n steps.

If n 6= 2t, then there exists a positive integer u so that 2u + 1 ≤ n ≤
2u+1. In this case, we complete our list by adding extra elements to

its end so that it has 2u+1 elements. We can then find the correct
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place of a in the new list in u + 1 ≤ 2 log2 n steps. So it never takes

more than 2 log2 n comparisons to find the correct place of the nth

element a. Then, by the same argument, it takes at most 2 log2(n−1)

comparisons to find the correct place of the (n−1)st element, at most

2 log2(n − 2) comparisons to find the correct place of the (n − 2)nd

element, and so on. Therefore, the total number of comparisons is at

most
∑

i≤n

2 log2 i ≤ 2n log2 n.

(2) There are n! possible orders of n distinct elements, and in the worst

case, each pairwise comparison will eliminate at most half of the orders

that were possible before that comparison. So in the worst case, after

one comparison, there will be n!/2 possible orders, after two compar-

isons, at least n!/4 possible orders, after 3 comparisons, at least n!/8

possible orders, and so on. Therefore, if after m comparisons, there

is only one possible order left, then n! ≤ 2m, or log2 n! ≤ m. From

Stirling’s formula,

m ≥ log2 n! = n log2(n/e) + log2(
√
2π · n) = Ω(n log2 n)

proving our claim.

On the other hand, we have seen that it is possible to sort n elements

by only O(n log2 n) pairwise comparisons, so indeed, the best sorting

algorithms will take Θ(n log2 n) steps.

(3) Analogous to the solution of the previous exercise. The only difference

is that now each step has k! possible outcomes, so if there are a possible

orders before a step, then if we are unlucky, then there could be at

least a!/k! possible orders after that step. As k! is just a constant, like

2 in the previous exercise, the rest of the solution unchanged, except

that k! plays the role of 2.

(4) Let us split our set of elements into two blocks of equal size, or as

equal as possible size. In each set, find the maximal element, then

compare the two maximal elements. This takes n − 1 comparisons.

Say that we find that the maximal element a of block A is larger than

the maximal element b of block B. Then a is the maximal element of

our set, and the second maximal element is either B, or the maximal

element of A − a. Find the maximal element of A − a in at most

(n + 1)/2 steps, then compare it to b in one steps. This will provide

the desired output with at most n+ n+3
2 comparisons.
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(5) Let a1, a2, · · · , an be our elements. First, order the first k elements

of the list using MergeSort in O(k log2 k) = O(1) steps. Then find

the place of ak+1 in this list in at most k steps, and discard the last

element. Continue this way. In each stage, find the place of the

new element in the k-element list that we keep, and discard the last

(k+1)st element of that list. Each stage takes at most k steps, so the

whole procedure takes no more than k log2 k+nk = O(n) steps. (Note

that we could find the place of the new element in O(log k) steps as

opposed to k steps, but that would not be a significant improvement,

since k is a constant.)

(6) We will list the permutations of length n in lexicographic order. That

is, p = p1p2 · · · pn will precede q = q1q2 · · · qn in the order if, for the

smallest index i for which pi 6= qi, the inequality pi < qi holds.

In order to get the permutation immediately following p = p1p2 · · · pn
in this order, find the first largest ascent of p, that is, the largest

i so that pi < pi+1. If there is no such i, then p is the decreasing

permutation, which is the last of the list, and we stop. Otherwise, we

swap pi and pi+1. The reader is invited to prove that each permutation

occurs exactly once in this list since each permutation (other than the

increasing one) has a unique predecessor.

(7) We use induction on n. For n = 2, the statement is true. Now let us

assume that the statement is true for n, and prove it for n+1. Let G

have n+ 1 vertices, and let G′ = G− vn+1. As G
′ contains no cycles,

its vertices can be listed the right way by the induction hypothesis.

Let L be this list. Let A be the set of vertices a ∈ G′ so that there is

a directed path from a to vn+1. Let B be the set of vertices b ∈ G′

so that there is a directed path from vn+1 to b. As G has no directed

cycles, this implies that there can be no directed path from B to A.

So all vertices of A precede all vertices of B in the list. Then vn+1 can

be inserted anywhere between the end of A and the start of B in L.

(8) The depth first search algorithm creates a directed spanning tree of

G. In this tree, the parent of each vertex v is its unique predecessor,

that is, the vertex from which v was first reached. We claim that G is

acyclic if and only if there is no edge from G that goes from a vertex

v to one of the ancestors of v. If there is such an edge (v, u), then G

contains a cycle since u is an ancestor of v, so there is a path from u

to v.

If there is a cycle C with vertices c1, c2, · · · , ck in G, then let ci be the

first vertex of C reached by depth first search. Then all the other cj ,
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including ci−1, are descendents of ci in the depth first search tree (since

the algorithm will not backtrack from ci before reaching all vertices

reachable from ci, which includes all of C). Therefore, (ci−1, ci) is an

edge of the desired kind.

(9) Let us assume that our algorithm (called Prim’s algorithm) creates

the tree T with edges e1 ≤ e2 ≤ · · · ≤ en−1, while there is another,

cheaper tree F . If there are several candidates for F , choose one so

that the number of edges that are part of both T and F is maximal.

Then there is a smallest index i so that ei /∈ F . Let A be the vertex set

of edges e1, e2, · · · , ei−1. Then e is an edge between A and V (G)−A.

Let x and y be the endpoints of ei. Then there is a unique path from

x to y in F . Let f be the edge of F along that path that connects a

vertex in A to a vertex in V (G)−A. As in step i, we added e and not

f to our tree T , the inequality w(f) ≥ w(ei) must hold.

Now remove f from F and add ei to F instead. This creates another

spanning tree of G with at most as large a cost as F . Indeed, the new

graph F ′ has n− 1 edges and is connected (why?). As F had minimal

cost, it follows that w(F ) = w(F ′), but F ′ and E have one more edge

in common than F and E, which is a contradiction.

(10)(a) True. After simplifying by n, the statement is reduced to logn =

O(na), and that is true since limn→∞
log n
na = 0 by the l’Hospital

rule.

(b) False. In fact lim∞ n!/2n
2

= 0 as can be seen by taking logarithms.

Using Stirling’s formula, logn! = n(log n − 1) + (logn + log π)/2,

while log 2n
2

= n2 log2. Now use part (a).

(c) False. By Stirling’s formula, n! ∼
(

nn

en

)√
2πn, and that extra

√
2πn

factor will outgrow any constant.

(11)(a) No pair will get compared more than once.

(b) Each pair will get compared once if we never pick an element that

properly partitions the set of remaining elements, that is, if each

time we make a pick, we choose the largest or the smallest available

element.

This sorting procedure is called QuickSort.

(12) Let Xi(p) be the number of times the element ai gets compared during

the sorting sequence defined by p. It suffices to show that E(Xi) =

O(log n), and the claim will follow by linearity of expectation.

In order to see that E(Xi) = O(log n), note that the size of the block

containing ai decreases, on average by at least half by each pick in-

volving that block (the reader should prove this fact), so on average,
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this block will shrink into a singleton after O(log n) splits.
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Chapter 20

Does Many Mean More Than One?

Computational Complexity

The wide variety of problems in which algorithms are used suggests that we

look for a unified approach that measures how efficient various algorithms

are. In the previous chapter, we did that by counting the number of steps

the algorithms used, but that meant that for each problem, we had to

specify what counted as a step. Our goal now is to have standards that can

be applied to every algorithm.

20.1 Turing Machines

A Turing machine is an idealized computer named after the English math-

ematician Alan Turing. It is meant to simulate how a human being would

carry out an algorithm step by step, moving from one stage to the next, ac-

cording to some well-defined rules. Formally, a Turing machine T consists

of the following four parts.

(1) A tape. This is a one-dimensional array of cells, which is infinite at

both ends, so that we never run out of tape. Each cell contains a

symbol from a finite alphabet A. Two of these symbols have to be

blank and start. If we have not written anything to a cell yet, then

we assume it contains the blank symbol. The start symbol is the one

that the machine will read first. It will tell the machine to start. The

tape is often called the input of the machine.

(2) A head. Fair enough, if the tape contains a lot of information, the

machine should be able to read it. The head can move both ways

along the tape, and can read the symbol in the cells, and can replace

a symbol in the cells. This is often expressed by saying that the head

is read-write.

509
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(3) A set S of states, containing the start state s. As the head moves

along the tape, the machine changes from one state to another. How

T reacts to a certain symbol it is reading depends on the state it is

in. That is, it can happen that when the machine reads symbol a and

is in state t, it will react differently from when it reads symbol a is in

state u.

