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CHAPTER 1

Principal Component Analysis

Consider a high dimensional data set

{x1,x2, . . . ,xN} ⊂ Rm

where by high-dimensional, typically we mean m � N : the ambient dimension is much larger
than the number of data points. (A typical example would be N = 1000 points in m = 106

dimensions.) There may be no natural division of variables into predictor and response variables.
Instead, our hope is that there is a (probably much) lower-dimensional affine subspace of Rm

where, in some sense, all the data “approximately lives”. More precisely: our model is that the
“true” data points tj all live in some lower-dimensional affine subspace, and the measured data xj
are samples of Xj = tj + Zj , where the Zj are random vectors modeling noise and error. We
could attempt to setup a MLE (Maximum Likelihood Estimator) based on this model, but it is a
little unclear what the unknown parameters are; how do we describe the desired affine subspace?

1.1. Dimension Reduction via Affine Projection

To begin, let’s make the term affine subspace precise.

DEFINITION 1.1. Fix positive integers 1 ≤ d ≤ m. An affine subspace A ⊆ Rm is a set of
vectors of the form

A = µ + V

for some fixed vector µ ∈ Rm and some subspace V ⊆ Rm with dim(V ) = d. That is: A =
{µ + v : v ∈ V }.

EXAMPLE 1.2. In R2, the graphs of all lines y = mx + b, together with vertical lines x = a,
for a, b,m ∈ R, are the affine subspaces.

EXAMPLE 1.3. If A is an affine subspace in the form A = µ + V , and v0 ∈ V , then we can
also write A = (µ + v0) + V . Indeed:

• If w ∈ V , then (µ + v0) + w = µ + (v0 + w) ∈ µ + V ; this shows (µ + v0) + V ⊆ A.
• Conversely, if a ∈ A = µ + V , then there is some v ∈ V such that a = µ + v =

(µ + v0) + (v − v0). Since v − v0 ∈ V , this shows a ∈ (µ + v0) + V , and so
A ⊆ (µ + v0) + V .

All this is to show that we cannot talk about the vector µ that translates V away from 0 to define
A; rather, there is a whole family of such translation vectors (indexed by V ). Put another way: we
could define an affine subspace A to be a subset with the property that A − A is a subspace; i.e.
there is a subspace V such that the difference of any two elements in A is in V .

As Example 1.3 shows, the vector used to translate the subspace away from 0 isn’t unique; on
the other hand, we do need one such vector to specify the affine subspace. What other information
do we need? How do we fully describe (non-uniquely) an affine subspace? Let’s answer that with
a proposition.
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PROPOSITION 1.4. Any affine subspace A of dimension d is described in the form

A = µ + span{v1, . . . ,vd}
for some fixed vector µ and some linearly independent set {v1, . . . ,vd} of d vectors. Moreover, if
there is another such representation

A = ν + span{u1, . . . ,ud}
then {u1, . . . ,ud} is a basis of the same subspace V = span{v1, . . . ,vd}, and µ− ν ∈ V .

(The proof of this proposition is an exercise in basic linear algebra, following the discussion
in Example 1.3.) What we learn from this is: to specify an affine subspace of dimension d, we
need d + 1 vectors: a translation vector µ, and a linearly independent set {v1, . . . ,vd} spanning
the subspace part. We will utilize the large amount of freedom in choosing these vectors to be a
bit more restrictive, and always choose an orthonormal basis for the subspace. Let’s now remind
ourselves of a few basic facts about orthonormal bases of subspaces.

PROPOSITION 1.5. Let V ⊆ Rm be a subspace, and let {û1, . . . , ûd} be an orthonormal basis
for V . Let Q be the m× d matrix with ûj as columns:

Q =

 | | |
û1 û2 · · · ûd
| | |

 .
Then Q>Q = Id is the d × d identity matrix, while QQ> the m × m matrix of the orthogonal
projection PV onto the subspace V .

PROOF. By definition, [Q>Q]ij = û>i ûj = ûi · ûj = δij since they form and orthonormal set;
this shows Q>Q = Id. In the other direction: for any vector w ∈ Rm, [Q>w]j = û>j w = ûj ·w;
thus, by the definition of matrix multiplication,

QQ>w = Q(Q>w) =
d∑
j=1

(ûj ·w)ûj

which (because of the orthonormality) is the orthogonal projection of w onto span{û1, . . . , ûd} =
V . �

Hence, we can alternatively think if specifying a d-dimensional affine subspace of Rm with
two objections: (1) a vector µ ∈ Rm, and (2) an m×d matrix Q satisfying Q>Q = Id. Given such
a pair (µ, Q), the affine subspace is then the µ-shift of the column space Col(Q); alternatively, it
is the µ-shift of the range of the orthogonal projection QQ>.

REMARK 1.6. In the same spirit, to be minimal, we could also assume that the vector µ is
orthogonal to V . After all, once one translation vector µ0 has ben chosen, we note that the orthog-
onal projection v = QQ>µ0 is defined by the property that µ0−v ⊥ V ; but from Proposition 1.4,
the vector µ = µ0−v may just as well be used as a translation vector for the affine subspace. (We
do not, however, have the freedom to normalize the vector µ; in general, the one orthogonal to V
just constructed will be the shortest possible choice.)

However, as we will shortly see, it will be more convenient to give the freedom to add vectors
(in V ) to the translation vector to make a canonical choice in our data analysis framework. So we
will generally not place orthogonality constraints on µ with respect to V .
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1.2. Least Squares, and the Best Translation Vector

Returning to our setup, with more precise language: we have data {x1,x2, . . . ,xN} in Rm.
Our goal is to find the best approximating d-dimensional affine subspace for this data. As with
linear regression, we could approach this by setting up an appropriate Gaussian noise model and
developing the corresponding MLE; as with the calculation in the regression case, it is straightfor-
ward to see where that will lead: to a least squares approximation. We will therefore set it up that
way from the start.

In seeking the “best fit affine subspace”, we will look for a pair (µ, Q) to specify it: a translation
vector and an orthonormal basis (written as an m× d matrix Q satisfying Q>Q = Id). These will
not be unique! Any such pair can be replaced with infinitely many others by translating µ by a
vector in Col(Q), and by replacing the given orthonormal basis columns in Q with another one
(which boils down to multiplying Q on the right by a d × d orthogonal matrix). All this means is
that the minimization problem will not have a unique solution; we will choose a minimizer that is
“canonical” (essentially that is easiest, and most meaningful, to compute).

To get started: the points is to find an affine subspace, specified by some (µ, Q), such that

for 1 ≤ j ≤ N, xj − µ is close to the subspace Col(Q).

That is: we should be able to find, for each of the data points xj , a vector βj ∈ Rd, so that

xj ≈ µ +Qβj.

This leads us to a precise definition of what best fit should mean.

DEFINITION 1.7. Given data points {x1,x2, . . . ,xN} in Rm, a d-dimensional affine subspace
specified by a pair (µ0, Q0) is said to be a best fit for the data if the function

Φd(µ, Q,β1, . . . ,βd) =
N∑
j=1

‖xj − (µ +Qβj)‖2

(defined for µ ∈ Rm, Q ∈ Mm×d satisfying Q>Q = Id, and β1, . . . ,βN ∈ Rd) achieves its
minimum at (µ, Q) = (µ0, Q0) (for some choices of βj).

This now becomes something like a linear regression problem: we are looking for the best
affine function β 7→ µ0 + Q0β to fit the data. The catch is: unlike in linear regression, the
“predictor” variables βj are not given; they must be discovered by the least squares minimization.
This makes the problem computationally harder, as we will see.

REMARK 1.8. It is crucial to note that the dimension d of the best fit affine subspace must be
specified from the start. We cannot include d as a parameter in the minimization. Indeed, if we
did, the minimum would always be achieved with d = m, where we can take µ0 = 0, Q0 =
Im, and βj = xj , achieving the least-squares minimum of 0. (That is: the best m-dimensional
approximation of the data is the original data, since it was m-dimensional to start with!) This, of
course, defeats the purpose: the name of the game here is dimension reduction.

The question of how to choose the “right” d is the really subtle part, which we will spend much
more time trying to understand later.

We will fully solve this minimization problem in this chapter, by leveraging all of the linear
algebra we’ve discussed. As a warm-up, we can begin by partially solving the minimization, to
find a best fit µ0 irrespective of the other parameters.
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THEOREM 1.9. A global minimum of Φd occurs at at a point with translation vector

µ0 = xN =
1

N

N∑
j=1

xj.

PROOF. The function Φd(µ, Q,β1, . . . ,βd) is smooth (in fact it is a quadratic polynomial) in
all the parameters µ, Q,β1, . . . ,βd. Hence, we should seek critical points to find local extrema.
(A complete analysis would then also show that the local minimum is global by considering the
behavior of the function as the parameters grow without bound; in the interest of staying on task,
we will omit this less interesting argument.)

We therefore take the directional derivative in the µ direction (holding Q and βj fixed); that is,
we seek a µ0 satisfying

0 =
d

dt
Φd(µ0 + tz, Q,β1, . . . ,βd)

∣∣∣∣
t=0

for each z ∈ Rm. Note that

‖xj − (µ0 + tz +Qβj)‖2 = ‖xj − µ0 −Qβj‖2 + 2t (xj − µ0 −Qβj) · z + t2‖z‖2

and the derivative of this (with respect to t) at t = 0 is just 2(xj − µ0 − Qβj) · z. Hence, adding
up terms, the critical point equation becomes

0 =
N∑
j=1

2(xj − µ0 −Qβj) · z, for all z ∈ Rm.

This shows that the vector

N∑
j=1

(xj − µ0 −Qβj) = NxN −Nµ0 −Q(
N∑
j=1

βj)

is orthogonal to all vectors z ∈ Rm, which means it must be the zero vector 0. Hence, a critical
value for the minimizing µ0 is achieved at

µ0 = xN −
1

N
Q(

N∑
j=1

βj) = xN −Q(βN)

where βN = 1
N

∑N
j=1 βj (here we have used the linearity of matrix multiplication to put the 1

N

inside).
It appears from this that the minimizing µ0 depends on the minimizing βj’s; however, as dis-

cussed above, the minimizers are highly non-unique. In particular, since Q(βN) is (by definition)
in the Column space of Q, the affine subspace specified by (xN , Q) is the same as the one spec-
ified by (xN − Q(βN), Q) (cf. Proposition 1.4). Hence, we have shown that, independent of the
minimizers in the Q and βj variables (and the dimension d), the minimum of Φd is achieved with
translation vector µ0 = xN , as stated.

�
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1.3. The Best Fit Subspace vs. Linear Regression

Before completing the general minimization problem of Definition 1.7, let’s take a small detour
to compare this approach to linear regression. Recall that linear regress deals with data of the form
(xj, yj)

N
j=1, where the expectation is that xj is a predictor of yj: i.e. there is some affine relationship

yj ≈ w0 · xj + b0. Th model of random noise used in that setting let do the minimization problem

(w0, b0) = argmin
w,b

N∑
j=1

|yj − (w · xj + b)|2 (1.1)

While somewhat similar in form to Definition 1.7, there is substantial differences, which funda-
mentally result from the coordinate y being treaded differently from the coordinates x in the vector
(x, y). The regression minimization is to minimize the sum of squares of the vertical displace-
ments (in the y-coordinate) of the points (xj, yj) from a codimension-1 affine subspace. Definition
1.7, on the other hand, treats all coordinates equally.

To understand a bit better what this means geometrically, let’s consider the dimension 2 case,
with best approximating d = 1 dimensional affine subspace. Here the data have the form xj =
(xj, yj). The minimization problem of Definition 1.7 is then to find minimizing µ ∈ R2; Q ∈
M2×1 = R2 satisfying Q>Q = I1 = 1, i.e. Q = û is a unit vector; and “vectors” βj ∈ R1. That is,
we want to minimize

(µ, û, β1, . . . , βN) 7→
N∑
j=1

‖xj − (µ + ûβj)‖2.

We have already computed, in the last section, that an optimal translation vector is µ = xN ; i.e.
we seek to minimize

(û, β1, . . . , βN) 7→
N∑
j=1

‖(xj − xN)− ûβj‖2.

Let’s denote the shifted data as xj − xN =: x◦j . Now, suppose we have already found the optimal
unit vector û; then we can find the optimal βj easily, finding the critical values. Differentiating
with respect to βi eliminates all but one term in the sum, so we have

0 =
∂

∂βi
‖x◦i − ûβi‖2 =

∂

∂βi
(‖xi‖2 − 2x◦i · û βi + ‖û‖2β2

i ).

Since ‖û‖ = 1, this equation becomes

0 = −2x◦i · û + 2βi ⇒ βi = x◦i · û.
That is: the minimum least squares sum is

N∑
j=1

‖x◦j − (x◦j · û)û‖2.

The vector inside the sum should be familiar: (x◦j · û)û is the orthogonal projection of x◦j onto
span(û), and the different is thus

x◦j − (x◦j · û)û = Projû⊥(x◦j).

This now explains exactly what the optimal û is, and how this minimization problem compares to
linear regression. Let’s summarize the conclusion as a proposition.
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PROPOSITION 1.10. With m = 2 dimensional data (xj)
N
j=1, the best fit d = 1 dimensional

affine subspace (cf. Definition 1.7) is defined by translating the data by its sample mean x◦j =
xj−xN , and then finding the line (passing through the origin) that minimizes the (sum of squares)
distances from the points x◦j to the line orthogonally. (This is contrasted with linear regression,
cf. (1.1) where the best fit line is defined by minimizing the sum of squares of the vertical displace-
ments of the data to the line.)

REMARK 1.11. In this special case, the process of finding the best fit 1-dimensional subspace
is sometimes called orthogonal regression or total regression. While the general process of finding
the best fit affine subspace of a given dimension doesn’t quite conform to regression, orthogonal
projections play a key role in general, as we will see going forward.

1.4. The Best Fit Coordinates βj
We can follow the calculations in the previous section (in the special case m = 2, d = 1)

almost verbatim to compute the best-fit βj in general. As above, set

x◦j := xj − xN . (1.2)

We have already shown that a best fit translation vector is µ0 = xN ; thus, we wish to minimize

Φd(xN , Q,β1, . . . ,βN) =
N∑
j=1

‖x◦j −Qβj‖2

over all possible coordinate vectors βj .

REMARK 1.12. We refer to the βj as coordinates. If the vector x◦j were actually in the subspace
Col(Q), then it would have a unique expansion x◦j = Qβj for some βj ∈ Rd; this vector is then
the coordinate vector of x◦j in the basis {û1, . . . , ûd} of columns of Q. In reality, x◦j is not in the
subspace, so it doesn’t have coordinates in this basis, but we’ll still refer to the βj as coordinate
vectors.

Fixing Q for now, the terms in the sum all decouple for different βi; hence, looking for a local
maximum, we must solve the critical point equations

d

dt
‖x◦i −Q(βi + tγ)‖2

∣∣∣∣
t=0

, γ ∈ Rd, 1 ≤ i ≤ N.

Expanding the summed norm,

‖x◦i −Q(βi + tγ)‖2 = ‖x◦i −Qβi‖2 + t(x◦i −Qβi) ·Qγ + t2‖Qγ‖2.

Taking the derivative of this expression at t = 0, the equations become

0 = (x◦i −Qβi) ·Qγ = Q>(x◦i −Qβi) · γ, γ ∈ Rd, 1 ≤ i ≤ N.

As we argued above: since the vector Q>(x◦i − Qβi) is orthogonal to all vectors γ ∈ Rd, it must
be the 0 vector. Hence, we have

0 = Q>(x◦i −Qβi) = Q>x◦i −Q>Qβi
and, using the fact that Q>Q = Id, we finally conclude that

βi = Q>x◦i , 1 ≤ i ≤ N.

Subbing this back into the function Φd, we see a pleasing conclusion.
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COROLLARY 1.13. For any fixed subspace V ⊆ Rm of dimension d, specified by an orthonor-
mal basis matrix Q ∈Mm×d, the minimum in problem of Definition 1.7 is achieved at

N∑
j=1

‖x◦j −QQ>x◦j‖2 =
N∑
j=1

‖ProjV ⊥x◦j‖2. (1.3)

That is: for any data set, and fixed subspace, the least squares problem for a data set {xj}
relative to V is to translate the data by its sample mean and then orthogonally project into V . We
might call this an affine projection: orthogonal projection of the data into an affine subspace (by
first translating the affine subspace to 0 and the applying the projection). The quantity in (1.3) is a
measure of how far the data are from this affine projection image.

REMARK 1.14. Now we can say more precisely what the βj = Qtopx◦j “coordinate vectors”
really are: they are the coordinates of the projected vector QQ>x◦j in the basis of columns of Q.