(4) A transition function (or program)

f : S ×A→ (S ∪ “Y es” ∪ “No”)×A× {←,→, stay}.

This function describes how T works. The definition is not nearly

as difficult as it may look. The domain of f is S × A, which makes

perfect sense since the action of the machine must depend on the state

in which it is, and the symbol it is currently reading. The range of f is

a direct product of three factors, and we will survey them separately.

The first factor, S∪“Y es”∪“No” means that when T reads the input

of the given cell in its current state, it may go to a “Yes” state (often

called the accepting state), or to a “No” state, (the rejecting state).

Note that it follows from the above definition that the machine will

always halt immediately after reaching the “Yes” state or the “No”

state. Also note that the “Yes” state and the “No” state are so special

that they are not part of S.

Some enhanced versions of Turing machines can simply halt without

saying “Yes” or “No”, and these machines have a “Halt” state for

stopping like that, but we will not use that model. We will concentrate

on Turing machines that are used to test “yes or no” questions, hence

the accepting and rejecting states.

The second factor A of the right-hand side is needed since T can write

another symbol into the cell it is reading. Finally, the third factor

{←,→, stay} is needed since after writing into the current cell, the

head may move one notch to the left, one notch to the right, or it may

stay where it was.

While this definition may seem too cumbersome, or too broad, it com-

prises almost everything an algorithm can possibly do. Therefore, most

algorithms we encounter can be executed by Turing machines.

There are several versions of enhanced Turing machines, and a few sim-

plified versions as well. The machines described above are often called

deterministic Turing machines since knowing the state in which the ma-

chine is, the position of the head, and the content of the cell the machine is
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currently reading means knowing what the machine will do next. The ad-

jective deterministic will be further explained when we put these machines

into contrast with different machines.

Example 20.1. We can use a Turing machine to decide whether a certain

positive integer a is divisible by 3 or not. This Turing machine will have

the following parameters.

(1) The set of states

S = {start, 0, 1, 2, Y es,No}.
(2) The set of symbols of the alphabet

A = {start, blank, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, end}.
(3) The tape containing, from left to right, start, the digits of a in order,

and end.

(4) The program f defined as follows.

(5)(a) When the head reads start, it moves to the first digit of a in the

next cell on the right. It stays in state start.

(b) When the machine reads the ith digit of a, it reacts as follows. If

that digit is 0, 3, 6, or 9, it stays in its current state. If that digit

is 1, 4, or 7, it moves one state up, (that is, if it was in state 0, it

goes into state 1, if it was in state 1, it goes into state 2, and if it

was in state 2, it goes in state 0). Finally, if that digit is 2, 5, or 8,

the machine moves two states up.

The head then moves to the next cell on the right of the current cell.

(c) If the machine is in state 0 when the head reaches the cell containing

the symbol end, the machine goes to “Yes” state and halts. If the

machine is in state 1 or 2 when the head reaches the cell containing

the symbol end, the machine goes to “No” state and halts.

The above program used the fact that a is divisible by three if and only

if the sum of its digits is divisible by three.

The reader should not be horrified. In the rest of the chapter, we will not

analyze every single algorithm so painfully. The goal of the above example

was to show how to translate an algorithm into the terminology of Turing

machines. The main advantage of this model is that now it is absolutely

clear what a step is (a step of the head, either →, or ←, or stay), and it is

also clear what the running time of an algorithm is (the number of steps of

the head). This is why Turing machines are so appropriate for analyzing

the efficiency of a very wide array of algorithms.
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20.2 Complexity Classes

In this section, we will encounter some of the most intriguing problems of

modern mathematics. They are related to attempts of describing which

questions can be decided by Turing machines in an efficient way.

20.2.1 The Class P

A decision problem is a “yes-or-no” question asked about a combinatorial

object, such as “Is this graph bipartite?” or “Is this graph connected?” or

“Is this integer prime?” or “Does this permutation contain an even number

of cycles of length seven?”. A language L is the set of all objects for which

the answer of a given decision problem is “Yes”. So, following up on the

above examples, the class of all bipartite graphs, the class of all connected

graphs, the set of all prime numbers, and the set of all permutations with

an even number cycles of length seven each form a language.

We will say that a Turing machine T accepts the language L if given

input x, T stops in the accepting state if x ∈ L, and T stops in the rejecting

state if x /∈ L.

We are now ready for the first major definition of this section.

Definition 20.2. We say that a language L is in P if there exists a Turing

machine T and a positive integer k so that T accepts L in O(nk) time,

where n is the size of the input.

That is, if an input x of length n is given to T , then O(nk) moves of

the head are enough for T to decide whether x ∈ L or x /∈ L.

If a language L is in P, we often say that membership in L can be tested

in polynomial time.

The reader might think that we are too imprecise here since P does not

discriminate between languages that can be accepted in O(n) time or in

O(n20) time. We have two answers to that, the first one of which will be

clearer after the next example.

Example 20.3. Let L be the language consisting of all simple graphs that

contain a triangle. Then L ∈ P.

Solution. A Turing machine can simply go through all
(

n
3

)

triples of the

n-element vertex set of the input graph and check whether all three pairs of

vertices in any given pair are adjacent. There are only
(

n
3

)

= O(n3) triples
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to check, and in each of them, there are only three edges to check. Finally,

the head of the Turing machine never needs to travel more than n2 cells

between checking two edges, so the statement follows.

Note that it paid off that in the definition of P, we did not specify what

k had to be. This, for instance, obviates the question of what the size of the

input should really be, the number of vertices of the graph, n, or number

of entries of the adjacency matrix of the graph, n2. (The adjacency matrix

is needed to describe which vertices are connected by an edge.)

There is also no need to figure out clever ways to send the head from

one tape to another, since even sending it from one end to the other will

not hurt.

Example 20.4. Let L be the language consisting of permutations p (given

in the one-line notation) for which p2 is the identity permutation. Then

L ∈ P.

In this example, the size of the input is clearly the length n of p.

Solution. Let p = p1p2 · · · pn. For each i ∈ [n], if pi = j, check whether

pj = i. If this always holds, accept, otherwise reject. There are n equalities

to check, and between checking two entries, the head never needs to travel

more than n cells, so there will be no more than O(n2) steps.

The class P of problems is an example of a complexity class, that is,

a class of problems that are roughly equally difficult to solve. While the

reader might object by saying that there is quite some difference between a

problem that takes n steps to solve and a problem that takes n100 steps to

solve, this difference is still much smaller than the difference between the

latter and a problem that takes 2n steps to compute. Indeed, if we have a

computer that can solve a problem with input size m in logm time, then

the first two problems will take logn and 100 logn time for this computer

to solve, respectively. These times will only differ by a constant factor. The

last problem will take n log 2 time, which is an order of magnitude higher.

More precisely, as n goes to infinity, the first two problems will take a

negligible amount of time to compute when compared to the last problem.

This is our second answer to the question as to why it makes sense to put

problems solvable in O(n) time and in O(n20) time into the same class.

Loosely speaking, P is the set of languages that can be decided by an

effective algorithm. Indeed, polynomial time is in some sense the best that

we can expect, since it takes n steps just to read the input.
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20.2.2 The Class NP

There is a wide array of decision problems for which no polynomial-time

algorithm is known. To be more precise, there are languages L for which

there is no polynomial-time algorithm known to test whether x ∈ L, for an

arbitrary input x. Quite often, there is a weaker algorithm which will not

decide whether x is in L or not, but if someone claims that x ∈ L for a

specific reason, the algorithm will verify that reasoning in polynomial time,

and decide whether that reasoning is correct. If it is, then x ∈ L. If not,

then it does not follow that x /∈ L since it could still be that x ∈ L for some

other reason.

For instance, let L be the set of all pairs (S,m) so that S is a set of

positive integers that have a subset T so that the sum of the elements of T

is m. Now let x = (A, t) be a pair so that A is a set of positive integers, t

is a positive integer, and let us see what we can say about the membership

of x in L. We could certainly take all 2|A| subsets of A and check if any of

those have sum t, but that would take more than a polynomial amount of

time. Indeed, 2|A| is an exponential function of the size of the input. On

the other hand, if someone claims that a certain subset B ⊆ A has sum t,

then we can verify that claim in O(n) steps, by simply taking the sum of all

elements of B. Of course, if the claim turns out to be false, we are out of

luck, since it could well be that x ∈ L thanks to some other subset B′ ⊆ A.

This set of decision problems, that is, the problems for which we can

verify (but not necessarily test) membership in polynomial time, turns out

to be extremely important. This warrants the following formal definition.

Definition 20.5. We say that a language L is in NP if there exists a

positive integer k and a Turing machine T so that the following hold.