1.5. The Best Fit Subspace, and the Sample Covariance Matrix

Reiterating: we have reduced the least squares minimization problem in Definition 1.7 to the
following. Given data {x1, . . . ,xN} in Rm, with sample mean xN = 1

N

∑N
j=1 xj , centering the

data x◦j = xj − xN , we seek a global minimizer Q0 of the following problem:

Q0 = argmin
Q∈Mm×d,Q>Q=Id

N∑
j=1

‖x◦j −QQ>x◦j‖2. (1.4)

We arrived at this form by minimizing over the best translation vector µ, and coefficients βj for
the data in the (unknown) basis Q; these minimization problems were fairly straightforward using
calculus, since the sets of possible µ and βj were vector spaces. We could therefore find the
minimizers by considering linear perturbations (e.g. µ+ tz) and differentiating. The minimization
problem for Q, however, is not so simple. The set of possible minimizers Q (those satisfying
Q>Q = I) is not a linear space. (It is a nice geometric space, called a symmetric space, possessing
a nice action of the Lie group O(d); this minimization problem could be approached therefore as a
constrained optimization problem via calculus on manifolds, but that is now how we will approach
it.)

To attack (1.4), we can make one quick simplification by expanding out the squared norm.

‖x◦j −QQ>x◦j‖2 = ‖x◦j‖2 − 2x◦j ·QQ>x◦j + ‖QQ>x◦j‖2. (1.5)
Notice that the last term is

‖QQ>x◦j‖2 = QQ>x◦j ·QQ>x◦j = x◦j · (QQ>)>QQ>x◦j .

Since QQ> is an orthogonal projection, (QQ>)>QQ> = QQ>. (This is easy to compute directly:
(QQ>)>QQ> = ((Q>)>Q>)QQ> = Q(Q>Q)Q> = QIQ> = QQ>.) Hence, the last two terms
in (1.5) are the same (modulo a factor of −2), and so the expression is equal to

‖x◦j‖2 − x◦j ·QQ>x◦j .

REMARK 1.15. The savvy reader will realize that the preceding calculation is exactly the same
as the one showing that, for any L2 random variable X , E[(X − E(X))2] = E(X2) − E(X)2.
Indeed, one can think of applying the projection QQ> as a kind of (conditional) “expectation”.
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We can now rewrite the function being minimized as

Q 7→
N∑
j=1

‖x◦j‖2 −
N∑
j=1

x◦j ·QQ>x◦j .

The first sum is an additive constant with respect to Q, and so it does not affect the minimizer. The
second sum has a minus sign, and thus, (1.4) is equivalent to the following maximization problem:

Q0 = argmax
Q∈Mm×d,Q>Q=Id

N∑
j=1

x◦j ·QQ>x◦j . (1.6)

It will be convenient to rewrite the terms in this sum. First, by definition,

x◦j ·QQ>x◦j = (x◦j)
>QQ>x◦j = (Q>x◦j)

>Q>x◦j = ‖Q>x◦j‖2

so

Q0 = argmax
Q∈Mm×d,Q>Q=Id

N∑
j=1

‖Q>x◦j‖2. (1.7)

To interpret this, we return to how the matrix Q arose: its columns are an orthonormal set of d
vectors in Rm, Q = [û1, . . . , ûd]. Thus, for any vector x ∈ Rm,

Q>x =


û1 · x
û2 · x

...
ûd · x


and so

‖Q>x‖2 =
d∑

k=1

(ûk · x)2 =
d∑

k=1

(ûk · x)(x · ûk) =
d∑

k=1

û>k xx>ûk =
d∑

k=1

ûk · xx>ûk.

Combining this with (1.7), we see that we are looking to maximize (as a function of the orthonor-
mal vectors {ûk}dk=1)

N∑
j=1

d∑
k=1

ûk · x◦jx◦>j ûk =
d∑

k=1

ûk ·

(
N∑
j=1

x◦jx
◦>
j

)
ûk.

The internal sum is a matrix we should recognize: it is (a multiple of) the sample covariance
matrix of our data:

C =
1

N

N∑
k=1

(xk − xN)(xk − xN)>. (1.8)

(Many sources use the notation Σ for the sample covariance matrix; we will avoid this notation,
since it might be confusing with the standard notation Σ for the “diagonal” part in the Singular
Value Decomposition of a matrix — which, we will soon see, is going to play a role here.)

REMARK 1.16. We are using the biased sample covariance matrix; if we instead had a factor
of 1

N−1
, it would be an unbiased estimator of the true covariance matrix. We are not concerned

about bias here, since both estimators are consistent; it will be slightly neater to use N instead of
N − 1, so we will do so consistently in the sequel.
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Since a factor of 1
N

does not affect where the maximum occurs, we therefore have the final
form of our optimization problem:

Q0 = argmax
Q=[û1,...,ûd],Q>Q=Id

d∑
k=1

ûk ·Cûk (1.9)

This is a very convenient formulation! It shows that the best fit subspace is determined by the
sample covariance matrix. The sample covariance matrix is a particularly nice matrix. It is a sum
of rank 1 matrices each of the form vv>, which shows that it is symmetric. Even better: the whole
matrix C has the form C = SS> for some (rectangular) matrix S.

LEMMA 1.17. Let X̂ denote the m × N matrix whose columns are the centered and scaled
data points 1√

N
x◦k = 1√

N
(xk − xN). Then C = X̂X̂>.

PROOF. We simply compute the entries of this matrix.

[X̂X̂>]ij =
N∑
k=1

[X̂]ik[X̂
>]kj =

N∑
k=1

[X̂]ik[X̂]jk =
1

N

N∑
k=1

[xk − xN ]i[xk − xN ]j.

Comparing to (1.8) yields the result. �

COROLLARY 1.18. The sample covariance matrix is positive semidefinite: it is symmetric and
has non-negative eigenvalues.

PROOF. The preceding lemma shows that C = X̂X̂> for somem×N matrix X̂. It is therefore
symmetric: (X̂X̂>)> = (X̂>)>X̂> = X̂X̂>. Moroever, if λ is an eigenvalue with unit eigenvector
û ∈ Rm, then X̂X̂>û = λû, and so

λ = λ‖û‖2 = λû · û = X̂X̂>û · û = X̂>û · X̂>û = ‖X̂>û‖2.

Thus λ is the length2 of some vector in RN , and is thus ≥ 0. �

Before establishing how to completely solve optimization problem (1.9), let us now consider
the special case when d = 1.

PROPOSITION 1.19. Let λ1 be the largest eigenvalue of C. Then any unit eigenvector û1 of C
with eigenvalue λ1 maximizes û 7→ û ·Cû.

PROOF. This is precisely the Rayleigh quotient calculation: we proved that a real symmetric
matrix like C has at least one eigenvalue by maximizing the function ρ(û) = û ·Cû over the unit
sphere of length 1 vectors û, and showing that the resulting maximizer û1 is an eigenvector of C
with eigenvalue λ1 = max ρ. �

1.6. The Ky Fan Inequality

The last result in the preceding section suggests that eigenvalues and eigenvectors of the sample
covariance matrix C should play a role in our maximization problem, and this turns out to be
correct. The key is the following inequality, proved by Ky Fan in 1949, which gives a canonical
upper bound for the quantity we seek to maximize.
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THEOREM 1.20 (Ky Fan Inequality). Let H be a symmetric m ×m matrix, with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λm. If 1 ≤ d ≤ m, and {û1, . . . , ûd} are orthonormal vectors in Rm, then

d∑
k=1

ûk ·Hûk ≤
d∑
j=1

λj.

PROOF. Since H is symmetric, Rm has an orthonormal basis {v̂j}mj=1 of eigenvectors of H;
here we order them so that Hv̂j = λjv̂j . We can expand the vectors ûk in terms of the basis v̂j;
since the latter are orthonormal, the expansion is

ûk =
m∑
j=1

(ûk · v̂j)v̂j.

Hence

Hûk =
m∑
j=1

(ûk · v̂j)Hv̂j =
m∑
j=1

(ûk · v̂j)λjv̂j

and therefore

ûk ·Hûk =
m∑
j=1

(ûk · v̂j)λjûk · v̂j =
m∑
j=1

λj(ûk · v̂j)2.

We now cleverly write λj = λd + (λj − λd). Noting that (by the choice of ordering) λj − λd ≥ 0
when j ≤ d and λj − λd ≤ 0 when j > d, we have

ûk ·Hûk =
m∑
j=1

(λd + (λj − λd))(ûk · v̂j)2

= λd

m∑
j=1

(ûk · v̂j)2 +
d∑
j=1

(λj − λd)(ûk · v̂j)2 +
m∑

j=d+1

(λj − λd)(ûk · v̂j)2

≤ λd

m∑
j=1

(ûk · v̂j)2 +
d∑
j=1

(λj − λd)(ûk · v̂j)2. (1.10)

Let V denote the m×m matrix V = [v̂1, v̂2, . . . , v̂m]; since the v̂j form an orthonormal basis for
Rm, V ∈ O(m), so V V > = Im. Note that

m∑
j=1

(ûk · v̂j)2 =

∥∥∥∥∥∥∥∥


v̂>1 ûk
v̂>2 ûk

...
v̂>mûk


∥∥∥∥∥∥∥∥

2

=
∥∥V >ûk

∥∥2
= V >ûk ·V >ûk = ûk ·V V >ûk = ‖ûk‖2 = 1. (1.11)

Thus (1.10) shows that

ûk ·Hûk ≤ λd +
d∑
j=1

(λj − λd)(ûk · v̂j)2.
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Therefore
d∑
j=1

λj −
d∑

k=1

ûk ·Hûk ≥
d∑
j=1

λj −
d∑

k=1

(
λd +

d∑
j=1

(λj − λd)(ûk · v̂j)2

)

=
d∑
j=1

(λj − λd)−
d∑

j,k=1

(λj − λd)(ûk · v̂j)2

=
d∑
j=1

(λj − λd)

(
1−

d∑
k=1

(ûk · v̂j)2

)
. (1.12)

Finally, arguing as above: since the {ûk}dk=1 are orthonormal, they can be extended to an orthonor-
mal basis {ûk}mk=1 of Rm. Now arguing exactly as in (1.11) but with the roles of ûk and v̂j reversed,
we have

d∑
k=1

(ûk · v̂j)2 ≤
m∑
k=1

(ûk · v̂j)2 = 1.

Thus 1 −
∑d

k=1(ûk · v̂j)2 ≥ 0, and so (1.12) shows that
∑d

j=1 λj −
∑d

k=1 ûk · Hûk ≥ 0, as
desired. �

REMARK 1.21. An entirely analogous proof shows that
d∑

k=1

ûk ·Hûk ≥
m∑

j=m−d+1

λj

and this is the minimum.

The Ky Fan Inequality gives a nice upper bound for the quantity we’re aiming to maximize; in
fact, this upper bound is the absolute maximum, and studying the proof shows how to identify a
maximizer.

COROLLARY 1.22. LetH be a symmetricm×mmatrix, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm
and corresponding orthonormal eigenvectors v̂j , so Hv̂j = λjv̂j . For 1 ≤ d ≤ m,

d∑
k=1

v̂k ·Hv̂k =
d∑

k=1

λk = max
Q=[û1,...,ûd],Q>Q=Id

d∑
k=1

ûk ·Hûk.

PROOF. The fact that the maximum is achieved on the d eigenvectors corresponding to the d
largest eigenvalues can be seen from the proof of Theorem 1.20. Alternatively, and more simply,
we just plug into the sum with the identities Hv̂k = λkv̂k:

d∑
k=1

v̂k ·Hv̂k =
d∑

k=1

v̂k · λkv̂k =
d∑

k=1

λk‖v̂k‖2 =
d∑

k=1

λk.

�

1.7. Principal Components

Summarizing: we have now solved the minimization problem of Definition 1.7, as follows.
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THEOREM 1.23. Let {x1, . . . ,xN} be data points in Rm, with sample mean xN = 1
N

∑N
j=1 xj ,

and sample covariance matrix C = 1
N

∑N
j=1 xjx

>
j . Let d ≤ m. Among all d-dimensional affine

subspaces A = µ + V ⊆ Rm, the sum of least squares distance from the xj to A is minimized
with µ = xN , and with V equal to the span of the d eigenvectors of the sample covariance C
corresponding to its d largest eigenvalues. That is: if C = UΛU> with Λ = diag(λ1, . . . , λm)
where λ1 ≥ · · · ≥ λm, then

argmin
µ∈Rm,βj∈Rd

Q∈Mm×d,Q>Q=Id

N∑
j=1

‖xj − (µ +Qβj)‖2

is satisfied by µ = xN ,Q = [û1, . . . , ûd] is them×dmatrix whose columns are the first (left-most)
d columns of U , and βj = Q>(xj − xN).

As noted: the form of the βj shows that (with little surprise) the minimum is achieved by
orthogonally projecting the shifted data x◦j = xj − xN into the given subspace. That projection is
given by QQ>x◦j = Qβj . Thus, the vector βj = Q>x◦j is the vector in Rd whose components are
the coordinates of the best d-dimensional approximation of x◦j , in the basis û1, . . . , ûd.

DEFINITION 1.24. The eigenvectors û1, û2, . . . , ûm of C are call the principal components
or principal component axes of the data; as usual, they are ordered by decreasing eigenvalues.
Thus, the d-dimensional subspace which best (in least squares sense) approximates the (centered)
data is the span of the first d principal components. We call the subspace

Pd := span{û1, . . . , ûd}
the rank-d principal space for the data.

LetQd = [û1, . . . , ûd]; then Pd = Col(Qd). The orthogonal projection onto Col(Qd) isQdQ
>
d .

For any data point xj , we have

QdQ
>
d xj = QdQ

>
d (xN + x◦j) = Qd(β

d

N + βdj )

where β
d

N = Q>d xN and βdj = Q>d x◦j are in Rd. We call these vectors the rank-d principal mean
and rank-d principal coordinates of of the data. That is: βdj gives the coefficients of the projection

of x◦j in Pd, in terms of the basis û1, . . . , ûd, while β
d

N gives the affine shift of the projected data.

REMARK 1.25. To be totally clear: the coordinate vector βdj is given by

βdj =


û1 · x◦j
û2 · x◦j

...
ûd · x◦j


and so indeed

Qdβ
d
j =

d∑
k=1

(ûk · x◦j)ûk

is the orthogonal projection of x◦j onto Pd = span{û1, . . . , ûd} = Col(Qd).

Why call the vectors ûj “principal components” instead of just “eigenvectors”? The reason
is that they arise in a slightly different (but equivalent) statistical context. There is a different
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optimization problem one might want to do with the data. Instead of looking for a “best fit”
subspace (of given dimension), we instead look for a subspace (of given dimension) that maximizes
the sample variance of the orthogonally projected data. (We have omitted the word “affine” in this
context, since translating the data will not affect the variance.) First, to be clear on definitions:

DEFINITION 1.26. Given a random vector Y ∈ Rd, the variance of Y is

Var(Y) = E
(
‖Y − E(Y)‖2

)
.

Equivalently, if Y has covariance matrix C, then Var(Y) = Tr(C).
If {yj}Nj=1 are data points in Rd, their (biased) sample variance SN(y1, . . . ,yN) is

SN(y1, . . . ,yN) =
1

N

N∑
j=1

‖yj − yN‖2.

Equivalently, if the sample covariance matrix of the data is C, the sample variance is Tr(C).

REMARK 1.27. To justify the last statements, that the variance is the trace of the covariance
matrix: the sample covariance matrix is

C = ŶŶ>

where Ŷ has columns 1√
N

y◦j = 1√
N

(yj − yN); in other words, [Ŷ]ij = 1√
N

[y◦j ]i is the ith compo-
nent of the vector 1√

N
y◦j . The diagonal entries of this matrix are

[C]ii =
N∑
j=1

[Ŷ]ij[Ŷ
>]ji =

N∑
j=1

[Ŷ]2ij

and so

Tr(C) =
d∑
i=1

[C]ii =
d∑
i=1

N∑
j=1

[Ŷ]2ij =
N∑
j=1

d∑
i=1

[Ŷ]2ij =
N∑
j=1

d∑
i=1

1

N
[y◦j ]

2
i =

1

N

N∑
j=1

‖y◦j‖2.

Given an orthonormal set of d vectors in Rm, as usual put together in a matrix Q ∈ Mm×d
satisfying Q>Q = Id, we can orthogonally project our data xj into the subspace spanned by these
vectors, giving us projected data yj = QQ>xj . We can then look for the subspace of dimension
d (given by orthonormal basis matrix Q) which maximizes the (sample) variance of the projected
data. The solution turns out to be exactly the same as the solution to the least squares best fit
problem above.

PROPOSITION 1.28. Let {x1, . . . ,xN} be data points in Rm, and let d ≤ m. The d-dimensional
subspace of Rm that maximizes the variance of the projected data is precisely the rank-d principal
space Pd of the data.

PROOF. The problem here is

argmax
Q∈Mm×d,Q>Q=Id

SN(QQ>x1, . . . , QQ
>xN).

Note that if yj = QQ>xj then

yN =
1

N

N∑
j=1

yj =
1

N

N∑
j=1

QQ>xj = QQ>

(
1

N

N∑
j=1

xj

)
= QQ>xN .
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Thus
‖yj − yN‖2 = ‖QQ>xj −QQ>xN‖2 = ‖QQ>x◦j‖2.

Thus, we are looking for

argmax
Q∈Mm×d,Q>Q=Id

1

N

N∑
j=1

‖QQ>x◦j‖2.

Comparing this to (1.7) (and the calculation directly above that equation) shows that the solution
is the same as the one for the least squares problem, as claimed. �

What is slightly more interesting about this formulation is that the maximum value takes on a
new meaning.

COROLLARY 1.29. The maximum sample variance of any projection of the data into a d-
dimensional subspace is

max
Q∈Mm×d,Q>Q=Id

SN(QQ>x1, . . . , QQ
>xN) = λ1 + · · ·+ λd

where λ1, . . . , λd are the d largest eigenvalues of the sample covariance matrix of the data.

PROOF. This is precisely the statement of Corollary 1.22 in this context. �

This gives us some idea of what the eigenvalues of the positive semidefinite matrix C here
represent: they quantify the amount of the sample variance contained in the different subspaces.
Indeed, the sample variance of the full data set is Tr(C) (see Definition 1.26), and this is equal to
the sum of all of the eigenvalues of X, λ1 + λ2 + · · · + λm. We therefore interpret the above as
saying that the first principal component û1 is responsible for λ1 variance in the data, the second
principal component û2 is responsible for λ2 variance in the data, and so forth. Alternatively, we
might say that the proportion of the variance that principal component ûk is responsible for is

Proportion of variance in span{ûk} =
λk∑m
j=1 λj

=
λk

Tr(C)
.

REMARK 1.30. The principal components, being eigenvectors of a symmetric matrix, are or-
thogonal. In terms of covariance, this means that the projections of the data into the spans of
different principal components are uncorrelated. It is for this reason that the variances along dif-
ferent principle components add up to the variance attributed to the span of them.

1.8. The Singular Value Decomposition

The principal components are eigenvectors of the sample covariance matrix of the data. Recall,
from Lemma 1.17, that the sample covariance matrix can be computed as X̂X̂>, where X̂ is the
m × N matrix whose columns are the centered data points scaled by 1√

N
. That is: given data

{x1, . . . ,xN} in Rm, let
X = [x1, . . . ,xN ] ∈Mm×N .

This matrix is sometimes called the feature matrix or (less appropriately) feature vector in statis-
tics books. The entires of each data point xj are the features that are being measured. The matrix
X̂ is computed from X by subtracting off the column xN from each column of the matrix and then
scaling by 1√

N
; that is, we subtract the rank-1 matrix all of whose columns are xN . This can be

written in terms of the vector 1 ∈ RN of all ones:

X̂ =
1√
N

(X− xN1
>).
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Now, we may compute the singular value decomposition (SVD) of X̂:

X̂ = UΣV >

where U ∈ O(m), V ∈ O(N), and Σ ∈ Mm×N is “diagonal” (more properly, the top square
N × N part of Σ is diagonal) with [Σ]ii = σi, the singular values of X̂, canonically ordered
non-increasingly σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. Then

C = X̂X̂> = (UΣV >)(V Σ>U>) = UΛU>

where Λ = ΣΣ> is the m × m diagonal matrix whose entries are [Λ]ii = σ2
i for i ≤ N and 0

for N < i ≤ m. This means we can immediately recast Definition 1.24, Proposition 1.28, and
Corollary 1.29 as follows.

PROPOSITION 1.31. The principal components are the left singular vectors ûk of X̂. If σ1 ≥
σ2 ≥ · · · ≥ σN are the singular values of X̂, span{ûk} is responsible for σ2

k variance in the data
(or proportion σ2

k/(σ
2
1 + · · ·+ σ2

N) of the total).

What a lovely coincidence! We are accustomed to using σ to denote both singular values and
standard deviations; in PCA/SVD, the notational collision works out perfectly.

REMARK 1.32. Some authors actually define the principal components to be σkûk; that is, they
are the nonzero columns of UΣ. This has some geometric meaning in terms of the SVD: there is
a decomposition of X̂ as a product X̂ = PQ where Q ∈ O(N) and P ∈ Mm×N has orthogonal
columns with decreasing lengths; namely, P = UΣ and Q = V >. From a statistical standpoint,
this just means weighting each principal component by the standard deviation it imbues the data;
thus, in this model, all principal components carry equal proportions of the variance. We refer
to these as standardized principal components; we will largely work with the ordinary principal
components of Definition 1.24.

Aside from notation, one reason to use the SVD, rather than simply diagonalizing C, is compu-
tational complexity. Either way: to begin we must compute the matrix X̂, which means computing
xN (O(mN) flops), then subtract it from each entry of X and divide each by

√
N (O(mN) flops).

Now, if we wish to diagonalize C we must compute it: C = X̂X̂> requires O(m2N) flops, to-
tallingO(m2N)+O(mN) = O(m2N). Recall that m� N . On the other hand, if we want to find
the SVD, it’s just as good to compute X̂>X̂, which only requires O(N2m) flops, much cheaper.
Now we must diagonalize this matrix. There are a number of numerical ways to do this to what-
ever desired accuracy: the QR algorithm; tridiagonalization (via Householder); the power method;
and others. All of these compute the eignevalues σ2

j and eigenvectors v̂j to desired accuracy at
the cost of O(N3) flops. Once this is accomplished, the desired left eigenvectors ûj are simply
ûj = 1

σj
X̂v̂j , each of which costs O(mN) flops to compute. Since N < m, there are only at most

N non-zero singular values; the remaining ûj are all eigenvectors of C with eigenvalue 0, and we
do not care about these (as those principal components carry 0 variance). Hence, we’ve computed
all the relevant principal components at a total cost of O(m2N) + O(N3) + O(mN) = O(mN2)
— much less than the cost O(m2N) of even computing the matrix C!

Even so: we typically do not need all the principal components. We will be looking for only
the d top principal components, where d� N . So at the last step, computing only d of the ûj from
the v̂j already computed only requires O(dmN) flops. From the above steps, though, it already
took O(mN2) flops to compute the σj and v̂j , and O(mN2) dominates O(dmN). Nevertheless,
there are much more clever ways of doing truncated SVD that compute (to desired accuracy)
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the d top eigenvectors without computing any further ones; hence, the entire computation of the
top d principal components can be accomplished in only O(dmN) flops using truncated SVD
algorithms. Even more surprising: by using a randomized algorithm (only selecting a small number
of columns from X̂ randomly to work with), it is possible to compute, to desired accuracy, the top
d principal components in O(mN log d+ (m+N)d2) flops. (This is very recent work, published
in 2009, by Halko, Martinsson, and Tropp.)

1.9. Dimension Reduction and Visualization

Returning to our original problem: we have a high dimensional data set {x1, . . . ,xN} in Rm

which we would like to analyze for structure. We can now look at projections of the data into the
best fit (or equivalently maximal variance preserving) low dimensional affine subspaces. Choosing
the desired dimension d for the projection is a very subtle problem which we will tackle after
the next chapter. Once we have made this choice, we compute the top d principal components
û1, . . . , ûd, and project the (centered) data into the subspace they span. Of course, we have now
just collapsed the data onto some low-rank subspace still in the high-dimensional ambient space
Rm; how does this help?

If we have a d-dimensional space, it is isomorphic to Rd, so we can choose any isomorphism
and use it to represent the (projected, centered) data in Rd instead. An isomorphism of vector
spaces is equivalent to a choice of bases in each one, and we have canonical bases: the subspace
was chosen to be spanned by the orthonormal principal components, so we use them as a basis
there, and of course we use the standard basis in Rd. Referring to Definition 1.24, letting Qd =
[û1, . . . , ûd], the transformation just described is

Rm 3 xj 7→ x◦j 7→ Q>d x◦j = βj ∈ Rd.

That is: we represent the projected data via their rank-d principal coordinates. Better yet: if we
reincorporate the mean of the data, we should plotQ>d xj = Q>d xN +Q>d x◦j = β

d

N +βdj : the rank-d
principal coordinates shifted by the rank-d principal mean.

EXAMPLE 1.33. In the 2008 Nature paper Genes mirror geography within Europe, the authors
studied a large, high-dimensional dataset of genetic markers from people with European grand-
parents. Each of the N = 3, 192 individuals were interviewed about where their grandparents
had lived precisely; this information was recorded but set aside. Then genetic samples were taken
from the study participants, and were genotyped for m > 500, 000 genetic markers. This means
that tests were conducted on m known sites in their genomes to see which amino acid (from two
possible choices) was present in their DNA at that site. In fact, each person has two copies of each
chromosome (from their two parents), and so the data the study recorded was whether, at each site,
the two markers were both of amino acid type 1, both of type 2, or one of each. These features
were recorded as a 0, 1, or 2. Thus, the recored data points were xj ∈ {0, 1, 2}m for 1 ≤ j ≤ N .

The authors performed PCA on this data (using a widely available software package called
smartpca), choosing the target dimension to be d = 2 (which is the most common choice).
They then plotted the N principal coordinates β2

j = [û1, û2]>x◦j in R2. Each of these N points
corresponds to one of the originalN subjects in the study; they finally colored the points according
to the country of origin of each subject’s grandparents. The figure below is the resulting visualiza-
tion of the data, which bears a striking resemblance to a geographic map of Europe.



1.9. DIMENSION REDUCTION AND VISUALIZATION 21

The authors decided to rotate and reflect the data: that is, technically, they plotted the points
Rβ2

j where R is reflection across the the second axis and then ccw rotation by about 107◦. In
the figure, they plotted the transformed axes, which they have labeled PC1 and PC2. They did
this in order to make the data match as closely as possible to the map of Europe (ad hoc, by
superimposing).

This analysis is very suggestive that the rank-2 principal coefficients of the data correlate
strongly with lattitude (or, more precisely, distance in the direction 17◦ NNW) and longitude (or,
more precisely, distance in the direction 17◦ ENE).

This appears to be magic: there is a map of Europe encoded in their genes! A little thought
will show that this is not magic, and makes good sense. Genetic variation between people is
quite high; in a large and heterogeneous population, this variation between individuals appears to
be mostly random noise. In European human populations of the early 20th Century and earlier,
people did not move around very much. Local populations therefore become more genetically
homogeneous. Thus, what PCA is telling us is that the most prominent non-random factors de-
termining genetic drift are geographic separation: (roughly) north-south accounting for the most
variation, and (roughly) east-west for the next largest component in variation. This suggests that
what we are seeing here is the remnant of an ancient migration, and the data suggests this migra-
tion went in a SSE to NNW direction. This is consistent with anthropological studies showing just
such migration occurred, approximately 15,000 years ago, at the end of the last ice age.

An interesting follow-up would be to look at the third principal component, and try to identify
some additional variable that it measures. There might be no third feature: the third principal
component may be consumed by the noise. If there is another feature, it must be one uncorrelated
with latitude and longitude in Europe. Altitude? Proximity to water? Abundance of certain food
staples? Maybe there’s another Nature paper waiting to be written.

REMARK 1.34. It is tempting to interpret the above interpretation as a predictor of geographic
origin. (Indeed, the authors present it this way, stating that more than half of the points landed
within 400km of the hometown of the corresponding subject’s grandparents. The caveat is that this
only worked if all four grandparents lived in the same place; if their two sets of grandparents lived
in different places, the principal coefficient tended to appear somewhere in between them on the
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map.) One might dream of being able to test the same genetic markers in the blood of a random
person of European descent, and from them tell her, within a few kilometers, where her ancestors
lived in Europe. One subtlety is that the map is not encoded in the genes of any one person; it is
only encoded in the feature data from the full population. (That’s the part that really seems like
magic.) Still, one could add the new random person’s genetic markers as a new data point and
calculate its principal coefficients (using the principal components from the previous data set); or
one could add the point to the original dataset and redo the PCA from the start (since it is only
one point added to N > 3, 000, unless it is wildly different from the others, we would not expect
the principal components to change much). This is an interesting idea which could lead to more
research projects.

1.10. Choosing the Appropriate Dimension d

Let’s summarize this chapter. We have some high dimensional data {x1, . . . ,xN} in Rm (in
our paradigm, m � N , although none of the above calculations require this). We have reason to
believe that there are deterministic points (“signal”) t1, . . . , tN ∈ Rm that all lie in some affine
subspace Ad of dimension d � m such that the recorded data xj are in fact samples of random
variables

Xj = tj + Zj (1.13)
where Zj are independent random variables (“noise”) of mean 0. (The mean 0 assumption is
mostly for convenience; if E(Zj) = µj then we would instead use the centered noise random
variable Z◦j = Zj − µj , and incorporate tj 7→ tj + µj as part of the “signal”.) We have seen
(Midterm 1 makes this explicit) that, under the assumption of i.i.d. Gaussian noise Zj (which is
sometimes called white noise), the MLE for the unknown d-dimensional affine subspace Ad is
found through Principal Component Analysis: Ad = xN + Col(Qd) where Qd = [û1, . . . , ûd]
are the first d principal components: the d eigenvectors of the sample covariance matrix of the
data with the d largest eigenvalues σ2

1 ≥ · · · ≥ σ2
d. It is then a matter of (efficient) calculation to

find (good approximations of) these principal component vectors, and then project the data into
this affine subspace to view it (via its principal coordinates Q>d xj) in Rd.

What this method cannot do, a priori, is determine the best d. Indeed, one can always take
d = m to get a perfect match for the data, which defeats the purpose. How, then can we discern
from the data what a good choice for what is the real number of degrees of freedom, i.e. the real
number of statistically significant factors in the data?

The answer lies in Proposition 1.28 and the following discussion: the subspace Ad (or any
translate of it, in particular Col(Qd)) is the d-dimensional subspace that maximizes the variance
of the (projected) data among all d-dimensional subspaces. More precisely: the eigenvalue σ2

k

oft he sample covariance matrix is precisely equal to the sample variance of the projected data
{Pkxj}Nj=1, where Pk is the orthogonal projection onto span{ûk}, the kth principal component.
This is relevant to our question because of the model (1.13). One might think that variance is
associated only to the random part Zj; but here we are talking about sample variance, and after
all, we are not suggesting all the tj are equal! In fact, even if Zj = 0, the deterministic data
t1, . . . , tN likely carries a lot of sample variance, indicating that it varies among the indices. (To
make the point clear, many authors use the term variation instead of variance here.) In our model,
there is noise as well, but we will assume that the (random) variance of the noise is much smaller
than the variation of the signal (in other words: we posit a high signal-to-noise ratio. Under that
assumption, it is natural to expect that the directions with highest variance are related to the signal,
rather than the noise.
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The quantitative question now becomes: where do we draw the line between signal and noise?
We expect that the principal components, the directions of highest variation, are in the subspace
where the true data tj live; but at some point, as the variances σ2

k decrease, the noise overtakes the
signal. Our job is to find the largest d for which σ2

d is still due to variation in the true signal; for
k > d, the variance σ2

k is the result of random noise. How do we accomplish this?
In real world data sets, most sources simply take d ∈ {1, 2, 3}; not necessarily because the data

suggests the “real” dimension is ≤ 3, but because these are the only dimensions in which we can
visually present the data. Even if we place this constraint, we still want to know what the “right”
d is; after all, we may choose to plot PC1 and PC2, but it might turn out that the data is really only
1-dimensional, and PC2 is random noise, in which case our plot will be misleading and confusing,
hunting for structure (in the second dimension) where there is none.

We therefore hope to find some extrinsic feature in the behavior of the σ2
k that suggests a shift

in behavior as k increases. The simplest approach is to plot the values σ2
k as a function of k ∈

{1, . . . , N} (or perhaps with a much smaller range) to look for some kind of shift. This approach
was first proposed by British psychologist Raymond Cattell in 1966. Cattell was a pioneer in
the use of advanced statistical methods in psychology, and a father of what is now called “factor
analysis” (essentially the term used in psychology for PCA). The (piecewise-linearized) plot of
k 7→ σ2

k is known as a scree plot. (A scree is a sloping mass of loose rocks at the bottom of a cliff,
which comes from the Old Norse term for a landslide.)