• For each x ∈ L, there exists a witness W (x) so that when T is given

input (x,W (x)), it will recognize that x ∈ L in O(nk) time.

• For each x /∈ L, no such witness exists. That is, no matter what input

(x,W ′(x)) we give to T , we cannot “trick” T into falsely saying that

x ∈ L.

In other words, L ∈ NP if witnesses for the claim that x ∈ L can be

verified in polynomial time (but not necessarily found in polynomial time).

We point out that the witness is often called a certificate.

So the introductory example of this subsection says that the language of

pairs (S,m), where S is a set of positive integers that has a subset summing
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to m is in NP. This is actually a version of a well-known decision problem,

called the subset sum problem. We will take a second look at other versions

of this problem shortly.

Let us consider a few other classic examples.

Example 20.6. Let L be the language of all undirected graphs that have

a Hamiltonian cycle. Then L is in NP.

Solution. An ordered list v1, v2, · · · , vn of vertices of G can play the role

of the witness W (G). Then all we need is to check whether v1v2 is an edge,

v2v3 is an edge, and so on, up to vn−1vn, and, at the end, vnv1. This means

that a Turing machine T only needs to check the existence of n edges. As

the head of T never needs to move more than n2 cells between two checks,

T can verify in O(n3) time whether v1, v2, · · · , vn, v1 is a Hamiltonian cycle.

Example 20.7. Let L be the language of all pairs of simple graphs (G,H)

so that G is isomorphic to H . Then L is in NP.

Solution. A bijection f : V (G) → V (H) can play the role of the witness

W (G,H). Then all that a Turing machine T needs to do is to check whether

it holds for all u, v ∈ V (G) that if uv is an edge, then f(u)f(v) is an edge.

As this means checking at
(

n
2

)

= O(n2) edges, and the head of T never

travels more than O(n2) cells between two checks, our statement is proved.

The following proposition compares the two complexity classes we de-

fined so far.

Proposition 20.8. We have P ⊆ NP.

Proof. If L ∈ P, then there exists a Turing machine T that can test

membership in L in polynomial time. So if we give input (x,W (x)) to T ,

then T can simply ignore W (x) and can still verify x ∈ L in polynomial

time. �

At this point, it seems very natural to ask whether the containment in

Proposition 20.8 is strict.

Question 20.9. Does the equality P = NP hold?

This turns out to be one of the most intriguing open problems in math-

ematics today, and probably the single most intriguing open problem of

theoretical computer science. It is one of the seven Millennium Prize Prob-

lems. These are seven particularly difficult open problems designated by
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the Clay Mathematics Institute in Cambridge MA in 2000. There is a one

million dollar prize offered for the solution of each of them. The interested

reader can learn more about these problems in the Notes section of this

chapter.

It may sound very surprising that this Question 20.9 is still open. After

all, verifying a witness seems to be a much simpler task than finding one.

However, there are several other points to consider. First, for P to be equal

to be NP, we would not need a Turing machine T that can test membership

as fast as another machine T ′ can verify membership. It would be enough to

have T test membership in O(n10000) time while T ′ could verify membership

in O(n) time. Second, in order to prove that P 6= NP, one would need

to find a language L ∈ NP so that L /∈ P. And how do you prove that a

certain language is not in P?

There are other methods that could possibly be used to find the answer

to Question 20.9. We will mention a few of them in the rest of this section.

20.2.2.1 The Class coNP

There is a subtle way of taking the complement of a complexity class. It is

given by the following definition.

Definition 20.10. We say that the language L is in coNP if there exists

a Turing machine T and a positive integer k so that the following hold.

• For each x /∈ L, there exists a witness W (x) so that when T is given

input (x,W (x)), it will recognize that x /∈ L in O(nk) time.

• For each x ∈ L, no such witness exists. That is, no matter what input

(x,W ′(x)) we give to T , we cannot “trick” T into falsely saying that

x /∈ L.

In other words, coNP is the class of languages for which we can verify

non-membership in polynomial time.

The following is a classic example of a naturally defined problem which

is easily seen to be in coNP, but requires more work to be seen in NP.

Example 20.11. Let PRIMES be the set of all prime numbers. Then

L ∈ coNP.

Solution. Let x be the integer for which we want to show that x /∈
PRIMES. A proper divisor d = W (x) of x can play the role of wit-

ness for x /∈ L. Indeed, then T can simply divide x by d and verify that
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there is no remainder. If x has n digits, then this can be done in O(n2)

time.

Note that as we said before, n must be the size of the input, that is,

the number of digits of x. Therefore, the following argument would be

wrong. “The language PRIMES is in P since we could simply check for

each integer i satisfying 2 ≤ i ≤ √x whether i divides x. This takes
√
x

steps, which is less than a polynomial function of x.” The problem with

this argument is that we need an algorithm that is polynomial in terms of

n, not in terms of x.

The reader may ask why we defined coNP before defining coP as the

set of languages for which we can test non-membership in polynomial time

by a Turing machine.

We encourage the reader to spend a moment trying to figure that out

before reading further. The answer is that coP = P since if T can test

for non-membership in L in polynomial time, then the same T can test for

membership in L in polynomial time, by simply interchanging the accepting

and rejecting states at the end. This line of thinking leads to the following

proposition.

Proposition 20.12. We have P ⊆ NP ∩ coNP.

Proof. On the one hand, Proposition 20.8 shows that P ⊆ NP. On the

other hand, by the same argument, coP ⊆ coNP. As coP = P, our claim

is proved. �

We would like to point out that it is somewhat more difficult to prove

that the language L consisting of all prime numbers is in NP. That result

is called Pratt’s theorem, and can be proved using very enjoyable facts from

number theory. In fact, the following characterization of primes can be

used. An integer p > 1 is prime if and only if there exists an integer r so

that 1 < r < p and

(i) rp−1 − 1 is divisible by p, and

(ii) If q is a prime so that qd = p− 1 for some integer d, then rd − 1 is not

divisible by p.

Given p, a witness W (p) can be an integer r and all the prime divisors q

of p − 1. A Turing machine could then verify in polynomial time that r

satisfies the requirements with each d = (p−1)/q. Note that the number of

distinct prime divisors q of p−1 is less than log2 p, so W (p) is of polynomial

size in terms of the size of the input, which is log p.
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It is even more difficult to prove that PRIMES is in P. That is per-

haps the most celebrated recent result in complexity theory. The proof,

by Agrawal, Kayal, and Saxena [1] was published in 2004, and takes only

12 pages! It is also worth pointing out that two of the three authors were

undergraduate students at the time the proof was found.

The known containment relations between the three complexity classes

that we have defined so far are shown in Figure 20.1.

(this section possibly      empty)

      empty)
(this section possibly

      empty)
(this section possibly

coNPNP

P

Fig. 20.1 The known inclusions between the three complexity classes defined so far.

At this point, you are asked to test your understanding of the concepts

of this section by proving the following proposition.

Proposition 20.13. The following two statements are equivalent.

(1) P = NP.

(2) P = coNP.

We end the section by noting that it is not even known whether NP =

coNP. It is widely believed that these two classes are different, just as it

is widely believed that P and NP are different.

20.2.2.2 Nondeterministic Turing Machines

You may have wondered where the “N” comes in the name of the complex-

ity class NP. After all, the definition of the class says that certain things
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have to be done in polynomial time, not in “non-polynomial” time.

The answer to that question comes from the following version of Turing

machines, called nondeterministic Turing machines. For nondeterministic

Turing machines, the first three parameters, that is, the tape, the head,

and the set of states, are defined exactly as they were for the classic (de-

terministic) Turing machines. The difference lies in f , which we called the

transition function or program in the case of deterministic Turing machines.

This

f : S ×A→ (S ∪ “Y es” ∪ “No”)×A× {←,→, stay}
was a function, that is, given a certain input consisting of a state and a

symbol at the cell currently read, it sent the machine into a uniquely deter-

mined state. This is why those Turing machines were called deterministic.

In an undeterministic Turing machine, the function f is replaced by the

relation

g : S ×A ⊂ [S ×A]× [(S ∪ “Y es” ∪ “No”)×A× {←,→, stay}] .

In other words, a nondeterministic Turing machine has several legal

courses of action in a generic step. Given a symbol in a cell and a state of

the machine when reading that symbol, there are several ways in which the

machine can continue.

Fine, you will say, but when will we say that such a nondeterministic

Turing machine T accepts the input string x? What if a certain sequence

of legal choices will result in T halting in the “Yes” state and some other

sequence of legal choices will result in T halting in the “No” state? Will

we take a majority vote?