FIGURE 1.1. An example of a scree plot for the 12 largest eigenvalues, produced in R.

The idea, proposed by Cattell, is to look for an “elbow” in the scree plot: a point where the
decline in σ2

k levels off and becomes less steep. This point of inflection is supposed to indicate
the shift from variation due to structure to variance due to random noise. This methodology is
problematic at best; even if it were robustly indicative of something, it is highly subjective to
decide where the “elbow” is in most cases, leading to researchers (consciously or unconsciously)
choosing the cut-off in line with their biases from the conclusions they wish to draw. For this
reason, I would class the “elbow” rule as mostly pseudoscience.

REMARK 1.35. There is a deeper reason the elbow rule should be entirely tossed out. As
we will see in the next chapter, data that is purely random produces scree plots that always have a
noticeable “elbow”; hence, this “elbow” is not indicative of a change from structure to randomness.
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To avoid some of these problems, a number of more systematic procedures for determining a
cutoff have been proposed over the years. The simplest is the Kaiser criterion, which posits that
the cut-off occurs when σ2

k < 1. (The idea here is that the empirical average eigenvalue is 1 (we
will see this fact early in the next chapter), and so the statistically meaningful PC’s are the ones
whose variation is above average. (The dotted line in Figure 1.1 indicated the Kaiser criterion,
which in this case coincides with a unique visible “elbow”.) This method often produces too many
factors: many of the σ2

k > 1 may still be the result of random noise. Some more robust variations
include computing confidence intervals for each σk and placing the cutoff at the largest k for which
the entire confidence interval about σ2

k is > 1; this is still not very robust.
The truth is that scree plots simply do not convey the right information to make a meaningful

judgment of the appropriate d. As we will see in the next chapter, a much better method is to
plot a histogram of the eigenvalues (or singular values) of the sample covariance matrix; from this
representation, a robust (and visually striking) separation between noise and signal can usually be
seen. The end goal of these notes is to explain this phenomenon in detail. The first important
task is to understand what noise without signal looks like; after all, that will give us a baseline to
compare a real data set to. This brings us to the next chapter, on fully random matrices.



CHAPTER 2

Random Matrices

We wish to investigate the behavior of the eigenvalues of large (i.e. high dimensional) random
matrices. The specific models of interest to us, as motivated in Section 1.10 of the previous chapter,
are sample covariance matrices X̂>X̂ where the columns of the m×N matrix X are i.i.d. standard
normal random vectors Z1, . . . ,ZN (and X̂ = 1√

N
(X − ZN1

>). Let us first dispense with the
sample mean correction: if Zj ∼ N (0, IN) are all independent, then by the strong law of large
numbers,

ZN =
1

N

N∑
j=1

Zj → 0.

Since we are interested in large-N behavior, we will therefore lose nothing by eliminating this
term, and instead simply use the matrix X̂ = 1√

N
X.

A few calculations show that, with m ≥ N large, calculating the eigenvalues exactly is a
completely hopeless task.

EXAMPLE 2.1. Consider the case m = N = 2. Then

X =

[
X11 X12

X21 X22

]
where the four entries Xij are all independent N (0, 1) random variables. Thus

X̂>X̂ =
1

2
X>X =

1

2

[
X2

11 +X2
21 X11X12 +X21X22

X11X12 +X21X22 X2
12 +X2

22

]
. (2.1)

The diagonal entries are sums of squares of independent standard normal random variables, hence
they are χ2 random variables (with 2 degrees of freedom); and they are independent from each
other. But the (equal) off diagonal entries are somewhat more complicated. A bit of work (complet-
ing the square) will show they are also χ2 random variables (this time with 4 degrees of freedom).
But they are manifestly not independent from the diagonal entries; there are lots of correlations.

It is possible to completely describe the joint distribution of the entries, but as you can see it
is already not a simple task. But that’s just the distribution of the entries; we are interested in the
eigenvalues! The matrix above is symmetric, so it has the form[

2a c
c 2b

]
for real numbers a, b, c (where the factors of 2 have been included to make the outcome of the
following calculation slightly simpler). The characteristic polynomial of this generic matrix is
(λ− a)(λ− b)− c2 = λ2 − (a+ b)λ+ (ab− c2), and so the eigenvalues are

λ± = a+ b±
√

(a− b)2 + c2.

25
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Substituting in the entries from (2.1), we therefore have

4λ± = X2
11 +X2

12 +X2
21 +X2

22 ±
√

(X2
11 +X2

21 −X2
12 −X2

22)2 + 4(X11X12 +X21X22)2.

That’s quite a doozy of an expression. (One might hope that expanding out the quartic polynomial
under the square root would result in some nice cancelations or simplifications; alas, nothing re-
ally helpful occurs.) So: given four independent N (0, 1) random variables Xij , what is the joint
distribution of the two random variables λ± above? One might imagine, with a great deal of sweat,
it might be possible to grind out a precise description of the joint density of these two random vari-
ables. It’s not clear what we might learn from the resultant over-complicated expression. And this
is just the extremely low dimensional case m = N = 2! Our goal is to understand what happens
for m ≥ N � 2; quickly, even the pretense of exact calculations will be gone, since when N > 5
there are no formulas possible for the roots of the characteristic polynomial.

As the above example shows, we cannot hope to understand the behavior of the eigenvalues
by calculating their joint distribution directly. (That’s not entirely true; we will see later that there
are cases where the spectral theorem can be used to great effect. But that is still not the “right”
way to proceed.) The eigenvalues are highly non-linear functions of the entries. But it is not our
goal to understand their joint distribution; what we want is to understand their aggregate statistical
behavior. We want to understand the histogram of all the eigenvalues together.

2.1. Histograms and Linear Statistics

We want to understand the “distribution” of a collection of points λ = {λ1, . . . , λN} in the real
line. This is not quite “distribution” in the probability sense (although it is related): the points in
question need not be random (although for us they will be: the eigenvalues of a random matrix).
Rather, we mean some way of understanding the overall behavior of the points as a group: where
they crowd together, where they pull apart, where they are absent. A great tool for summarizing
this information is a histogram.

DEFINITION 2.2. Let λ = {λ1, . . . , λN} be a finite collection of points in R, canonically
labeled in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λN . Let [a, b] be a closed interval containing all the
points in λ, and let Π = {a = t0 < t1 < · · · < tp = b} be a partition of [a, b]. The (normalized)
histogram hΠ,λ of the points λ, relative to the partition Π, is the function defined by

hΠ,λ(t) =
1

N
#{j : t and λj are in the same partition interval of Π}.

A histogram hΠ,λ is a step function: it is constant on each partition interval (ti−1, ti] in the
fixed partition Π. These partition intervals are usually called bins, and are often (but not always)
chosen to be all of equal length, in which case the partition is determined by the base interval
[a, b] (which is often taken to be [λN , λ1], or possibly [bλNc, dλ1e]) and the number of bins. For
example: given a column vector of real number λ, the MATLAB command hist(λ,50) will
produce the histogram of λ with the equal-length partition containing 50 bins, and base interval
[bλNc, dλ1e].

REMARK 2.3. It is more customary for histograms to take values in the non-negative integers;
we have chosen to normalize ours so they count the proportion of points in each bin, rather than
the number.
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FIGURE 2.1. The graphs of two (un-normalized) histograms, with 20 bins and 50
bins, generated from the 1000 eigenvalues of the sample covariance matrix for 1000
standard normal random vectors in R4000. In this data set, λ1 = 8.9517 and λ1000 =
1.0145; we will see later in this chapter that, for large N , with N data points in Rm

where m/N ∼ 4, the histogram is supported on [1, 9].

A histogram hΠ,λ is a probability density function (under our definition which normalizes with
a 1
N

). Indeed: it is a step function which takes possible values k
N

where k = 0, 1, 2, . . . , N , and so
it is always ≥ 0. The integral

∫
R hΠ,λ(t) dt is the sum of the values on all of the partition intervals;

each bin (ti − 1, ti] contains some number ki of the points from λ, and so the sum of the values is∑
i
ki
N

= 1
N

∑
i ki = 1

N
(N) = 1, since the ki add up to the total number of points, N . (This is why

it’s important not to double count which bin any point is in.) It can be thought of as an approximate
density for the data λ. To be precise:

DEFINITION 2.4. Let λ be a point set of finite size N . The associated empirical random
variable Eλ is a discrete random variable, whose distribution is defined by

P(Eλ = x) =

{
1
N

if x = λj for some j ∈ {1, . . . , N}
0 if x /∈ λ.

To be persnickety: it could be that two or more of the λj are equal; in that case, a more careful
definition would assign probability k

N
to that point, where k is the number of labels i for which λi

coincides. A fully consistent definition of the distribution of Eλ is

P(Eλ ∈ A) =
1

N
#(A ∩ λ) =

1

N
#{j : λj ∈ A}. (2.2)

The empirical random variable Eλ is discrete; it definitely does not have a probability density.
Any histogram hΠ,λ is a way to “smear out” the probability masses, to describe its distribution
(approximately) via a probability density function. Following this line of reasoning (i.e. wish-
ful thinking), suppose that Eλ really did have a probability density function fλ. Then we could
compute probabilities for Eλ using this density in the usual way: for any fixed interval [a, b],

P(Eλ ∈ [a, b]) =

∫ b

a

fλ(λ) dλ

and combining this with (2.2), this would mean
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1

N
#{i : λi ∈ [a, b]} = P(Eλ ∈ [a, b]) =

∫ b

a

fλ(λ) dλ. (2.3)

There is, of course, no such density fλ; nevertheless, it is useful to think of this fantasy object as
we motivate our discussion in the next sections, where we will see that such a density does emerge
as the point set λ = λ(N) grows with N (in our random matrix theory setting).

The well-defined quantities on the left-hand-side of (2.3) actually encode all the information
we need to construct any histogram of the points. Indeed, the function hΠ,λ is piecewise constant;
if (ti−1, ti] is one of the partition bins in Π, then hΠ,λ(t) = 1

N
#{j : λj ∈ (ti−1, ti]}. Hence, all we

really need to keep track of are the quantities:

h[a,b](λ) =
1

N
#{j : λj ∈ [a, b]}, for any a < b. (2.4)

REMARK 2.5. To be persnickety, we should be consistent about bins being of the form (ti−1, ti]
and not [ti−1, ti] to avoid overcounting at the partition points (i.e. if one of the λj happens to be
at a break point ti for the bins). Nevertheless, it is still enough just to know the numbers h[a,b](λ)
in (2.4), since the interval (ti−1, ti] is the union of all closed intervals of the form [ti−1 + ε, ti] for
ε ↓ 0; hence, we can recover the proportion of λ points in (ti−1, ti] as limε↓0 h[ti−1+ε,ti](λ) — a
limit of numbers all of the form (2.4).

We are therefore interested in computing the counting random variables h[a,b](λ) when λ are
the eigenvalues of a random matrix. As with any counting random variable, a useful trick will
be the method of indicators: we want to express this random number as a sum of Bernoulli (i.e.
{0, 1}-valued) random variables that we can analyze more easily. In this case, there is an immediate
solution:

h[a,b](λ) =
1

N
#{j : λj ∈ [a, b]} =

1

N

N∑
j=1

1[a,b](λj). (2.5)

Indeed: 1[a,b], the indicator function of the interval [a, b], takes values 1[a,b](λ) = 1 if λ ∈ [a, b] and
1[a,b](λ) = 0 if λ /∈ [a, b]. Thus, the sum in (2.5) is composed of terms that are all 0 or 1, and so
adds up to the number of terms where the value is 1; i.e. the number of terms where λj ∈ [a, b], as
desired.

What have we gained by doing this? Without direct knowledge of the distributions of the λj ,
how is this sum going to help us? The answer lies in expanding our horizons and considering
a larger family of such summations, some of which will be computable (as we’ll see in the next
section).

DEFINITION 2.6. Let λ be a set of N points λ1 ≥ · · · ≥ λN in R. A linear statistic of λ is a
quantity of the form

L(λ) =
1

N

N∑
j=1

w(λj)

for some “weight” function w : R→ R.

The histogram statistics (2.4) are thus linear statistics, by (2.5), with the function being w =
1[a,b]. We have already been working with some linear statistics extensively, to be clear. The
sample mean λN = 1

N

∑N
j=1 λj is a linear statistic, using w(λ) = λ. The sample variance
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SN(λ) =
1

N

N∑
j=1

(λj − λN)2 =
1

N

N∑
j=1

λ2
j − (λN)2

is not quite a linear statistic, since it involves the square of the sample mean, and the square of a
linear statistic is not generally a linear statistic. However, the non-centered version 1

N

∑N
j=1 λ

2
j is a

linear statistic, with w(λ) = λ2. In general, the sample moments

Mk(λ) =
1

N

N∑
j=1

(λj)
k, k ∈ N (2.6)

are all linear statistics (using w(λ) = λk). These particular linear statistics will play an important
role in our analysis.

This is well and good, but how will expanding out horizons to include all kinds of linear statis-
tics help us with the original goal: computing the histogram linear statistics h[a,b](λ)? The answer
is, amazingly, that the very restricted class of sample moments (2.6) are, by themselves, enough
to determine all linear statistics of a finite point set. The reason is the following approximation
lemma, which is due to Russian mathematician Sergei Natanovich Bernstein.

LEMMA 2.7 (Bernstein, 1920s). Let [α, β] be a closed and bounded interval, and letw : [α, β]→
R be a function. There is a sequence of polynomials {Bn}n∈N, where Bn has degree n, such that
limn→∞Bn(t) = w(t) for all points t ∈ [α, β] where w is continuous.

PROOF. We give a version of Bernstein’s original proof, which is ingenious in its use of what
is now called “the probabilistic method”: introduce random variables where there weren’t any
obvious, to leverage the power of the theorems of probability theory.

First, we note that it suffices to prove the theorem in the case α = 0 and β = 1. This is because
we can, in general, do an affine transformation of the the argument of the function t 7→ (β−α)t+α
to transform it into a new function defined on [0, 1]. If we can prove the desired convergence
property for this transformed function and find the approximating polynomials Bn, we can then
transform both the function and the polynomials back via the inverse transform t 7→ t−α

β−α ; this
transform preserves polynomials (of degree n) and continuity, and it is straightforward to check
that the statement of the lemma is maintained under this transformation.

Hence, we proceed to prove the lemma in the case that the domain of the function is the
interval [0, 1]; we will denote the argument of the function as p, as we are going to interpret it
as a probability! Indeed, let Sn,p denote a Binomial random with parameters n and p; that is, let
X1, . . . , Xn be i.i.d. Bernoulli random variables with expectation p, and set Sn,p = X1 + · · ·+Xn.
By the strong law of large numbers,

1

n
Sn,p =

1

n

n∑
j=1

Xj → p with probability 1 as n→∞.

It therefore follows that, if w is continuous at p, then

lim
n→∞

w
(

1
n
Sn,p

)
= w(p) with probability 1.

Because this is almost sure convergence, it certainly implies convergence of the expectation; thus

lim
n→∞

E
[
w
(

1
n
Sn,p

)]
= w(p). (2.7)
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We can now readily compute this expectation. The random variable 1
n
Sn,p is discrete, taking pos-

sible values 0, 1
n
, 2
n
, . . . , 1, where P( 1

n
Sn,p = k

n
) =

(
n
k

)
pk(1− p)n−k. Hence

E
[
w
(

1
n
Sn,p

)]
=

n∑
k=0

w
(
k
n

)(
n
k

)
pk(1− p)n−k =: Bn(p).

This is a polynomial in the variable p, of degree n. We call this polynomial Bn(p) the Bernstein
polynomial of w (on [0, 1]). Equation (2.7) shows that Bn(p) → w(p) at all points p where f is
continuous, concluding the proof. �

REMARK 2.8 (This remark can be safely ignored; it includes some fun tid-bits for those who
have taken MATH 140B). A slightly more involved version of this same argument shows that, if
w is continuous on the whole compact interval, the convergence Bn → w is actually uniform. This
gave the first known constructive proof of the Weierstraß approximation theorem. More generally,
the very same approximation procedure shows that the Bernstein polynomials of any measurable
function converge to that function (on a compact interval) almost everywhere.