It turns out that we will have a very weak notion of acceptance. We

will say that T accepts x if there is at least one sequence of legal choices of

action for T that results in T halting in the “Yes” state. If there is no such

sequence, we will say that T rejects x.

With the acceptance of an input string now defined, we can define ac-

ceptance of a language L by a nondeterministic machine T . This definition

is not surprising. We simply say that T accepts L if T accepts x if and only

if x ∈ L.

How do we measure the running time of a nondeterministic Turing ma-

chine? We will not add up the running times it takes to carry out each

computation that arises from a legal sequence of choices. Instead, we will

define the running time of the nondeterministic Turing machine as the max-

imum running time among the running times of the possible computations.
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See Figure 20.2 for an illustration. We could interpret this definition by

saying that in a nondeterministic Turing machine, all possible choices are

followed up concurrently, so the total running time will indeed be the max-

imum individual running time.

TIME

Fig. 20.2 Measuring the running time of a nondeterministic machine.

Finally, we are in a position to explain the name of NP. The class NP

is the class of languages that can be accepted by a nondeterministic Tur-

ing machine in O(nk) time, for some positive integer k, where n denotes

the size of the input. That is, NP stands for nondeterministically polyno-

mial. Indeed, if a language L is in NP, then for x ∈ L, a witness W (x)

can be verified in polynomial time by a deterministic Turing machine. A

nondeterministic Turing machine could then just go through all possible

witnesses for x, and decide whether any of them are valid. As verifying

a witness takes polynomial time, this nondeterministic machine would fin-

ish in polynomial time. If, on the other hand, no nondeterministic Turing

machine could finish the task of checking all witnesses in polynomial time,

then at least one possible witness could not be checked in polynomial time,

implying that L is not in NP.

Note that even this alternative definition of NP makes it clear that

P ⊆ NP since a deterministic Turing machine T is just a special case of

a nondeterministic one. That is, it is a nondeterministic Turing machine

whose defining relation g happens to be a function. In other words, in each
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step, T happens to have only one legal choice. The fact that we cannot

decide whether P = NP can be expressed by saying that in some sense, we

cannot decide whether nondeterministic machines are really stronger than

deterministic ones.

Example 20.14. Let HAMCY C be the language of all undirected graphs

G that have a Hamiltonian cycle. Then HAMCY C can be decided by

a nondeterministic Turing machine T in polynomial time as follows. Let

n be the number of vertices of G. Then there are (n − 1)!/2 ways to

arrange the vertices in a cycle. These will be the legal choices of T . No

matter what choice T makes, T can then check whether that arrangement

of vertices is a Hamiltonian cycle or not. In this stage, T can act as a

deterministic machine, and will still only need O(n) steps. So we find again

that HAMCY C ∈ NP.

20.2.3 NP-complete Problems

With a slight abuse of language, in this subsection we identify the language

L with the problem of deciding whether x ∈ L.

Let us assume that we have a computer program that computes the

prime factorization of any positive integer less than one billion. Let us

further assume that for some purpose, we need to compute not the prime

factorization of n, but the number of its positive divisors. If this is the case,

we cannot simply ask the program to do all the work for us, but we will

see that the program will in fact do almost all the work. Indeed, note that

if n = pk1

1 pk2

2 · · · pkt
t where the pi are different primes, then the number of

positive divisors of n is precisely
∏t

i=1(ki+1) since m divides n if and only

if m = pa1

1 pa2

2 · · · pat
t , with 0 ≤ ai ≤ ki for all i. Therefore, all we need to

do is to run the program, take its output, and do something very simple

with it, namely compute the product of certain numbers determined by the

output.

The above example is a special case of a very general phenomenon in

the theory of computation (or, in mathematics in general), namely the

reduction of a problem to another one. Indeed, the above argument shows

that if we can find the prime factorization of an integer, then we can also

find the number of its positive divisors. In other words, the latter problem

can be reduced to the former. Furthermore, the reduction did not take long

when compared to the original algorithm, (think about this!), so it was

“worth it”. Of course, if the reduction had taken too long, we might try to
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solve the new problem directly, instead of reducing it to the old one.

Another example of reduction, one in which a decision problem is re-

duced to another one, will be presented shortly, in the proof of Theorem

20.22.

If decision problem A can be reduced to decision problem B in a short

time, then it is natural to think that “B is at least as hard as A” in some

sense. If every problem of a complexity class C can be reduced to a problem

B ∈ C, then it is natural to think that B has some kind of a special role in

C. The following definition is the most important example for this.

Definition 20.15. We say that the problem L is NP-complete if

(1) L ∈ NP, and

(2) each L′ ∈ NP can be reduced to L by a deterministic Turing machine

in polynomial time.

You may be thinking now that the above requirement is rather strong,

and therefore, it is usually rather hard to prove that a problem is NP-

complete. Then you might be thinking that therefore, the number of NP-

complete problems must be small, and so their class might be a rather

restricted one. The first of these concerns is partly true, namely, it was

difficult to find the first NP-complete problem. However, once an NP-

complete problem is found, others are much easier to find, because of the

following simple fact.

Proposition 20.16. If L is an NP-complete language and L′ is a language

so that L is reducible to L′, then L′ is NP-complete.

Proof. If A ∈ NP, then A is reducible to L in polynomial time, and

then L is reducible to L′ in polynomial time. Therefore, A is reducible

to L′ in polynomial time. (Just run the two reducing Turing machines

consecutively.) �

So once one NP-complete problem is found, others can be found by

showing that the first one is reducible to them in polynomial time. The

moreNP-complete problems we have, the easier it is to find new ones, since

there are more problems to play the role of L in Proposition 20.16.

The notion of NP-completeness provides a strategy for those who want

to prove that P = NP. This is the content of the following corollary.

Corollary 20.17. If there exists an NP-complete language L so that L ∈
P, then P = NP.
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Proof. If the NP-complete language L is in P, then any language L′ ∈
NP is also in P. Indeed, first reduce L′ to L in polynomial time by a

deterministic Turing machine, and then decide L in polynomial time by

another deterministic Turing machine. �

As we said, it was not easy to find the first NP-complete language. We

will now describe this language, without proving that it is NP-complete.

Let x1, x2, · · · , xn be Boolean variables, which means that they can take

two values, true and false. These variables will be called literals. We

introduce the operations ∧, ∨, and¯on the set of literals as follows.

(1) xi∨xj = true if at least one of xi and xj is true. Otherwise, xi∨xj =

false. This can be thought of as the “or” operation.

(2) xi ∧ xj = true if both xi and xj are true. Otherwise, xi ∧ xj = false.

This can be thought of as the “and” operation.

(3) x̄i = true if xi = false and x̄i = false if xi = true. This can be

thought of as the negation operation.

A Boolean expression is just a sequence of operations on literals, such as

(x1 ∧x2)∨ x̄3, or (x1 ∧x2)∨ x̄1. A Boolean expression is called satisfiable if

we can assign the values true and false to its literals so that the expression

evaluates to true.

Example 20.18. The Boolean expression

(x1 ∧ x2) ∨ x̄3

is satisfiable. Indeed, setting x1 = true, x2 = true, and x3 = false, the

expression evaluates to true.

Example 20.19. The Boolean expression

(x1 ∧ x̄2) ∧ (x̄1 ∨ x2)

is not satisfiable. Indeed, the first parentheses will only evaluate to true if

x1 = true and x2 = false, while in that case, the second parentheses will

evaluate to false.

A Boolean expression in conjunctive normal form is a Boolean expres-

sion in which there are only ∧ operations among the parentheses (the latter

are called the clauses), and there are only ∨ operations within the paren-

theses.

Example 20.20. The Boolean expression

(x1 ∨ x2) ∧ (x1 ∨ x̄3 ∨ x4) ∧ x2 ∧ (x1 ∨ x̄4)

is in conjunctive normal form.
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It can be proved that each Boolean expression is equivalent to one in

conjunctive normal form. So restricting our attention to Boolean expres-

sions in this form will not result in loss of generality, but it will simplify

the handling of the expressions.

We are now in a position to announce Cook’s theorem, the first result

showing that a certain language is NP-complete.

Theorem 20.21. [15] [Cook’s theorem] Let SAT be the language of sat-

isfiable Boolean expressions in conjunctive normal form. Then SAT is

NP-complete.

It is easy to see that SAT is in NP. Indeed, the witness W (x) for a

given Boolean expression x is just an assignment of values to the literals

of x. It then takes O(n) time to verify that each clause indeed contains at

least one literal with value 1. It is also easy to see that the total number

of possible assignments is 2m if we have m literals, so checking all possible

assignments would take more than a polynomial amount of time.