We can use Bernstein polynomials to approximate the indicator function w = 1[a,b], on some
larger interval. For example: suppose we know that our random points λ are all in the interval
[α, β]. Then for α < a < b < β, we can construct the Bernstein polynomials Bn of the function
1[a,b] in the interval [α, β]; by Lemma 2.7, Bn(t)→ 1[a,b](t) for all t ∈ [α, β] except possibly t = a
and t = b. That is: Bn(t)→ 1 if t ∈ (a, b) and Bn(t)→ 0 if t ∈ [α, a)∪ (b, β]. Therefore, so long
as none of the points in λ are at a or b, we have

Bn(λj)→ 1[a,b](λj) as n→∞
and hence

1

N

N∑
j=1

Bn(λj)→
1

N

N∑
j=1

1[a,b](λj) = h[a,b](λ) as n→∞. (2.8)

FIGURE 2.2. The Bernstein polynomial B1000 of the indicator function 1[0.5,0.8] in
the unit interval [0, 1].
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REMARK 2.9. (1) The polynomials Bn cannot possibly continue to approximate 1[a,b] on
arbitrarily large intervals, because all non-constant polynomials must diverge to ±∞ at
the “ends” of R. But that is not a problem for us; since we have chosen the large interval
[α, β] to contain all the points λ that we care about, it doesn’t matter what happens outside
this interval.

(2) The above discussion presents problems in the special case that one or more of the λj
happens to fall at an endpoint a, b of the interval in question. This can be gotten around
by “jiggling” the interval a little bit, cf. Remark 2.5. Alternatively: in the cases of interest
to us, λ will be a random point set, which will possess a joint density; this means that
the probability of any of the λj taking any one of the finitely many partition points will
always be 0, so we can safely ignore this problem which will almost never come up.

The conclusion of all this is that it suffices to compute polynomial linear statistics in order to
compute histogram statistics of any finite points set. In fact, we can go one step further.

PROPOSITION 2.10. Let λ be a finite set of N points in R. Suppose we can calculate all of
the sample moments Mk(λ) for k ∈ N (cf. (2.6)). Then we can compute the histogram statistics
h[a,b](λ) for all intervals [a, b].

PROOF. Fix a large interval [α, β] that contains all the points in λ. Compute the Bernstein poly-
nomials Bn of the function 1[a,b] in this larger interval, cf. Lemma 2.7. The Bernstein polynomial
Bn is a polynomial of degree n, and so it can be written out as

Bn(λ) =
n∑
k=0

bn,kλ
k

for some coefficients bn,k. The corresponding linear statistics are

1

N

N∑
j=1

Bn(λj) =
1

N

N∑
j=1

n∑
k=0

bn,k(λj)
k =

n∑
k=0

bn,k
1

N

N∑
j=1

(λj)
k =

n∑
k=0

bn,kMk(λ). (2.9)

Now, the Bn were constructed so the left-hand-side of (2.9) converges to the histogram statistic
h[a,b](λ) as n→∞, cf. (2.8). Hence, we can compute the histogram statistics as limits of terms on
the right-hand-side of (2.9), which are linear combinations of sample moments. Therefore, if we
know how to compute sample moments, we know how to compute histogram statistics. �

REMARK 2.11. The sense of “knowing how to compute” in the above proposition is very
theoretical; although it could be made quantitatively precise (in terms of how large nmust be taken
to compute h[a,b](λ) to desired accuracy), we would never actually use it to compute a histogram
(which, numerically, is a triviality to produce). Rather, the use of this proposition is theoretical:
it tells us that if we can compute and recognize the sample moments of the points as the actual
moments of some probability density function, then we can conclude that density underlies the
histogram of the points — it is the “true” density alluded to in the discussion following Figure 2.1.
We will make this more precise in the next section.

2.2. Convergence of Sample Moments

We are interested in the properties of histograms of the eigenvalues λ of an N × N random
matrix. Since the entries of the matrix are random, so are its eigenvalues. From the examples in
Figure 2.1, we can see that the histograms are also going to be random; nevertheless, there is some
apparent underlying deterministic structure, and that is what we’d like to understand. Motivated
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by the limit theorems of probability theory, our hunch is that the random fluctuations in those
histograms will get smaller as N grows, and so what we are looking for is a description of the
large-N limit histograms of eigenvalues. For this reason, as we will have to allow N to grow, we
will label the eigenvalue point set with N :

λ(N) = {λ(N)
1 , λ

(N)
2 , . . . , λ

(N)
N }

still with the convention that λ(N)
1 ≥ λ

(N)
2 ≥ · · · ≥ λ

(N)
N .

Our goal is to understand, for each fixed finite interval [a, b], the large-N limit of the histogram
statistic h[a,b](λ

(N)):

lim
N→∞

h[a,b](λ
(N)) = lim

N→∞

1

N
#{j : λ

(N)
j ∈ [a, b]}. (2.10)

Since we have little-to-no information about the eigenvalues λ(N) directly, we cannot say much
directly about these quantities. However, appealing to Proposition 2.10, we can (in principle) get
information about histogram statistics just from computing the sample moments:

Mk(λ
(N)), k ∈ N.

Proposition 2.10 was stated in the context of a fixed point set λ; now we will be dealing with a
changing point set λ(N) (with a growing number of points). Since the recovery of h[a,b] from Mk

involved a limiting approximation procedure, we need to be very careful now, since there will be
two simultaneous limits. This section is devoted to clarifying these points.

Keeping our eye on the prize: what sort of structure to we hope to see? What do we expect to
emerge as a description of the large-N limit in (2.10)? Recall that any histogram (normalized in
our convention) is a probability density, which is supposed to represent an “approximate density”
for the discrete empirical random random variable Eλ(N) , cf. Definition 2.4. Our idealized model
would see a true density f (N) for the random variable Eλ(N) , as in (2.3):

h[a,b](λ
(N)) =

∫ b

a

f (N)(λ) dλ.

This is not possible, but we will see what does happen is that such a density emerges in the large-N
limit.

DEFINITION 2.12. Let λ(N) ⊂ R be point sets of size N ; we call such a sequence of point sets
an ensemble. An ensemble has an asymptotic probability density f if, for every a < b,

lim
N→∞

h[a,b](λ
(N)) =

∫ b

a

f(λ) dλ.

We are going to prove that, when the ensemble λ(N) consists of the (random) eigenvalues of
the sample covariance matrix of truly random data, it does indeed have an asymptotic probability
density, which we see emerging in the histograms of Figure 2.1; and we will compute this density.
To do so, we need to have some access to the (large-N limits of the) histogram random variables
h[a,b](λ

(N)) using tools we can compute with. To that end, Proposition 2.10 is the key. Here is the
main theorem.

THEOREM 2.13. Let (λ(N))N∈N be an ensemble of finite point sets in R, and let (Mk(λ
(N)))k∈N

be the sample moments (cf. (2.6)). Suppose that, for each k,

lim
N→∞

Mk(λ
(N)) = µk
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exists, and that there is a probability density f , supported on a bounded interval [α, β], whose
moments are (µk)k∈N: ∫

R
λkf(λ) dλ = µk.

Then the ensemble has f as an asymptotic probability density.

PROOF. We are going to provide the outline of the proof, but will assert a key technical fact
whose proof (while within our reach) would take much more time and energy, and would really
obscure the basic idea.

Fix a < b, and let (Bn) be the Bernstein polynomials approximating 1[a,b] on the interval [α, β],
cf. Proposition 2.10. Denote its coefficients as bn,k, so Bn(λ) =

∑n
k=0 bn,kλ

k. Note that
n∑
k=0

bn,kMk(λ
(N)) =

n∑
k=0

bn,k
1

N

N∑
j=1

(λ
(N)
j )k =

1

N

N∑
j=1

n∑
k=0

bn,k(λ
(N)
j )k =

1

N

N∑
j=1

Bn(λ
(N)
j ).

Now, if we send n→∞, since Bn(λ)→ 1[a,b](λ) except possibly if λ ∈ {a, b}, we conclude that
(for almost all choices of a, b)

lim
n→∞

n∑
k=0

bn,kMk(λ
(N)) =

1

N

N∑
j=1

lim
n→∞

Bn(λ
(N)
j ) =

1

N

N∑
j=1

h[a,b](λ
(N)
j ) = h[a,b](λ

(N)).

Our goal is to show that limN→∞ h[a,b](λ
(N)) =

∫ b
a
f(λ) dλ (this is the definition of “asymptotic

probability density” for an ensemble, cf. Definition 2.12), so we should try to compute this limit:

lim
N→∞

h[a,b](λ
(N)) = lim

N→∞
lim
n→∞

n∑
k=0

bn,kMk(λ
(N)). (2.11)

Now we make the technical assertion that we will not prove:

lim
N→∞

lim
n→∞

n∑
k=0

bn,kMk(λ
(N)) = lim

n→∞
lim
N→∞

n∑
k=0

bn,kMk(λ
(N)). (2.12)

(This is no simple matter in general: reversing the order of two limits can be very tricky to justify,
and is typically just not true. It turns out to be true in our case; this is where the assumption of
the bounded support of the limit density f comes into play.) With this in hand, we compute the
N -limit holding n fixed:

lim
N→∞

n∑
k=0

bn,kMk(λ
(N)) =

n∑
k=0

bn,k lim
N→∞

Mk(λ
(N)) =

n∑
k=0

bn,kµk

utilizing the assumptions of the theorem. Moreover, the assumptions further imply that these µk
are the moments of f , so the above quantity equals

n∑
k=0

bn,k

∫
R
λkf(λ) dλ =

∫
R

n∑
k=0

bn,kλ
kf(λ) dλ =

∫
R
Bn(λ)f(λ) dλ.

Thus, from (2.11) and (2.12), we have

lim
N→∞

h[a,b](λ
(N)) = lim

n→∞

∫
R
Bn(λ)f(λ) dλ = lim

n→∞

∫ β

α

Bn(λ)f(λ) dλ
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where the last equality follows from the fact (in the assumption of the theorem) that f is supported
on [α, β]. Finally, we must move the limit inside the integral. This, again, takes some work; in this
case, it is not so bad because Bn approximates the bounded function 1[a,b] on [α, β], and so this
limit interchange can be justified using the bounded convergence theorem. The result is

lim
N→∞

h[a,b](λ
(N)) =

∫ β

α

lim
n→∞

Bn(λ)f(λ) dλ =

∫ β

α

1[a,b](λ)f(λ) dλ =

∫ b

a

f(λ) dλ.

(By construction, i.e. Proposition 2.10, limn→∞Bn(λ) = h[a,b](λ) at all points other than possi-
bly λ = a, b; since the integral doesn’t care what happens at any finite number of points, this
convergence is good enough for what we asserted here.) �

REMARK 2.14. More on the magic behind the limit interchange (2.12): one useful criterion
that allows limits to be interchanged is uniformity. If we knew, for example, that the n-limit was
uniform inN (meaning the rate of convergence is independent ofN ), then an off-the-shelf theorem
would justify the limit interchange. Unfortunately, this is not true in the present context, because
Bn cannot converge uniformly to the discontinuous function 1[a,b]. For that reason, this theorem is
often proved in two steps: first, we follow the above outline to show how to recover any asymptotic
linear statistic with a continuous weight function w, since these can be uniformly approximated by
Bernstein polynomials; then approximate 1[a,b] by continuous functions after the limit interchange.
We could carry out this procedure without any more tools than we have now, but it would take
several pages of work, and would really obscure the core idea of the proof.

The beauty of Theorem 2.13 is that we can now safely identify the asymptotic probability
density so long as we can compute sample moments. More precisely, our process will be:

(1) Compute the sample moments Mk of our eigenvalue ensemble.
(2) Show that they have large-N limits µk, and compute these limit moments.
(3) Identify the probability density that has these moments.
(4) Profit.

The next section discusses how we will handle items (1) and (2).

2.3. Convergence and Concentration of Moments

We now turn to the specific ensembles of interest: the eigenvalues of certain random matrices.
Still staying somewhat general, let’s consider a general N × N symmetric random matrix WN ;
its eigenvalues will be denoted λ(N) = {λ(N)

1 , . . . , λ
(N)
N } (where, as usual, our convention is that

λ
(N)
1 ≥ λ

(N)
2 ≥ · · · ≥ λ

(N)
N ). We have seen above that, to understand the large-N limit histogram

statistics of this ensemble of eigenvalues, it suffices to compute the sample moments Mk(λ
(N)),

and, in particular, their large-N limits. We know that computing eigenvalues (exactly, analytically)
is a hopeless task; fortunately, we do not need to compute the eigenvalues in order to compute all
their sample moments.

PROPOSITION 2.15. Let WN be an N × N symmetric matrix with eigenvalues λ(N). The
sample moments of the eigenvalues can be computed as

Mk(λ
(N)) =

1

N
Tr [(WN)k].

To prove this, we need the following lemma, which is the key to why the trace is a useful linear
functional on matrices.
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LEMMA 2.16. Let N,m ∈ N, and let A ∈MNm and B ∈MmN be two matrices. Then

Tr (AB) = Tr (BA).

PROOF. By definition, for any square matrix C, Tr (C) =
∑

i[C]ii is the sum of the diagonal
entries. We now compute

[AB]ii =
m∑
j=1

[A]ij[B]ji

and so

Tr (AB) =
N∑
i=1

[AB]ii =
N∑
i=1

m∑
j=1

[A]ij[B]ji =
m∑
j=1

N∑
i=1

[A]ij[B]ji.

Having reversed the order of the summations, we note that the internal sum is
N∑
i=1

[A]ij[B]ji =
N∑
i=1

[B]ji[A]ij = [BA]jj

and so the double sum is also equal to
∑

j[BA]jj = Tr (BA). �

REMARK 2.17. We can apply this lemma to longer products, one step at a time; for example

Tr (ABC) = Tr ((AB)C) = Tr (C(AB)) = Tr (CAB).

Following this reasoning, we see that the trace is invariant under any cyclic permutation of a
product of matrices. Caution: it is not invariant under other permutations. For example, while
Tr (ABC) = Tr (CAB) = Tr (BCA), in general Tr (ABC) 6= Tr (BAC).

PROOF OF PROPOSITION 2.15. Since WN is symmetric, by the spectral theorem, it can be
(orthogonally) diagonalized WN = QNΛNQ

−1
N . Hence, taking powers,

(WN)k = (QNΛNQ
−1
N )(QNΛNQ

−1
N ) · · · (QNΛNQ

−1
N )

= QNΛN(QNQ
−1
N )ΛN(QNQ

−1
N )ΛN · · ·ΛN(QNQ

−1
N )ΛNQ

−1
N

= QN(ΛN)kQ−1
N .

Now, utilizing Lemma 2.16, it follows that

Tr [(WN)k] = Tr [QN(ΛN)kQ−1
N ] = Tr [Q−1

N QN(ΛN)k = Tr [(ΛN)k].

Finally: ΛN is a diagonal matrix, with the eigenvalues on the diagonal; its powers are thus

(ΛN)k =


λ1

λ2

. . .
λN


k

=


(λ1)k

(λ2)k

. . .
(λN)k


and the trace of this diagonal matrix is just

∑
j(λj)

k. (Here we have suppressed the extra index

λj = λ
(N)
j for readability.) Thus

Tr [(WN)k] =
N∑
j=1

(λj)
k = N ·Mk(λ

(N))

as desired. �
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The amazing point here is that the quantities Mk(λ
(N)) which are explicit functions of the

eigenvalues λ(N)
j can all be calculated directly and only from the entries of the matrix WN : the

entries of (WN)k are homogeneous degree k polynomials in the entires of WN . Let’s look at an
example.

EXAMPLE 2.18. LetWN be the kind of sample covariance matrix we are interested in studying:
WN = 1

N
X>X where X ∈Mm×N has i.i.d. N (0, 1) entries. Then

[WN ]ii =
1

N

m∑
j=1

[X>]ij[X]ji =
1

N

m∑
j=1

[X]2ji

and therefore the sample mean of the eigenvalues of W is equal to

M1(λ(N)) =
1

N
Tr (WN) =

1

N

N∑
i=1

1

N

m∑
j=1

[X]2ji =
1

N2

N∑
i=1

m∑
j=1

[X]2ji. (2.13)

The Nm random variables [X]ji are all i.i.d. standard normals, so M1(λ(N)) is 1
N2 times a χ2

random variable with Nm degrees of freedom.
However, sinceNm is large, this random variable is quite concentrated about its mean. Indeed:

the [X]2ji are i.i.d., with common expectation E([X]2ji) = 1, and so by the Laws of Large Numbers,

1

Nm

N∑
i=1

m∑
j=1

[X]2ji → 1 as Nm→∞.

We computed above that

M1(λ(N)) =
1

N2

N∑
i=1

m∑
j=1

[X]2ji =
m

N
· 1

Nm

N∑
i=1

m∑
j=1

[X]2ji

and so we see the following: if N,m→∞ in such a way that the ratio m
N
→ % ∈ (0,∞), then

µ1 = lim
N→∞

M1(λ(N)) = %.