The proof of Cook’s theorem can be found in any textbook on Com-

plexity Theory. For a reader-friendly presentation, we recommend [50]. We

point out that even if we only consider Boolean expressions in conjunctive

normal form so that each clause contains only three literals, the correspond-

ing language 3SAT is still NP-complete. This is because SAT is reducible

to 3SAT in polynomial time as we will see in the proof of the next theorem.

Theorem 20.22. Let 3SAT be the language of Boolean expressions in con-

junctive normal form so that each clause contains exactly three literals.

Then 3SAT is NP-complete.

Proof. It goes without saying that 3SAT ∈ NP since an assignment of

variables can play the role of the witness. We will now show how to reduce

SAT to 3SAT in polynomial time. That is, for each Boolean expression X

in conjunctive normal form, we will construct a Boolean expression f(X)

in which each clause contains exactly three literals so that X is satisfiable

if and only if f(X) is satisfiable.

We will construct f(X) clause by clause. Say one of the clauses of X

is (x1 ∨ x2 ∨ · · · ∨ xm). We will break this clause up into m − 2 smaller

clauses, which will also contain some new variables. In fact, let us replace

Xc = (x1 ∨ x2 ∨ · · · ∨ xm) by the clause

f(Xc) = (x1∨x2∨y1)∧(x3∨ȳ1∨y2)∧(x4∨ȳ2∨y3)∧· · ·∧(xm−1∨xm∨ȳm−3).
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That is, the first and last clauses are different from the rest. Other than

that, the ith clause is (xi+1 ∨ ȳi−1 ∨ yi) if 2 ≤ i ≤ m− 3.

Let us replace each clause Xd of X by the clause f(Xd) defined this

way. Let us now assume that X is satisfiable; that happens exactly when

each clause of X is satisfiable. As Xc is satisfiable by a certain true-false

assignment, there is at least one index i ∈ [m] so that xi = true in that

assignment. Choose the smallest such i. Now assign yj = true if j < i− 1

and yj = false if j ≥ i − 1. This assignment will satisfy f(Xc), since the

first i−2 clauses will evaluate to true since the unbarred yj variable in them

will be true, the (i− 1)st clause will evaluate to true since it will contain

xi, and the remaining clauses will evaluate to true since the variable ȳj in

them will be true.

This argument works for each clause of X , so we have proved that f(X)

is satisfiable if X is satisfiable. We still have to prove the converse.

Let us assume that f(X) = ∨ (f(Xc)) is satisfiable, but X is not satis-

fiable. That means that there is an assignment of values to all variables xi

and yj that satisfies each clause of f(X), but not each clause of X . Let c

be such that this assignment does not satisfy Xc, but satisfies f(Xc). As

Xc = (x1 ∨ x2 ∨ · · · ∨ xm), this means that in the assignment satisfying

f(X), the equality xi = false holds for all i ∈ [m]. Then, crucially, we

can remove all the xi from f(Xc) and the obtained clause f(XC) will still

evaluate to true (since no xi is barred in f(XC)). This implies that

y1 ∧ (ȳ1 ∨ y2) ∧ (ȳ2 ∨ y3) ∧ · · · ∧ (ȳm−4 ∨ ym−3) ∧ (ȳm−3)

is satisfied by the assignment satisfying f(X). However, the last displayed

expression is unsatisfiable. Indeed, to satisfy its first clause, we would have

to set y1 = true, then to satisfy its second clause, we would have to set

y2 = true, and so on. The next-to-last clause would force ym−3 = true,

and then the last clause would not be satisfiable.

So we have seen that X is satisfiable if and only if f(X) is. As the

creation of f(X) takes only polynomial (in fact, linear) time, this shows

that SAT is reducible to 3SAT in polynomial time, proving our claim. �

The result of Theorem 20.22 is probably optimal in the following sense.

If we restrict our attention to Boolean expressions which consist of clauses

of exactly two literals, and define 2SAT to be the language of those that are

satisfiable, then 2SAT is very unlikely to be NP-complete. This is because,

as it is proved in Exercise 4, the language 2SAT is in P! So if 2SAT is

NP-complete, then P = NP. The reader should wait until the end of this
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chapter before attempting to solve Exercise 4 as some additional definitions

will be needed.

Many NP-complete problems involve graphs, and the proof of their

NP-completeness often involve the reduction of 3SAT to these problems.

The reader is strongly encourage to attempt the solution of Exercise 6 for

an elegant example.

The following are three examples of NP-complete problems. We point

out that [19] is an entire book totally devoted to this complexity class!

Example 20.23. Let HAMPATH be the language of graphs that have a

Hamiltonian path. Then HAMPATH is NP-complete.

Example 20.24. Let SUBSETSUM be the set of finite multisets of real

numbers that have a non-empty submultiset whose sum of elements is equal

to 0. Then SUBSETSUM is NP-complete.

See Exercise 5 for a variation of this problem.

Example 20.25. Let L be the set of pairs (p, q) so that p is a permutation

that contains q as a pattern. Then L is NP-complete.

Note that it is very important in the above example that q is part of

the input, that is, that the length of q is not given in advance. If the length

of q were a given constant, then the corresponding language would be in

P, as you will be asked to prove in Supplementary Exercise 14. This is an

example of an important distinction which often decides whether a problem

can be proved to be in P or to be NP-complete.

A special case of this example is the famous traveling salesman problem.

See Supplementary Exercise 17.

Corollary 20.17 implies that if someone could find an efficient (read

“contained in P”) algorithm for the Hamiltonian cycle problem, or the

subset sum problem, or the pattern avoidance problem, then we would

know that there also exists an efficient algorithm for the several hundred

other known NP-complete problems.

20.2.4 Other Complexity Classes

Instead of defining complexity classes based on how much time it takes for

a Turing machine to solve the corresponding decision problems, one could

look at the space, that is, the number of cells, the Turing machine will need.
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Definition 20.26. We say that the language L belongs to the complexity

class PSPACE if there exists a Turing machine T and a positive integer k

and a constant c so that T accepts x if and only if x ∈ L and the number

of cells T will use when given input x is at most cnk.

In other words, T needs only O(nk) cells to decide if x ∈ L, where n is

the size of the input x.

As a Turing machine takes a unit of time to access each cell, the following

proposition is immediate.

Proposition 20.27. We have P ⊆ PSPACE.

It is not known whether this inclusion is strict or not. The following con-

tainment relation is a little bit less obvious.

Lemma 20.28. We have NP ⊆ PSPACE.

Proof. Let L ∈ NP. Note that as far as membership in PSPACE is

concerned, the running time of the machines is not important. Therefore,

if T is the nondeterministic Turing machine that accepts L in polynomial

time, we could modify T to get the machine T ′ as follows. Let T ′ be the

deterministic Turing machine that carries out each computation resulting

from a legal sequence of choices by T , but it does so consecutively in some

specified order, instead of concurrently, and so that each sequence over-

writes the previous one. Then this T ′ is a deterministic machine. Indeed,

in each stage, T ′ takes a uniquely defined step since it takes the next step

of the currently selected sequence, and the order in which the sequences

are processed is determined. Furthermore, T ′ uses polynomial space only,

since each sequence, including the longest one, uses polynomial space only.

Indeed, if a sequence s would take more than polynomial space to process,

then T could not process that sequence in polynomial time. �

As it is not even known whether PSPACE is actually larger than P, it

is not surprising that it is not known whether PSPACE is actually larger

than NP.

So far, every complexity class we considered contained P. How about

classes contained in P? In order to be able to introduce two interesting

classes of that kind, we need the notion of logarithmic space. That is, we

want to consider languages that can be accepted using O(log n) space only.

“Nonsense”, you could say at this point, since n is the size of the input

given to the Turing machine, so just taking the input needs n > O(log n)
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steps. Therefore, when considering these complexity classes, we will not

count the part of the tape that contains the input as part of the needed

space. We will only count the space needed for the actual computation.

Now we are ready for the definition of two new complexity classes.

Definition 20.29. We say that the language H is in L if there exists a

positive integer k and a deterministic Turing machine T so that for any

input x of length |x|, the machine T can decide whether x ∈ H using at

most k log |x| cells.

A spectacular recent result in this regard is the following.

Theorem 20.30. Let UST be the language of triples (G, s, t) so that G is

an undirected graph, and s and t are two of its vertices so that there is a

path from s to t in G. Then UST ∈ L.

Theorem 20.30 was proved by Omer Reingold in 2004 [35].

Definition 20.31. We say that the language H is in NL if there exists a

positive integer k and a nondeterministic Turing machine T so that for any

input x of length |x|, the machine T can decide whether x ∈ H using at

most k log |x| cells.

A famous example of a decision problem that is in NL is

REACHABILITY . That is, given input (G, x, k), where G is a directed

graph, x is a vertex of G, and k is a positive integer, a Turing machine

must decide whether G has at least k vertices that are reachable from x

by a directed path. The fact that this problem is in NL is the celebrated

Immerman-Szelepcsényi theorem. Note that if an algorithm can decide

REACHABILITY , then it can decide UST since we can set k = 1, and

we can replace each edge of the undirected graph by two directed edges

going in opposite directions.

It is not known whether REACHABILITY is in L or not, but it

is known that there exists a deterministic Turing machine that can solve

REACHABILITY using O(log2 n) cells. Note that unlike P or NP, the

complexity class L does not allow for taking squares that way.

It is clear from the definitions that L ⊆ NL. Whether that inclusion is

strict is not known. The following inclusion is a little bit more difficult to

prove.

Lemma 20.32. We have L ⊆ P.
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The reader is asked to make an effort to prove this lemma on his own.

A proof is provided in the solution of Exercise 3. An enhanced version of

the argument given in that solution (see [32]) proves the inclusion NL ⊆ P.

Again, it is not known if this inclusion is strict.

Finally, for a change, we mention one inclusion that is known to be

strict. It is known that L 6= PSPACE (see [32]).

The following chain of inequalities summarizes the weak containment

relations we mentioned in this chapter.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. (20.1)

What is amazing about this chain of inclusions is that none of the in-

clusions in (20.1) is known to be strict. On the other hand, as we said,

L 6= PSPACE. Therefore, at least one of the inclusions in (20.1) is strict.

So there is at least one strict inclusion between consecutive expressions to

be proved in this chain. Is there just one? If not, which one will be proved

first?

Notes

A list of the seven Millennium Prize Problems can be found at the website of

the Clay Institute, at http://www.claymath.org/millennium/. When this

book goes to press, in the year 2011, eleven years after the announcement

of the million-dollar offers for these problems, only one of these problems

has been solved.

A reader-friendly introduction to the topic of this chapter, just as to the

topic of the previous chapter, is Herb Wilf’s book Algorithms and Com-

plexity [50]. Two very enjoyable and fairly comprehensive graduate-level

textbooks are Computational Complexity by Christos Papadimitriou [32]

and Introduction to the Theory of Computation by Michael Sipser [38].

Exercises

Note: in solving some of the Exercises of this chapter, the reader may use

certain theorems or examples that were mentioned in the text without proof.

(1) Let L be the language of all connected graphs. Prove or disprove that
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L ∈ P.

(2) Let L be the language of all bipartite graphs.

(a) Prove that L ∈ NP.

(b) Prove that L ∈ P.

(3) Prove Lemma 20.32.

(4) (+) Let 2SAT be the language of Boolean expressions in conjunctive

normal form so that each clause contains only two literals. Prove that

2SAT ∈ NL. Note that this implies that 2SAT ∈ P.

(5) Let BIGSUBSETSUM be the language of all finite multisets S of

real numbers that have a submultiset T so that

(a) the sum of all elements of T is 0, and

(b) |T | > 0.9 · |S|.
Prove that BIGSUBSETSUM is NP-complete.

(6) Let INDEPENDENT − SET be the language of pairs (G, k) so

that G is a simple graph and k is a positive integer so that G has

an induced subgraph on k vertices that has no edges. Prove that

INDEPENDENT − SET is NP-complete.

(7) A decision problem is called NP-hard if all problems in NP are re-

ducible to it in polynomial time, by a deterministic Turing machine.

Prove that the halting problem, discussed in Chapter 17, is NP-hard.

(8) It follows from the definition given in the previous exercise that the set

of NP-hard problems contains the set of NP-complete problems. Is

this containment strict?

(9) A problem is called coNP − complete if every problem in coNP is

reducible to it in polynomial time by a deterministic Turing machine.

A tautology is a finite Boolean expression that is satisfied by every

assignment of its variables. For instance, x1 ∨ x̄1 is a tautology. Let

TAUT be the language of all tautologies. Prove that TAUT is coNP-

complete.

(10) Let HAMCY C be the language of graphs that contain a Hamiltonian

cycle. Prove that HAMCY C is NP-complete.

(11) A dominating set in a graph G is a subset D of vertices so that any ver-

tex that is not in D has a neighbor in D. Let DOMINATING−SET

be the language of pairs (G, k), where G is a graph that has a dominat-

ing set consisting of k or less vertices. Prove that DOMINATING−
SET is NP-complete.

(12) Let SPANNING − TREE be the language of ordered pairs (G, k)

where G is a simple graph that has a spanning tree in which each



February 10, 2011 10:12 World Scientific Book - 9in x 6in third

Does Many Mean More Than One? Computational Complexity 531

vertex has degree at most k. Prove that SPANNING − TREE is

NP-complete.

Supplementary Exercises

(13) Explain, using the formal definition of (deterministic) Turing ma-

chines, that once a Turing machine entered the accepting state or

rejecting state, it will stop.

(14) Let q be a given permutation pattern. Let L be the set of all permu-

tations that contain q. Prove that L ∈ P.

(15) Let L be the language of graphs containing a matching that consists

of at least 10 edges. Prove or disprove that L ∈ P.

(16) Prove Proposition 20.13.

(17) A salesman has to travel to each of n cities, visiting each of them

exactly once, and ending in the same city where he started. The cost

of travel between any two cities is given in advance. Prove that the

problem of deciding whether this can be done at a cost less than a

given C is NP-complete.

(18) Prove that if anNP-complete problem is in coNP, thenNP = coNP.

(19) Let L be the language of finite multisets of real numbers such that

L can be partitioned into two blocks A and B so that the elements

of A and the elements of B have the same sum. Prove that L is

NP-complete.

(20) Prove that if NP ⊆ coNP, then NP = coNP.

(21) Let CLIQUE be the language of pairs (G, k) where G is a graph and

k is a positive integer so that G contains a subgraph isomorphic to

Kk. Prove that CLIQUE is NP-complete.

(22) Recall that a vertex cover of a graph G is a subset C of the vertex

set of G so that each edge of G has at least one endpoint in C. Let

V ERTEX − COV ER be the language of pairs (G, k) where G is a

graph and k is a positive integer so that G has a vertex cover of k

elements or less. Prove that V ERTEX −COV ER is NP-complete.

(23) Let SHORTESTPATH be the language of 4-tuples (G, k, a, b) where

G is an undirected graph, and a and b are vertices of G so that there

is a path between a and b that consists of at most k edges. Prove that

SHORTESTPATH ∈ P.
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(24) Let SUBGRAPH be the language of pairs (G,H) where G and H

are graphs such that G has a subgraph isomorphic to H . Prove that

SUBGRAPH is NP-complete.

(25) Let HITSET be the language of pairs (F, k), where F is a finite

family of finite sets so that there is a k-element set that has a non-

empty intersection with each set in F . Prove that HITSET is NP-

complete.

Solutions to Exercises

(1) Yes, L ∈ P. Just run breadth first search starting at any vertex

s. When the algorithm stops, check whether all vertices have been

reached.

(2) (a) A witness W (G) for a graph G could simply be a partition of the

vertex set of G into two blocks. It can then be verified in O(n2)

steps that there are no edges within the same block.

(b) Do breadth first search on the vertex set of G starting from some

vertex s. Vertices at an even distance from s get colored red, and

vertices at an odd distance from s get colored blue. If this algo-

rithm never reassigns the color of a vertex, then G ∈ L, otherwise

it is not.

(3) If at a given point of time, we are told the content of each cell of

the tape of the deterministic Turing machine T , the position of its

head, and state in which the machine is in, then using the transition

function of T , we can compute all future moves of T . If T uses at

most k logn cells, then there are at most |A|k logn possibilities for the

content of the tape, k logn possibilities for the position of the head,

and at most |S| states in which T can be. Therefore, the total number

of configurations described by the parameters above is at most

|A|k logn · k logn · |S| = ek logn

(

A

e

)k logn

k logn · |S|

= nkclogn · C · logn
= nk · nlog cC · logn
= ≤ Cnk+log c+1.

Here C = |S| · k and c = (A/e)k. Now T processes each configuration
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in unit time, so in Cnc1 time, it will process all configurations. A con-

figuration cannot occur twice, since that would put T into an infinite

loop. This proves our claim.