REMARK 2.19. The calculation of (2.13) shows that for any rectangular matrix X, Tr (X>X) =∑
i,j[X]2ji is the sum of the squares of all the entries. In other words: if we think if the rectangular

matrix X as being a Euclidean vector (think about reading down the columns of the matrix one by
one into one long column), then its length2 can be computed as Tr (X>X). This convenient con-
nection between Euclidean geometry and the algebraic properties of matrices (involving transpose,
product, and trace) goes a long way to explaining why there is such nice structure in the statistics of
the eigenvalues. The quantity ( Tr (X>X))1/2 is called the Hilbert–Schmidt norm (or sometimes
the Fröbenius norm) of the matrix.

We will proceed in the next section to compute higher sample moments of the random ma-
trix WN in Example 2.18. In the case of the sample mean M1, the formula is simple enough to
completely describe the distribution: a rescaled χ2. For higher sample moments, the formulas will
be increasingly complicated and it will be very difficult to compute and describe the distribution
exactly. Nevertheless, since we are primarily interested in the large-N limit, we will see that a
phenomenon like in Example 2.18 will always come into play: we will have concentration around
the mean. The way this will manifest is as follows.
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PROPOSITION 2.20. Let (λ(N))N∈N be an ensemble of random points, and let M (N) be any
statistic of (λ(N)) (e.g. M (N) = Mk(λ

(N)) for some k ∈ N). Suppose that the following two
conditions holds for the (random) sample moments of the ensemble:

(1) lim
N→∞

E[M (N)] = µ exists, and

(2) lim
N→∞

Var[M (N)] = 0.

Then M (N) converges in probability to µ as N →∞.

PROOF. This is basically the same argument as the proof of the Weak Law of Large Numbers
(using Chebyshev’s inequality); it just requires a slight tweak because µ is not necessarily equal to
the expected value of M (N), but it is the limit of these expected values. First, we have

|M (N) − µ]| ≤ |M (N) − E[M (N)]|+ |E[M (N)]− µ| (2.14)

by the triangle inequality. Hence, for any ε > 0,

{|M (N) − µ| > ε} ⊆ {|M (N) − E[M (N)]| > ε/2} ∪ {|E[M (N)]− µ| > ε/2}.

(Indeed: if |M (N) − µ| > ε then, by (2.14), |M (N) − E[M (N)]| + |E[M (N)] − µ| > ε, and if this
sum of two positive terms is > ε then at least one of them must be > ε/2.) Therefore

P(|M (N) − µ| > ε) ≤ P(|M (N) − E[M (N)]| > ε/2) + P(|E[M (N)]− µ| > ε/2). (2.15)

By Chebyshev’s inequality, the first term in (2.15) is bounded as follows:

P(|M (N) − E[M (N)]| > ε/2) ≤ Var[M (N)]

(ε/2)2
.

By assumption (2), the right-hand-side tends to 0 as N →∞. As for the second term in (2.15), the
event in question is not random: for each N , |E[M (N)]− µ| is a constant. By assumption (1), this
constant tends to 0, which means that for the given ε, this constant is ≤ ε/2 for all large N . Thus,
the second term in (2.15) is actually identically 0 for all large N . Combining these observations,
wee conclude that M (N) →P µ (i.e. the distribution of M (N) concentrates around µ as N →∞) as
claimed. �

REMARK 2.21. There is a seminal probability result called the Borel–Cantelli lemma, which
allows upgrading convergence in probability to almost sure convergence; it just requires the slightly
stronger assumption, replacing (2) above, that

∑
N Var[M (N)] < ∞. We will see that, in the

ensembles we care about, with M (N) = Mk(λ
(N)), we’ll actually have Var[M (N)] = O( 1

N2 ), and
so we will actually be able to conclude almost sure convergence of the sample moments to their
limit means. Caution: there is a technical point here, that in order to even talk about almost sure
convergence, all of the random variables in question must be defined on the same sample space.
But if we are taking larger and larger random matrices, there is no natural reason for this to be
so. Therefore, it is actually a little artificial to talk about almost sure convergence in this context
(although it can be technically useful).

This is what will turn out to happen to our sample moments of eigenvalue ensembles λ(N):
although they will all be random (with distributions becoming more and more complicated as
N → ∞), they will concentrate about their means, and so to compute their large-N limits, we
need only compute the large-N limits of their expected values. Then, provided we can show also
that their variances decay to 0, we will know that the random sample moments themselves converge
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to deterministic values, which we can then try to identify as the true moments of some probability
density function.

Let’s conclude this section by introducing some slightly new notation (for normalized trace),
in service of a final corollary.

DEFINITION 2.22. Let trN denote the normalized trace on N ×N matrices:

trN(H) =
1

N
Tr (H), H ∈MN×N .

It might seem frivolous to define a whole new notation for the normalized trace, but it will turn out
to be very convenient, for at least two reasons: we will use the symbol often and it will improve
readability, and also the explicit N in trN will serve to remind us what the dimension of the
underlying matrices is, which will be helpful when we start dealing with a growing N .

The following Corollary weaves together Propositions 2.15 and 2.20 with Theorem 2.13 to
define precisely what our goal will be going forward.

COROLLARY 2.23. Let (WN)N∈N be a sequence of N ×N random matrices, with eigenvalues
(λ(N))N∈N. Suppose that the following conditions hold.

(1) For each k ∈ N, lim
N→∞

E trN [(WN)k] = µk exists.

(2) For each k ∈ N, lim
N→∞

Var( trN [(WN)k]) = 0.

(3) There is a probability density f , supported on a bounded interval [α, β], whose moments
are µk.

Then f is the asymptotic probability density of the ensemble of eigenvalues (λ(N))N∈N; i.e. for all
a < b,

1

N
#{j : λ

(N)
j ∈ [a, b]} −→P

∫ b

a

f(λ) dλ as N →∞.

Note that both E trN [(WN)k] and

Var( trN [(WN)k]) = E( trN [(WN)k]2)− E( trN [(WN)k])2

are explicitly computable for any N and k, in terms of the entries of WN . We will now proceed
to analyze these quantities for the random sample covariance matrix ensembles we are about, in
the hopes of proving conditions (1)-(3) in Corollary 2.23 hold, allowing us to finally find the
asymptotic probability density of the eigenvalues — i.e. to find the shape of noise.

2.4. Moments of Wishart Ensembles

Let’s give a name to the kind of random matrix, related to sample covariance matrices of pure
random noise, that are of interest to us presently.

DEFINITION 2.24. Let m ≥ N be positive integers. A Wishart matrix of size (m,N) is an
N × N matrix W = W(m,N) of the form W = 1

N
X>X, where X ∈ Mm×N has all i.i.d. entries,

with finite moments of all orders, and standardized with E([X]ij) = 0 and E([X]2ij) = 1. If the
entries are N (0, 1), we call it a Gaussian Wishart matrix.

The ensemble of eigenvalues (λ(N))N∈N of W(m,N) is called a Wishart ensemble.

So: the calculation in Example 2.18 showed that if W is a Gaussian Wishart ensemble of size
(m,N), and if we send m → ∞ and N → ∞ in such a way that m/N → % ∈ (0,∞), then
the sample mean M1(λ(N)) of the associated Wishart ensemble tends to %. Contemplating that
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example again, note that the normal distribution of the entries played virtually no role: to get the
same answer, all that was required was (1) the entries of X were i.i.d., and (2) the entries were
standardized with mean 0 and variance 1. This is why we’ve made the more general definition of
Wishart matrices, without the assumption that the entries are normal. We will see that, in general,
the distribution of the entries doesn’t matter to the shape of the asymptotic probability density of
the ensemble of eigenvalues.

Following the advice of Corollary 2.23, if we want to identify the asymptotic probability den-
sity of a Wishart ensemble, we should begin by calculating the expected values of the sample
moments of the ensemble, which means computing the expected normalized traces of powers of
W; i.e.

E trN [Wk], k ∈ N.
Example 2.18 did this for k = 1; we need to do it for all higher powers. As a warm-up, let’s start
with k = 2.

PROPOSITION 2.25. Let W = W(m,N) = 1
N

X>X be a Wishart matrix of size (m,N). Denote
the common fourth moment of the entries of X as φ = E([X]4ai). Then

E trN(W2) =
m(N +m− 2)

N2
+

m

N2
φ.

PROOF. We begin by expanding the trace of the square of a general Wishart matrix of size
(m,N):

Tr (W2) =
N∑
i=1

[W2]ii.

Now W2 = 1
N2 X

>XX>X, so

[W2]ii =
1

N2
[X>XX>X]ii =

1

N2

N∑
j=1

[X>X]ij[X
>X]ji.

Therefore

Tr (W2) =
1

N2

N∑
i,j=1

[X>X]ij[X
>X]ji. (2.16)

Now, we expand the entries [X>X]ij in terms of the entries of X:

[X>X]ij =
m∑
a=1

[X>]ia[X]aj =
m∑
a=1

[X]ai[X]aj.

This term appears twice in (2.16) (with indices reversed in the second), and so there will be two
sums there; to avoid confusion, we will use a different index letter, b, for the second sum. That is,

Tr (W2) =
1

N2

N∑
i,j=1

(
m∑
a=1

[X]ai[X]aj

)(
m∑
b=1

[X]bj[X]bi

)

=
1

N2

N∑
i,j=1

m∑
a,b=1

[X]ai[X]aj[X]bi[X]bj.
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Hence, the desired quantity (recalling that trN = 1
N

Tr , and using the linearity of expectation) is

E trN(W2) =
1

N3

N∑
i,j=1

m∑
a,b=1

E ([X]ai[X]aj[X]bi[X]bj) . (2.17)

We must now compute the expected values in the terms of this sum. The key observation to make
this possible is that the entries {[X]ai : 1 ≤ a ≤ m, 1 ≤ i ≤ N} are all independent, and all have
mean 0. For example: suppose (a, b, i, j) = (1, 2, 1, 4); then

E([X]ai[X]aj[X]bi[X]bj) = E([X]11[X]14[X]21[X]24).

All four entries are thus independent. In particular, the first entry is independent of the last three,
and so we can factor the expectation:

E([X]11[X]14[X]21[X]24) = E([X]11) · E([X]14[X]21[X]24) = 0 · (something) = 0.

What we see from this example is the following: most of the terms in (2.17) are 0. More precisely:
in any of the N2m2 terms where there is at least one index pair (a, i) that doesn’t exactly match
any of the other three index pairs, the resulting expected value is 0.

Therefore, to find terms that do contribute, we need to look for indices (i, j, a, b) that leave
none of the pairs “lonely”. We can do this systematically as follows. Consider the first index (a, i);
it must match (at least) one of the other three. We take them in turns.

• The first two entries are equal: [X]ai = [X]aj . This means i = j. This leave the last two
entries [X]bi[X]bj; but since i = j, these two are also equal, so no one is lonely: these
terms look like E([X]2ai[X]2bi).
• The first and third entries are equal: [X]ai = [X]bi. This means a = b. Now considering

the remaining entries [X]aj[X]bj , we see they are also equal, so no one is lonely. These
terms look like E([X]2ai[X]2aj).
• The first and fourth entries are equal: [X]ai = [X]bj . This means a = b and i = j. In this

case, all four of the entries are equal, and we have E([X]4ai).
Hence, the only terms that contribute to the sum in (2.17) are those where either i = j or a = b (or
perhaps both). There is some overlap in these, so we separate them carefully:

• i = j, a 6= b: there areNm(m−1) of these terms, and they are all equal to E([X]2ai[X]2bi) =
E([X]2ai)E([X]2bi) = 1 ·1 by the independence and the assumption that the second moment
of each entry is 1.
• i 6= j, a = b: there areN(N−1)m of these terms, and they are all equal to E([X]2ai[X]2aj) =

E([X]2ai)E([X]2aj) = 1 · 1 = 1 as above.
• i = j, a = b: there are Nm of these terms, and they are all equal to E([X]4ai) = E([X]411),

the common fourth moment of all the entries.
Thus, the sum in (2.17) is equal to

E trN(W2) =
1

N3

(
Nm(m− 1) +N(N − 1)m+NmE([X]411)

)
=
m(N +m− 2)

N2
+

m

N2
φ. (2.18)

�

The exact quantity above depends on the distributions of the entries of the “noise” matrix X:
it depends on the fourth moment φ of the entries. It also depends explicitly on both m and N .
Comparing to Example 2.18, we saw there that E trN(W) = m

N
depended only on the ratio m

N
, and
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not on the distribution of the entries. Nevertheless, in the present setting, the same can be said in
the large-N limit. Let’s make this precise.

COROLLARY 2.26. Fix % > 0. For each N ∈ N, let mN be a sequence of positive integers
with the property that limN→∞

mN
N

= %. Let W = W(mN ,N) be a Wishart matrix of size (mN , N).
Then

lim
N→∞

E trN(W2) = %2 + %.

PROOF. From Proposition 2.25, we have

E trN(W2) =
mN(N +mN − 2)

N2
+
mN

N2
φ =

mN

N
+
m2
N

N2
+

(φ− 2)mN

N2
.

The first two terms converge to %+ %2, while the third is φ−2
N
· mN
N

and so converges to 0. �

We now have a clear indication that the correct scaling regime to find a limit is to letm,N →∞
simultaneously, with aspect ratio m

N
approaching some limit %. We’ll now attempt to mimic the

proof of Proposition 2.25 to calculate the general kth moment. To begin, we use induction to
expand the trace of a power of W:

Tr (Wk) =
N∑
i1=1

[Wk]i1i1 =
N∑

i1,i2=1

[W]i1i2 [W
k−1]i2i1 =

N∑
i1,i2,i3=1

[W]i1i2 [W]i2i3 [W
k−2]i2i1

Continuing this way, we see that

Tr (Wk) =
N∑

i1,...,ik=1

[W]i1i2 [W]i2i3 · · · [W]ik−1ik [W]iki1 . (2.19)

Now, W = 1
N

X>X, and so

[W]ij =
1

N

m∑
a=1

[X>]ia[X]aj =
1

N

m∑
a=1

[X]ai[X]aj.

Applying this term-by-term in (2.19), each of the k terms gives rise to a new sum, and incorporating
the powers of N , we have

trN(Wk) =
1

Nk+1

N∑
i1,...,ik=1

m∑
a1,a2,...,ak=1

[X]a1i1 [X]a1i2 [X]a2i2 [X]a2i3 · · · [X]akik [X]aki1 . (2.20)

On its face, the scaling here does not look right. The sum (2.20) hasNkmk terms, while the scaling
is 1

Nk ; if all the terms were the same size, we would have trN(Wk) ∼ mk

N
, and as we are expecting

the right scaling regime to be m
N
∼ % constant, this would result in blow-up as m → ∞. So, in

order for this to make sense, we must see that the vast majority of the terms in (2.20) are “small”.
We are first interested in E trN(Wk), and so taking expectations, we must understand the

expectation of the general term:

E ([X]a1i1 [X]a1i2 [X]a2i2 [X]a2i3 · · · [X]akik [X]aki1) . (2.21)

The independence and identical distribution of the distinct entries [X]ai implies that this quan-
tity doesn’t depend very much on what the actual indices i1, . . . , ik and a1, . . . , ak are; rather, all
that matters is how they are grouped together according to being identical or not. Indeed,

E ([X]13[X]14[X]13[X]21) = E ([X]27[X]54[X]27[X]98) (2.22)
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because, after grouping according to which index-pairs match, we have

E ([X]13[X]14[X]13[X]21) = E
(
[X]213[X]14[X]21

)
= E

(
[X]213

)
E ([X]14)E ([X]21)

E ([X]27[X]54[X]27[X]98) = E
(
[X]227[X]27[X]98

)
= E

(
[X]227

)
E ([X]27)E ([X]98)

and both of these equal
E
(
[X]211

)
E ([X]11)2

because the entries all have the same distribution.
Thus, in a general term like (2.21), we only need to keep track of the partition induced by the

indices.

DEFINITION 2.27. A partition of a finite set A is a collection of non-empty disjoint subsets of
A whose union is all of A. We denote partitions usually by π = {B1, . . . , Br} where the subsets
B` are called the blocks of the partition. For example: π = {{1, 3, 4}, {2}, {5, 6}} is a partition
of the set [6] = {1, 2, 3, 4, 5, 6}.