(4) Let B be a Boolean expression in conjunctive normal form in which

each clause contains exactly two literals. We are going to construct

a directed graph GB from B. The vertices of GB are the literals of

B and their negations, each occurring once. There is an edge from

vertex x to vertex y if one of the clauses of B is x̄∨ y. See Figure 20.3
for an example. Note that this clause is equivalent to the implication

“if x = true, then y = true”. That is, if an assignment satisfies B,

and the value of a vertex v in that assignment is true, then the value

of all vertices reachable from v by a directed path must also be true.

xx

x1

1 2 3

x3
−x2

−−

x

Fig. 20.3 The graph GB defined by B = (x1 ∨ x2) ∧ (x̄1 ∨ x3).

We now claim that B ∈ 2SAT if and only if there is no literal x ∈ B

so that there is a path from x to x̄ in GB, and also, a path from

x̄ to x in GB . As the latter problem is in NL (it is an instance of

REACHABILITY ), our statement will then follow.

In order to prove that claim, let us assume that such a literal x exists,

and assume without loss of generality that in an assignment satisfying

B, the value of x is true. As there is a path in GB from x to x̄, and

x̄ is false, this contradicts to the property of GB we just proved, that

is, that all literals reachable from a true literal must also be true.

Conversely, if no such literal x exists, then we will define an assignment

satisfying B. (Intuitively, “no literal will cause any trouble”.) Note

that by the definition of GB, if there is an edge from x to y, then there
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is also an edge from ȳ to x̄. Start at a vertex u for which there is no

path from u to ū. Assign true to all vertices reachable from u by a

directed path, including u itself, and assign false to their negations.

If this does not exhaust all vertices, then pick another vertex v whose

value is not yet assigned, then repeat the procedure. We claim that

this procedure will never cause a conflict at the assignment of any

vertex. Indeed, if both z and z̄ were reachable from u, then, by the

symmetric property of GB mentioned earlier in this paragraph, there

would be paths from both z̄ and z to ū. That would, by concatenation,

yield a path from u to ū, contradicting our hypothesis.

Finally, the assignment defined in the previous paragraph will satisfy

B. Indeed, in each step of the above procedure, we ensure that if

x = true, then in all clauses in which x̄ occurs, the other literal is

set to be true. Therefore, each clause will contain at least one literal

that is true in the assignment.

(5) We are going to prove the statement by reducing SUBSETSUM to

BIGSUBSETSUM . On any input multiset S, just add 9 · |S| copies
of 0 to S to get the new multiset S′. Then S′ ∈ BIGSUBSETSUM

if and only if S ∈ SUBSETSUM , and the statement follows since

|S′| is only ten times larger than S, so the Turing machine deciding if

S′ ∈ BIGSUBSETSUM runs in polynomial time in the size of S as

well.

(6) We show that SAT is reducible to INDEPENDENT −SET . Let B

be a Boolean expression in conjunctive normal form that has k clauses.

We will define a graph GB that has an empty induced subgraph with

k vertices if and only if B is satisfiable. The vertices of the graph

are labeled by the literals of B. If a literal xi occurs m times in B,

then there are m vertices in G labeled by xi, one for each occurrence.

Now connect each vertex labeled xi to each vertex labeled by x̄i. In

addition, connect vertices if the corresponding literals appear in the

same clause. (This does not mean that if x6 and x7 appear together

in one clause C, then we connect all vertices labeled x6 to all vertices

labeled xy; just the vertices corresponding to literals in C.)

See Figure 20.4 for an example.

If GB contains an empty subgraphH on k vertices, then each vertex of

H must correspond to a literal from a different clause, since each clause

contributes a complete subgraph to GB . Furthermore, none of these

k vertices could correspond to a literal that is a negation of another

literal corresponding to a vertex of H , since xi and x̄i are always
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3

3

2

2

1

1
xx

−

x−

x x x

Fig. 20.4 The graph GB of B = (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) .

adjacent. Therefore, assigning true to all literals represented in H by

a vertex will satisfy each of the k clauses of B, and consequently, B.

Conversely, if B is satisfiable by an assignment, then that assignment

assigns true to at least one literal in each clause. Choosing such a

literal from each clause will result in an empty subgraph with k ver-

tices, since it will never happen that two adjacent vertices in separate

clauses are assigned true, since such vertices correspond to pairs of

literals that are negation of each other.

As the creation of GB takes only polynomial time, the proof is com-

plete.

(7) We claim that SAT is reducible to the halting problem. Indeed, if we

could solve the halting problem by a Turing machine T , then we could

input the pair (G, (B, x)) to T , where B is a Boolean expression in

conjunctive normal form, x is an assignment of true and false values

to the variables of B, and G is a Turing machine that halts if x satisfies

B and stops otherwise. The assumption that T decides the halting

problem would then imply that T decides SAT .

(8) Yes, this containment is strict. We have seen in the solution of the

previous exercise that the halting problem is NP-hard. On the other

hand, the halting problem is not in NP, and so it is not NP-complete.

Indeed, if it were, then it would also be in PSPACE, and that would

mean that it is decidable by a deterministic algorithm, and we saw in

Chapter 17 that it is not the case.

(9) It is easy to see that TAUT ∈ coNP since for a Boolean expression
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B, the role of the witness W (B) can be played by an assignment that

does not satisfy B, and that can be checked in polynomial (in fact,

linear) time.

In order to prove that TAUT is coNP-complete, note that the com-

plement SAT c of SAT (that is the language of Boolean expressions

that are not satisfiable) is coNP-complete, and is reducible to TAUT .

Indeed, B ∈ SAT c if and only if B̄ ∈ TAUT .

(10) We show that HAMPATH is reducible to HAMCY C. Let G be a

graph, add a new vertex v to G, and let v be adjacent to all other

vertices of G. Then the new graph has a Hamiltonian cycle if and

only if G had a Hamiltonian path.

(11) We prove that the language V ERTEX − COV ER is reducible to

DOMINATING − SET in polynomial time. This suffices, since

Exercise 22 shows that V ERTEX − COV ER is NP-complete. Let

G be a graph. Construct the graph G′ by first doubling each edge xy

of G, and then splitting each new xy edge by a new vertex vxy. We

claim that G′ has a dominating set of size k if and only if G′ has a

vertex cover of size k. First, it is obvious that if S is a vertex cover of

G, then S is also a dominating set of G′, since the vertices of G′ are
along the edges of G (old or new).

If G′ has a dominating set D of size k, then we can replace the vertices

of D that are of the form vxy by one of x or y without losing the

dominating property (why?). This leads to a dominating set D′ of G
that has k vertices. This set D′ is a vertex cover of G (since it still

dominates all vertices vxy, and hence it covers all edges of G). This

reduction algorithm clearly takes polynomial time only.

(12) We show that HAMPATH is reducible to SPANNING − TREE.

Indeed, to decide if G has a Hamiltonian path, it suffices to decide if

G has a spanning tree in which every vertex has degree at most two.
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Acyclic, 234
Acyclic orientation of a graph, 265
Adjacency matrix, 225
Algorithm, 481
Anti-automorphism of a poset, 402
Antichain, 385
Appel, Kenneth, 287
Ascent, 178, 329
Automorphism

of a design, 437
of a graph, 203
orientation preserving, 473

Automorphism group of a graph, 451
Average value, 360

Backtracking, 501
Bayes’ theorem, 358

general version, 360
Bell number, 97, 170
Betweenness problem, 365
BIBD, 418

linked, 422
symmetric, 418

BIGSUBSETSUM , 530
Bijection, 43
Binomial coefficient, 46

generalized version, 75
Binomial theorem, 67

for real exponents, 75
Block, 417
Block design, 417
Boolean algebra, 382

Boolean expression, 523
satisfiable, 523

Boolean variable, 523
Breadth first search, 499
Brook’s theorem, 262
Bruck-Ryser-Chowla theorem, 424
BubbleSort, 483
Burnside’s lemma, 454

Catalan number, 161, 315
Cayley’s formula, 219
Center

of a graph, 236
Centroid, 307
Certificate, 514
Chain, 383

length of, 389
maximal, 404
saturated, 404

Chain cover, 385
smallest, 385

Chromatic number, 248
Chromatic polynomial, 266
Clause, 523
CLIQUE, 531
co-NP, 516
Code, 429

(n,m, d)-, 431
binary, 429
error-correcting, 431
Hamming, 434
linear, 434
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perfect, 433
prefix-free, 429
uniquely decodable, 429

Codeword, 429
Complement

of a binary vector, 432
of a lattice element, 402

Complexity class, 513
Composition, 93

weak, 93
Compositional formula

for exponential generating
functions, 173

for ordinary generating functions,
166

Conjunctive Normal Form, 523
Connected components, 191
Cook’s theorem, 524
Coset, 449
Covering matrix, 401
Cycle

Hamiltonian, 194
in a graph, 194

Decision problem, 512
Degree

of graph vertex, 190
Degree sequence

ordered, 204
Depth first search, 499, 501
Derangement, 138
Derangements, 177
Descent, 142, 329, 373
Design, 417

balanced incomplete, 418
complementary, 419
complete, 417
derived, 424
dual, 421
incomplete, 417
k-uniform, 418
r-regular, 418
regular, 418
residual, 424
uniform, 418

Diagonalization method, 482

Dijkstra algorithm, 495
Dilworth’s theorem, 385
Dimension of a poset, 401
Direct product of posets, 394
Distance

in a graph, 236
Dodecahedron, 284
Dominance order, 405
DOMINATING− SET , 530
Doubly stochastic matrix, 266
Dual of a graph, 282
Durfee square, 105

Edge
left, 332
right, 332

Edge cover, 269
Edge-equivalence, 278
Edges

non-similar, 464
similar, 464

Erdős, Paul, 202
Erdős-Szekeres theorem

in combinatorial geometry, 300
Euler’s theorem

on closed trails, 191
on planar graphs, 276
on primes, 472

Euler’s totient function, 146
Event, 350

independent, 356, 360
mutually exclusive, 351

Excedance, 143, 368
Expectation, 360

conditional, 365
linearity of, 362

Expected value, 360
Exponential formula, 171

permutation version, 176

Faces
of a planar graph, 276

Fano plane, 425
Ferrers shape, 99
Fibonacci number, 180
Finite affine plane, 427
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Fisher’s inequality, 423
Fixed point, 125, 138, 363
Forest, 218

rooted, 220
rooted unlabeled non-plane, 474

Four-Color Conjecture, 285

Generating Function
ordinary, 149

Generating function
exponential, 167

Graph, 190
bipartite, 249
color critical, 267
complete, 197
complete bipartite, 207, 252
complete tripartite, 235
connected, 191
directed, 196

balanced, 197
strongly connected, 197

factor critical, 267
minimally connected, 215
Petersen, 203
planar, 276
quadratic residue, 297
regular, 203

bipartite, 273
saturated non-factorizable, 263
simple, 191

Greedy algorithm, 223
Greene–Fomin–Kleitman theorem,

401
Group, 448

symmetric, 451

Haken, Wolfgang, 287
Halting problem, 482
HAMCY C, 521
Hamming distance, 430
Hamming, Richard, 434
HAMPATH , 526
Hasse diagram, 383
Hetyei, Gábor Sr., 263
HITSET , 532
Hypercube

n-dimensional, 207

Icosahedron, 284
Ideal, 387

principal, 387
In-order reading of a tree, 328
Incidence algebra, 387
Incidence matrix

of a design, 420
of a graph, 228

Inclusion-Exclusion Principle, 137
Incomparable elements, 382
INDEPENDENT − SET , 530
Index of a subgroup, 450
Induction

strong, 27
weak, 21

Injection, 44
Interval order, 405
Inversion, 127
Involution, 126
Isomorphism

of graphs, 199
of posets, 383

Join, 395
Joyal, André, 219

König’s theorem, 269
Kruskal’s algorithm, 225, 492
Kruskal, Joseph, 225
Kuratowski’s theorem, 278

L, 528
Laplacian matrix, 232
Latin square, 437

mutually orthogonal, 438
orthogonal, 438
reduced, 444

Lattice, 395
distributive, 402
modular, 402

Lattice path, 78
Leaf, 217
Left-to-right maximum, 121
Left-to-right minimum, 316
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Linear extension, 386
Log-concave sequence, 78
Loop

in a graph, 191
Lovász, László, 263

Möbius function, 389
Möbius Inversion Formula, 393
Magic cube, 266
Magic square, 53, 266
Matching, 256

in a bipartite graph, 256
maximal, 259
maximum, 259
perfect, 256

Matrix-Tree theorem, 230
eigenvalue version, 232

Maximal element, 383
Maximum element, 383
Mean, 360
Meet, 395
Meet-semilattice, 396
MergeSort, 486
Minimal element, 383
Minimum element, 383
Motzkin numbers, 175
Multichain, 388

length of, 389
Multinomial coefficient, 73
Multinomial theorem, 73
Multiset, 41

NL, 528
NP, 514
NP-complete problem, 522
NP-hard, 530

Octahedrite, 289
Octahedron, 284
Orbit, 453
Order polynomial, 404
Order preserving map, 404
Order-preserving bijection, 386
Otter, Richard, 463

P, 512

Parking function, 234
Partially ordered set, 381
Partition

graphical, 204
non-crossing, 334, 337
of a set, 95
of an integer, 98

generating function for, 159
self-conjugate, 99

Pascal triangle, 68
Path, 191

augmenting, 260
Hamiltonian, 194
shortest, 495

Pentagonal number, 104
Permutation, 40

132-avoiding, 314
circular translate of, 336
complement of, 131, 316
cycle type of, 117
cycles of, 115
even, 127
fixed point of, 125
in canonical cycle form, 115
indecomposable, 176
inverse of, 125
multiset, 41
odd, 127
q-avoiding, 315
reverse of, 316
sorted, 337
square root of, 126
stack sortable, 323
t-stack sortable, 326
two-stack sortable, 324

Permutation group, 451
primitive, 472
transitive, 472

Permutation matrix, 125, 266
Permutation patterns, 314
Philip Hall’s theorem, 257
Pigeon-hole Principle, 1

general version, 3
Pitman, James, 235
Pittel, Boris, 202
Polyhedron, 278
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regular, 278
trivalent, 289

Poset, 381
2+2 and 3+1 avoiding, 405
2+2-avoiding, 405
locally finite, 387
self-dual, 402

Postorder reading of a tree, 328
Precedence ordering, 405
Prim’s algorithm, 506
PRIMES, 516
Probability, 350

conditional, 356
Product formula

for exponential generating
functions, 169

for ordinary generating functions,
157

Projective plane, 425
Prüfer sequence, 234
Pseudo-code, 486
PSPACE, 527

q-pattern, 315
Quicksort, 506

Ramsey number, 296, 352
Ramsey theorem

for graphs, 295
for hypergraphs, 300

Ramsey theorem for graphs
general version, 299

Ramsey theory, 294
Ramsey, Frank Plumpton, 294
Random variable, 360

independent, 361
indicator, 363

REACHABILITY , 528
Refinement order

of non-crossing partitions, 397
of set partitions, 383

Refining sequence, 235
Reingold, Omer, 528
Run, 373

Sample space, 350

SAT , 524
Schröder numbers, 175
SHORTESTPATH, 531
Sieve Formula, 137
Simpson’s paradox, 357
SPANNING − TREE, 531
Stabilizer, 452
Stack sorting of permutations, 323
Standard deviation, 369
Stanley, Richard, 142, 174
Stanley-Wilf conjecture, 320
Stirling number

of the first kind, 117
signless, 117

of the second kind, 95
explicit formula, 140

Stirling’s formula, 40
String, 42
Subdesign, 440
SUBGRAPH , 532
Subgraph, 202

induced, 202
Subgroup, 449
SUBSETSUM , 526
Superpattern, 336
Surjection, 44
Symmetric difference, 216
Symmetric group, 116
Symmetry edge, 464

t-design, 437
TAUT , 530
Tautology, 530
Taylor series, 151
Three houses, three wells problem,

276
3SAT , 524
Tournament, 197

transitive, 198
Trail, 191

closed, 191
Eulerian, 191

closed, 191
Transition Lemma, 120
Traveling Salesman problem, 526
Tree, 215
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complete k-ary, 233
decreasing binary, 328

non-plane, 471
decreasing non-plane, 471
doubly rooted, 219
non-plane

1-2, 458
2-, 470
rooted, 460

plane
1-2-, 472

spanning, 221
minimum cost, 222, 492

unlabeled, 463
unlabeled binary, 335
unlabeled plane, 337

Triangle inequality, 430
Turán’s theorem, 261
Turing machine, 509

deterministic, 511
non-deterministic, 519

Tutte’s theorem, 262
2SAT , 530
Typewriter paradox, 481

Unimodal sequence, 72
Unit interval order, 405
UST , 528

Valley, 362
Variance, 369
Vatter, Vincent, 397
Vertex

cut, 236
of a design, 417
of a graph, 190

Vertex cover, 269, 531
V ERTEX − COV ER, 531
Vertices

non-similar, 464
similar, 464

Walk, 191
Weight

of a codeword, 434
Weisner’s theorem, 397

West, Julian, 347
West, Douglas, 201
Wheel, 268
Wilf, Herbert, 149
Wilson’s theorem, 470
Witness, 514

Zeta function, 388
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