Each expression (2.21) gives rise to a partition of the 2k terms in the product: they are parti-
tioned according to their indices (a, i), i.e. grouped according to which terms have identical indices.
This is the only information that determines the value of the term. That is, two expressions

E ([X]a1i1 [X]a1i2 [X]a2i2 [X]a2i3 · · · [X]akik [X]aki1) ,

E ([X]b1j1 [X]b1j2 [X]b2j2 [X]b2j3 · · · [X]bkjk [X]bkj1)

are, in fact, equal, provided that their indices both have the same partition π = {B1, . . . , Br},
where each blockBs is a collection of matrix index labels all assigned the same numbers within the
block. For example: in the two (equal) terms in (2.22), the common partition is {{1, 3}, {2}, {4}},
indicating that the first and third terms are equal, and distinct from the two other non-equal second
and fourth terms. As the following discussion shows, by the independence and identical distribu-
tion of the entries, the value of the expectation (2.21) depends only on the sizes and number of
blocks in π: (2.21) is equal to

Eπ := E([X]#B1

11 )E([X]#B2

11 ) · · ·E([X]#Br11 ). (2.23)

Summarizing the above discussion, we have the following.

LEMMA 2.28. Given indices a = (a1, . . . , ak) and i = (i1, . . . , ik), let π(a, i) denote the
partition of those indices in the term E ([X]a1i1 [X]a1i2 [X]a2i2 [X]a2i3 · · · [X]akik [X]aki1). Let P(2k)
denote the set of all partitions of [2k]. Then

E trN(Wk) =
1

Nk+1

∑
π∈P(2k)

∑
a∈[m]k,i∈[N ]k

π(a,i)=π

Eπ. (2.24)

This key observation now shows almost immediately why most of the terms in (2.24) are small.
For a given term (2.21), suppose there is at least one block Bs in its partition π that is a singleton,
i.e. #Bs = 1. That means the term is equal to E([X]111) · stuff = 0 because all the terms are
centered. In other words:

LEMMA 2.29. If π ∈ P(2k) contains a singleton block, then Eπ = 0.

This explains the apparent scaling problem. Hence, only partitions in which every block has at
least two elements contribute to the sum (2.24) in the large-N limit. Let’s consider two example
partitions where all blocks have exactly two elements.
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EXAMPLE 2.30. Suppose the partition in question is σ = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}.
Examining the corresponding indices for terms at those places in (2.21), this partition would mean
that

(a1, i1) = (a1, i2), (a2, i2) = (a2, i3), . . . (ak, ik) = (ak, i1).

The first coordinates in each pair of terms already automatically, but the incidence of the second
ones mean that i1 = i2 = · · · = ik. Hence, the number of (a, i) for which π(a, i) = σ is mkN .
Since each block in σ has size 2, Eσ = E([X]211)k = 1, and so these terms contribute

1

Nk+1

∑
a∈[m]k,i∈[N ]k

π(a,i)=σ

Eσ =
1

Nk+1
·mkN · 1 =

mk

Nk

to E trN(Wk), and this (by assumption) has a limit (%k) as N,m→∞.

EXAMPLE 2.31. For a related example, suppose that the partition of indices is

{{1, 3}, {2, 4}, {5, 6}, {7, 8} . . . , {2k − 1, 2k}}.
This is almost the same as the example we considered above, but now the first two blocks in π have
been “twisted up” to cross each other. Examining the indices in (2.21), such terms satisfy

(a1, i1) = (a2, i3), (a1, i2) = (a2, i2), (a3, i3) = (a3, i4), . . . (ak, ik) = (ak, i1).

The first two equations say a1 = a2 and i2 = i3; all the remaining specify that i3 = i4 = i5 = · · · =
ik = i1. Hence, we still have i1 = i2 = · · · = ik, as above, but here we also have the constraint
that a1 = a2. So the total number of terms in the inner sum in (2.24)is mk−1N . Combining this
with the overall 1

Nk+1 scaling, and noting that each such term (with this as its index partition) has
the value Eπ = 1, means that these terms contribute mk−1

Nk to the sum; in the scaling regime where
m
N
→ %, m

k−1

Nk → 0 as m,N →∞. Hence, these terms don’t contribute in the limit.

The task from here is a little complicated. We have to consider each possible partition π ∈
P≥2(2k) (the partitions in which every block has at least two elements), and compute both Eπ
(this is easy, from (2.23) it is a product of moments of the entries) and the number of indices
(a, i) ∈ [m]k× [N ]k that give rise to that partition. It’s a beautiful story, involving several different
kinds of interesting combinatorial structures (non-crossing partitions, lattice path, directed graphs)
that go beyond what we have time to study presently. Here is a brief summary of how it turns out:

• If π contains any blocks with more than 3 elements, the number of terms in the inner sum
in (2.24) corresponding to that partition π is o(Nk+1), hence do not contribute in the limit.

• Together with the observation that all “lonely” partitions π (containing a singleton block)
have Eπ = 0, this means that, in the large-N limit, the sum is restricted to π ∈ P2(2k):
the partitions in which each block has exactly two elements. These are called pairings or
matchings. Note: from (2.23), if π is any paring, Eπ = E([X]211)k = 1. Thus, we see
that no higher moments of the distribution of the matrix entries play a role in the large-N
limit. This is the simplest example of a universality result in random matrix theory: the
asymptotic behavior is universal, regardless of the distribution of the entries.

• Not all pairings contribute in the large-N limit, as Example 2.31 shows. Determining ex-
actly which ones contribute to leading order, and what the contribution is (as a function of
m
N

) is a dicey proposition that requires translation to other combinatorial objects we know
how to count. The interested reader can consult my Random Matrix Theory notes, also
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posted on the course webpage, in particular Section 4.1, for a taste of the combinatorics
involved in a related but slightly simpler ensemble.

• Similar, but somewhat more involved, combinatorial arguments also show that

Var
(

trN(Wk)
)

= O

(
1

N2

)
in the scaling regime m

N
→ %, and so we get the desired concentration about the mean.

Let us now record the final result that comes from all this.

THEOREM 2.32. Fix % > 0. For each N ∈ N, let mN be a sequence of positive integers with
the property that limN→∞

mN
N

= %. Let W = WmN ,N be a Wishart matrix of size mN ×N . Then
for integers k ≥ 1,

lim
N→∞

trN(Wk) =
k∑
r=1

1

r

(
k

r − 1

)(
k − 1

r − 1

)
%r.

where the limit is in probability.

We conclude this section with some remarks about our choice to work with W = 1
N

X>X,
rather than the actual sample covariance matrix C = 1

N
XX>. This choice was made for efficiency,

since we are assuming m ≥ N : W is N ×N while C is m×m. The two matrices have the same
non-zero eigenvalues (as you proved on Homework 1), and so the only difference in the histograms
of eigenvalues will be the presence (or lack) of a spike of eigenvalues at 0.

Let’s explore how that choice will affect the moments. The relation is quite simple, but we
have to be careful. Note that

Tr (Ck) = Tr

[(
1

N
XX>

)k]
=

1

Nk
Tr (XX> · · ·XX>).

Using the cyclic invariance of the trace (Lemma 2.16), we can move one X> from the end to the
beginning, so

Tr (Ck) =
1

Nk
Tr (X>X · · ·X>X) = Tr (Wk).

It seems the moments are the same; but the subtlety is that we were computing the normalized
trace (i.e. the sample moments of the eigenvalue ensemble, which involves dividing by the number
of eigenvalues). Since C is m×m, this means

trm(Ck) =
1

m
Tr (Ck) =

1

m
Tr (Wk) =

N

m
trN(Wk).

In the scaling regime m
N
→ %, this is about %−1 trN(Wk), which means we have the following

corollary.

COROLLARY 2.33. Fix % > 0. For each N ∈ N, let mN be a sequence of positive integers
with the property that limN→∞

mN
N

= %. Let X be an mN × N feature matrix with i.i.d. N (0, 1)

entries, and let C = 1
N

XX> be its sample covariance matrix . Then for integers k ≥ 1,

lim
N→∞

trN(Wk) =
k∑
r=1

1

r

(
k

r − 1

)(
k − 1

r − 1

)
%r−1 =

k−1∑
r=0

1

r + 1

(
k

r

)(
k − 1

r

)
%r.

where the limit is in probability.
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REMARK 2.34. One can think of the relationship between W and C as an exchange m↔ N :
if we let Y = X>, then W = 1

N
X>X = 1

N
YY>. But this is not quite the right thing to do, since

the new “feature matrix” Y is N ×m, which means that there are m columns, not N . Hence, the
covariance matrix associated to Y is 1

m
YY>. The relationship is then

CY =
1

m
YY> =

N

m
· 1

N
YY> =

N

m
W.

This new covariance matrix is still N × N , but the scaling of the matrix itself has changed (by
N
m
∼= %), and that means that the kth moment will change by a factor of %−k, not just %−1. We will

explore these various exchanges and rescalings in Section 2.6.

2.5. Moment Generating Function(s)

We have now completed steps (1) and (2) in the plan set out at the end of Section 2.2: we have
computed the large-N limits µk of the sample moments Mk of the eigenvalue ensembles λ(N) for
our sample covariance matrices. The final step in the plan is to use these moments to determine
the asymptotic density of these ensembles: i.e. the limit density underlying the histograms in, for
example, Figure 2.1.

The general question before us, then, is: given the moments of a distribution, how do we recon-
struct the distribution itself? In principle we could follow the procedure in the proof of Theorem
2.13, but already in the limit: if we knew already that our desired density f were supported inside
some interval [α, β], we could compute

∫ t
α
f(x) dx using the Bernstein polynomials B(t)

n for the
indicator function 1[α,t]:∫ t

α

f(x) dx =

∫ β

α

1[α,t](x)f(x) dx =

∫ β

α

lim
n→∞

B(t)
n (x)f(x) dx.

We can then explicitly write the Bernstein polynomials in terms of their coefficients B(t)
n (x) =∑n

k=0 b
(t)
n,kx

kf(x) dx, and (interchanging the limit and the integral) find∫ t

α

f(x) dx = lim
n→∞

∫ β

α

n∑
k=0

b
(t)
n,kx

kf(x) dx = lim
n→∞

n∑
k=0

b
(t)
n,k

∫ β

α

xkf(x) dx.

All we know about f so far is that this inside integral is µk; thus, if we knew f to be continuous (so
the Fundamental Theorem of Calculus would apply), we would reconstruct f by differentiating

f(t) =
d

dt
lim
n→∞

n∑
k=0

b
(t)
n,k µk.

The coefficients b(t)
n,k are fairly explicit, from the proof of Bernstein’s Lemma 2.7, so we might

hope to actually do this computation. There are a few problems with it, though: first, we don’t
know a priori what enveloping [α, β] to use (or if there even is one), and this heavily influences
the formula for the b(t)

n,k coefficients. Also: we have no a priori reason to think the limit density is
continuous. More subtly: we might want to interchange the derivative and the limit above, but that
is really problematic (even if the convergence is uniform, such an interchange often fails).

We therefore want a (computationally) better way to recover the density from its known mo-
ments. One possibility is the moment-generating function. If Y is a random variable, its MGF
is

MY (t) = E[etY ] =

∫
R
etyfY (y) dy
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(where the second equality holds if Y has a PDF fY ). This function doesn’t always make sense:
the random variable etY need not have a finite expectation for any particular t (other than t = 0). It
is a theorem, though, that if MY (t) is finite for t in some open interval, then that function uniquely
determines the distribution of Y . This can be understood as a condition on moments: expanding
the exponential power series, we have

MY (t) = E

[
∞∑
k=0

tk

k!
Y k

]
=
∞∑
k=0

tk

k!
E(Y k). (2.25)

The second equality requires justification and does not always hold true; we could, for example,
use Fubini’s theorem to justify the E-sum interchange, provided we know that the right-hand-side
converges (uniformly enough). From the root test, we know this power series will converge on
some neighborhood of 0, provided that

lim
k→∞

(
1

k!
E(|Y |k)

)1/k

<∞.

That is, provided there is some constant C > 0 so that E(|Y |k) ≤ Ckk!, the series defining MY (t)
will converge (on at least the interval |t| < 1/C), and hence determined the distribution of Y .
The function MY is completely determined by the moments of Y (cf. (2.25)), and so this ought to
provide a way to determine the distribution from the moments.

But how do we directly recover fY from MY ? The best answer requires we turn our head 90◦

to the side, and allow t to be an imaginary number.

DEFINITION 2.35. Let Y be a random variable. Its characteristic function χY is the complex-
valued function on R defined by

χY (t) = E(eitY ).

If Y has a probability density function fY , then χY (t) =
∫
R e

ityfY (y) dy. This is also called the
Fourier transform of fY , and sometimes denoted f̂Y (t).

One nice feature of the characteristic function is that it is always finite, no matter what the
distribution of Y is (or if it has any finite moments at all). This is because Y is real-valued, and
so eitY = cos(tY ) + i sin(tY ) is a complex number of unit modulus for all t. Hence, the expected
value cannot blow up. Put another way: if Y has a density, then the integrals

a(t) =

∫
R

cos(ty)fY (y) dy and b(t) =

∫
R

sin(ty)fY (y) dy

are definitely both finite, since fY is a positive integrable function, and so χY (t) = a(t) + ib(t) is
well-defined. If Y has all finite moments, then χY (t) can be written as a power-series in terms of
them (just replace t with it in (2.25). More importantly, it is possible to recover the density (when
it exists) from the characteristic function, as follows.

THEOREM 2.36 (Fourier Inversion). Let f be a probability density, and let f̂ be its Fourier
transform. Then, for almost every y ∈ R,

f(y) =
1

2π

∫
R
e−ityf̂(t) dt.

That is: you can undo the Fourier transform by taking the Fourier transform again, just with a
negative sign thrown in to the argument (and an extra normalizing factor of 2π).
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We will not prove Theorem 2.36. For one, it is a bit technical and outside our toolbox. For
another, although it would be in principle possible to use it to find the density of eigenvalues for the
Wishart ensemble, in practice there is a different tool we will use that is better adapted to the task.
It is called the Stieltjes transform. Like the Fourier transform, it requires a complex argument.

DEFINITION 2.37. Let Y be a random variable. Let C+ = {x + iy : y > 0} denote the upper
half-plane. The Stieltjes transform of Y is the function GY : C+ → C defined by

GY (z) = E
(

1

z − Y

)
.

If Y has a probability density fY , then

GY (z) =

∫
R

fY (t)

z − t
dt.

Note: for any fixed ε > 0, if z = x + iy with y > ε, then |z − Y |2 = |x − Y + iy|2 =
(x− Y )2 + y2 > ε2, which means that | 1

z−Y | ≤
1
ε
. Hence,

for Im(z) > ε, |GY (z)| ≤ E
∣∣∣∣ 1

z − Y

∣∣∣∣ ≤ E
(

1

ε

)
=

1

ε
<∞.

Since every point z ∈ C+ has Im(z) > ε for some ε > 0, we see that GY (z) converges everywhere
on C+. It might well blow up if z ∈ R, so we’ll stay off the real line.

REMARK 2.38. The same arguments apply to z ∈ C−, the lower half-plane. Also, the inter-
ested reader might like to compute that GY maps C+ onto C−, and vice versa.

EXAMPLE 2.39. Suppose U is a Uniform[0, 1] random variable. Then

GU(z) =

∫
R

fU(t)

z − t
dt =

∫ 1

0

dt

z − t
.

If z were real (and outside [0, 1]), we would compute this integral as ln(z) − ln(z − 1) = ln z
z−1

.
This is also the correct answer for z ∈ C+, provided we are comfortable taking logarithms of
complex numbers. For an alternative expression, let’s “realize” the denominator, written in terms
of z = x+ iy:

1

z − t
=

z − t
|z − t|2

=
x− iy − t

(x− t)2 + y2

and so

GU(x+ iy) =

∫ 1

0

x− t
(x− t)2 + y2

dt− iy
∫ 1

0

dt

(x− t)2 + y2
.

We can evaluate both of these integrals explicitly:

GU(x+ iy) =
1

2
ln

(
x2 + y2

(x− 1)2 + y2

)
− i
(

arctan

(
x

y

)
− arctan

(
x− 1

y

))
.

What can we learn from this function? Let’s focus on the (negative) imaginary part

−ImGU(x+ iy) =

(
arctan

(
x

y

)
− arctan

(
x− 1

y

))
.

We’ve only computed this when y > 0, but what happens as y ↓ 0? The answer depends on x. The
reader should verify that

lim
y↓0
−ImGU(x+ iy) = π1[0,1](x).
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But that’s (π times) the original density of U !

FIGURE 2.3. The graph of the negative imaginary part of the Steiltjes transform
GU(x+ iy) with y = 0.1, y = 0.01, and y = 0.001.

The result of Example 2.39 is not an accident. It works in general, and provides a robust way
to recover a probability density from its Stieltjes transform. We state this precisely as follows, in
the special case that the distribution is given by a continuous probability density function.

THEOREM 2.40 (Stieltjes Inversion). Let f be a continuous probability density function, and
let G : C+ → C− be its Stieltjes transform:

G(z) =

∫
R

f(t)

z − t
dt.

Then for all x ∈ R,

− 1

π
lim
y↓0

G(x+ iy) = f(x).

PROOF. Following the calculations in Example 2.39, but with a general density, we have

G(x+ iy) =

∫
R

f(t)(x− t− iy)

(x− t)2 + y2
dt

and so
−ImG(x+ iy) =

∫
R

y

(x− t)2 + y2
f(t) dt.

Making the change of variables s = t− x yields

−ImG(x+ iy) =

∫
R

y

s2 + y2
f(x+ s) ds.

Taking f out of the picture for the moment, note that (as computed above) for any y > 0∫
R

y

s2 + y2
ds = arctan

(
s

y

)∣∣∣∣∞
s=−∞

= π.

In other words: ϕy(s) = 1
π

y
s2+y2

is a probability density (it is evidently strictly positive). Indeed,
this is a rescaling of the Cauchy density (the usual example of a probability density with no finite
moments).
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We now use a trick: since ϕy is a probability density, for any constant c,
∫
R cϕy(s) ds = c. We

apply this with c = f(x), and compute that

− 1

π
ImG(x+ iy)− f(x) =

∫
R
ϕy(s)f(x+ s) ds−

∫
R
f(x)ϕy(s) ds

=

∫
R
[f(x+ s)− f(x)]ϕy(s) ds. (2.26)

Now, fix any small ε > 0. Because f is continuous at x, for all sufficiently small s, say |s| < δ, we
have |f(x+ s)− f(x)| < ε. Let’s break up the integral as such:∣∣∣∣∫

R
[f(x+ s)− f(x)]ϕy(s) ds

∣∣∣∣
≤
∫
R
|f(x+ s)− f(x)|ϕy(s) ds

=

∫ δ

−δ
|f(x+ s)− f(x)|ϕy(s) ds+

∫
|s|≥δ
|f(x+ s)− f(x)|ϕy(s) ds.

In the first integral, where |s| < δ, by assumption |f(x+ s)− f(x)| < ε, and so∫ δ

−δ
|f(x+ s)− f(x)|ϕy(s) ds ≤

∫ δ

−δ
εϕy(s) ds ≤

∫
R
εϕy(s) ds = ε.

For the second integral, note that for |s| > δ,

ϕy(s) =
1

π

y

s2 + y2
≤ 1

π

y

δ2 + y2
≤ y

πδ2
→ 0 as y ↓ 0.

Hence, we can take the limit

lim
y↓0

∫
|s|≥δ
|f(x+ s)− f(x)|ϕy(s) ds =

∫
|s|≥δ
|f(x+ s)− f(x)| lim

y↓0
ϕy(s) ds = 0.

(The interchange of the limit and the integral is justified by the Dominated Convergence Theorem,
if you want to get technical.)

Combining all this with (2.26), we have thus shown that, for any ε > 0,

lim
y↓0

∣∣∣∣− 1

π
ImG(x+ iy)− f(x)

∣∣∣∣ ≤ ε.

If this limit is ≤ ε for any positive number ε > 0, it cannot be anything other than 0, as we hoped
to show. �

REMARK 2.41. The probability density ϕy, a rescaling of the Cauchy density, plays a key role
above; this probability density is the “kernel” of the imaginary part of G. For that reason, some
authors call G the Cauchy transform instead of the Stieltjes transform.

REMARK 2.42. What is really going on here is that the probability density ϕy is getting closer
and closer to a “delta function” as y ↓ 0: it is concentrating all of its mass at 0, and so in the
limit, integrating against it just picks off the value of the function at 0. We’ve done the change of
variables, so we’re integrating f(x+s) against ϕy(s); this integral therefore approaches f(x+0) =
f(x).
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FIGURE 2.4. The graph of the rescaled Cauchy density ϕy(s) = 1
π

y
s2+y2

for y =
0.1, y = 0.05, and y = 0.01.

Great! We now have a robust tool, the Stieltjes transform, from which we can effectively
recover the density. But this is only useful if we can, in fact, compute the Stieltjes transform! Re-
member our game: we have computed the moments of a so-far-unknown distribution. The question
is: can we compute the Stieltjes transform G(z) of this distribution only knowing its moments?
The answer is, once again, yes, at least informally, by expanding a power series. Referring to
Definition 2.37, if Y is a random variable with moments E(Y k) = µk, then

GY (z) = E
(

1

z − Y

)
=

1

z
E
(

1

1− Y/z

)
=

1

z
E

(
∞∑
k=0

(Y/z)k

)
.

Assuming we can exchange the sum and the expectation, this gives

GY (z) =
1

z

∞∑
k=0

E((Y/z)k) =
∞∑
k=0

1

zk+1
E(Y k) =

∞∑
k=0

µk
zk+1

. (2.27)

Thus: GY is a simple power-series involving the moments! That is, of course, if we can justify
the above interchange of sum and E. As with the moment generating function, the key is (uniform
enough) convergence of the power series. From the root test, or the ratio test, we will therefore
have the more rigorous statement that: if there is a constant R > 0 with |µk| ≤ Rk, then (2.27)
holds true whenever |z| > R. That’s not quite good enough for our purposes though: in order to
use the Stieltjes inversion formula of Theorem 2.40, we need to know the value of GY (z) for z
arbitrarily close to each point in R, not just those z outside some potentially large disk. In practice,
the power series (2.27) will converge to a (complex analytic) function that is defined on all of
C+, and there will be no problem. (Fully justifying this requires some complex analysis; we will
content ourselves with concrete computations going forward.)

To summarize: we now have a tool to find the density corresponding to our moments: we will
compute the power-series (2.27) for the moments µk in Theorem 2.32, and then apply the Stieltjes
inversion formula of Theorem 2.40 to recover the density.
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2.6. The Marčenko–Pastur Distribution

Following Corollary 2.23 and Theorem 2.32, we now have the tools to compute the asymptotic
probability densities of the Wishart ensembles. The asymptotic moments are given in Theorem
2.32 as

µk =
k∑
r=1

1

r

(
k

r − 1

)(
k − 1

r − 1

)
%r. (2.28)

They depend on the parameter %, the asymptotic aspect ratio of the m × N feature matrix X for
which the Wishart matrix is W = 1

N
X>X; so we will label the asymptotic density as f%. To

determine this density, we will first compute the Stieltjes transform G% associated to this unknown
density:

G%(z) =

∫
R

f%(t)

z − t
dt =

∞∑
k=0

µk
zk+1

cf. (2.27).
One approach would be to now substitute in the moments µk from (2.28), and try to sum

this series directly. One might hope to interchange the order of the summations and use some nice
binomial coefficient identities to come up with an explicit formula for the sum. This approach does
not really work, unfortunately. Instead, we will use a different characterization of the moments µk
which is actually an intermediate step on the way to finding the explicit formula (2.28) (which we
did not discuss in Section 2.4, but would have come up from the combinatorial arguments that lead
to the explicit formula for the moments.

PROPOSITION 2.43. The moments µk of (2.28) are uniquely characterized by the following
double recursion: µ0 = ϑ0 = 1 and, for k ≥ 1,

µk = %
k∑
j=1

ϑk−jµj−1 ϑk =
k∑
j=1

µk−jϑj−1. (2.29)

The auxiliary number ϑk are also determined by this recursion, but do not have a direct meaning
to our original problem. These two numbers arise as weighted sums of the number of steps taken
by certain walk on graphs that arise from the Wishart moment problem.

In order to use Proposition 2.43 to calculate G%, we’re going to introduce two new “moment
generating functions” associated to the two sequences (µk)

∞
k=0 and (ϑk)

∞
k=0.

M(ζ) =
∞∑
i=0

µiζ
i T (ζ) =

∞∑
j=0

ϑjζ
j. (2.30)

These two power series will converge for |ζ| small, provided the sequences (µi)
∞
i=0 and (ϑj)

∞
j=0

don’t grow faster than exponentially; this fact will come out of the analysis, so the following
computations will be well-justified. Note that, if we can compute the function M(ζ) explicitly,
then our task (to compute G%) is complete, because

G%(z) = 1
z
M(1

z
). (2.31)

Great. So, how do we compute M(ζ)? The key is to notice that the recursive relationship between
the coefficients µi and ϑj is familiar: it comes from power series multiplication. If we multiply
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M(ζ) and T (ζ), we get

M(ζ)T (ζ) =

(
∞∑
i=0

µiζ
i

)(
∞∑
j=0

ϑjζ
j

)
=

∞∑
i,j=0

µiϑjζ
i+j.

This is still a power series in ζ , so it makes sense to label it by the powers of ζ; hence, we introduce
a new index n = i+ j:

M(ζ)T (ζ) =
∞∑
n=0

∑
i,j≥0
i+j=n

µiϑjζ
i+j =

∞∑
n=0

ζn
∑
i,j≥0
i+j=n

µiϑj.

The inside double sum is really just the sum over i ∈ {0, 1, . . . , n}, where j = n− i:

M(ζ)T (ζ) =
∞∑
n=0

ζn
n∑
i=0

µiϑn−i. (2.32)

The inside sum giving the coefficient of ζn is very close to the first sum in (2.29). Indeed, to
compare:

k∑
j=1

ϑk−jµj−1 = ϑk−1µ0 + ϑk−2µ1 + ϑk−3µ2 + · · ·+ ϑ0µk−1

while
n∑
i=0

µiϑn−i = µ0ϑn + µ1ϑn−1 + · · ·+ µn−1ϑ1 + µnϑ0.

Matching these two, we see that they are identical if we set n = k − 1. Since the former is (up to
a factor of %) the coefficient of ζk in the power series M(ζ), we do the following:

M(ζ)T (ζ) =
1

ζ

∞∑
n=0

ζn+1

n∑
i=0

µiϑn−i =
1

ζ

∞∑
k=1

ζk
k−1∑
i=0

µiϑk−1−i

where we have reindexed k = n+ 1. For the inside sum, if we reindex k = i+ 1, we recover
k−1∑
i=0

µiϑk−1−i =
k∑
j=1

µj−1ϑk−j

as we’d hoped. The conclusion, now using (2.29), is that

M(ζ)T (ζ) =
1

ζ

∞∑
k=1

ζk
k∑
j=1

µj−1ϑk−j =
1

ζ

∞∑
k=1

ζk · 1

%
µk.

This sum on the right-hand-size is almost the definition of M(ζ)! We just need to throw in one
missing term. Multiplying by %ζ on both sides, we have

%ζM(ζ)T (ζ) =
∞∑
k=1

µkζ
k = M(ζ)− 1. (2.33)

This gives us an equation for M(ζ), but involving the also-unknown T (ζ). However, we can do
nearly the same analysis to find such an equation for T (ζ) (involvingM(ζ)). Going back to (2.32),
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if we relabel the inside sum there with j = n− i, we have

M(ζ)T (ζ) =
∞∑
n=0

ζn
n∑
j=0

µn−jϑj

and now the inside sum resembles the second sum in (2.29), which defined ϑk. Now following the
above steps word-for-word, with the only difference being the lack of a factor of %, we find that

ζM(ζ)T (ζ) = T (ζ)− 1. (2.34)

Combining the two equations (2.33) and (2.34), we can actually solve for M(ζ) (and T (ζ)).

PROPOSITION 2.44. The power series M(ζ) of (2.30) satisfies the quadratic equation

ζM(ζ)2 + ((%− 1)ζ − 1)M(ζ) + 1 = 0. (2.35)

PROOF. Comparing (2.33) and (2.33), we see that M(ζ) − 1 = %(T (ζ) − 1), and therefore
%T (ζ) = M(ζ) + %− 1. Substituting this into (2.33), we have

ζM(ζ)(M(ζ) + %− 1) = M(ζ)− 1

and this simplifies to (2.35). �

We could now solve this quadratic equation for M(ζ), but remembering that our goal is to find
the function G%(z), it will be neater to substitute back using (2.31) first. Letting z = 1

ζ
in (2.35),

we have
1
z
M(1

z
)2 + ((%− 1)1

z
− 1)M(1

z
) + 1 = 0.

Since M(1
z
) = zG%(z), this says

1

z
(zG%(z))2 + ((%− 1)

1

z
− 1) · zG%(z) + 1 = 0.

Simplifying this, we can now find an explicit formula for the desired Steiltjes transform G%(z).

COROLLARY 2.45. The Stieltjes transform G% satisfies the quadratic equation

zG%(z)2 + (%− 1− z)G%(z) + 1 = 0. (2.36)

The solution can be expressed as follow. Let

%± = (1±√%)2. (2.37)

Then

G%(z) =
z − %+ 1−

√
(z − %−)(z − %+)

2z
. (2.38)

PROOF. This is just the quadratic formula. The discriminant (under the root) is

(%− 1− z)2 − 4z = z2 − 2(1 + %)z + (1− %)2

and this factors as (z − %−)(z − %+) as above. �

REMARK 2.46. We are accustomed to write ±√ in the quadratic formula. In this case, it
doesn’t make so much sense to write± since it is the square root of a complex number; while there
are two roots, they are not ± some positive real number. We have chosen to use the minus sign
here, with a bit of fore-knowledge that this will work out to give the correct answer in the next
calculation.
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We are finally in a position to calculate the exact (limit) density of eigenvalues for Wishart
ensembles. We need only apply the Stieltjes inversion Theorem 2.40 to the function G% we’ve just
finished calculating. The result is as follows.

THEOREM 2.47. Let % ≥ 1, and let (mN)∞N=1 be a sequence of positive integers satisfying
limN→∞

mN
N

= %. Let W = WmN ,N be a Wishart matrix of size mN × N , with eigenvalue
ensemble (λ(N)). Then for any a < b,

lim
N→∞

h[a,b](λ
(N)) = lim

N→∞

1

N
#{j : λ

(N)
j ∈ [a, b]} =

∫ b

a

f%(x) dx

where

f%(x) =

√
(x− %−)(%+ − x)

2πx
1[%−,%+](x) (2.39)

where %± are defined in (2.37). This function is called the Marčenko–Pastur density.

PROOF. Following Corollaries 2.23, 2.33, and 2.45, we must simply apply the Stieltjes inver-
sion formula to the function G% in (2.38):

f%(x) = − 1

π
lim
y↓0

ImG%(x+ iy).

To evaluate this limit, as usual, it is easiest to realize the denominator: multiplying by z in numer-
ator and denominator of (2.38), and using z = x+ iy, we have

G%(z) =
|z|2 + (1− %)z − z

√
(z − %−)(z − %+)

2|z|2

=
1

2
+

(1− %)(x− iy)

2(x2 + y2)
− x− iy

2(x2 + y2)

√
(z − %−)(z − %+).

Now we must take − 1
π

times the imaginary part. The first two terms are:

− 1

π
Im

(
1

2
+

(1− %)(x− iy)

2(x2 + y2)

)
= (1− %)

y

2π(x2 + y2)
. (2.40)

Here, provided x 6= 0, the limits as y ↓ 0 is 0, so we can ignore this term (so long as there is no
mass at x = 0). For the last term, we have a product of two fully complex numbers. Noting that
Im[(a+ ib)(c+ id)] = ad+ bc, we have

− 1

π
Im

(
− x− iy

2(x2 + y2)

√
(z − %−)(z − %+)

)
=

1

2π(x2 + y2)
Im
(

(x− iy)
√

(z − %−)(z − %+)
)

=
1

2π(x2 + y2)

(
x · Im

(√
(z − %−)(z − %+)

)
− y · Re

(√
(z − %−)(z − %+)

))
. (2.41)

We can now take y ↓ 0. Again, provided x 6= 0, y
2π(x2+y2)

→ 0, and so the second term vanishes in

the limit. For the first term, as y ↓ 0,
√

(z − %−)(z − %+) →
√

(x− %−)(x− %+). The quadratic
under the square root has zeroes at x = %±, and is a convex quadratic; hence, it is negative for
x ∈ (%−, %+) and positive for x outside this interval. Thus means that

Im
(√

(x− %−)(x− %+)
)

=
√
−(x− %−)(x− %+)1[%−,%+](x).
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Sine x
2π(x2+y2)

→ 1
2πx

, this yields (2.39), and concludes the proof. �

FIGURE 2.5. The graphs of the Marčenko–Pastur density f% for % = 1, 2, 4.

As seen in Figure 2.5, f1 has a vertical asymptote at x = 0; for % > 0 the lower bound of the
support %− = (1 − √%2) is strictly positive and the denisty is continuous everywhere. There are
some numerical artifacts in the figure, resulting in the density not being fully drawn near %− in
each case; the function f%(x) does come smoothly and sharply down to 0 as x ↓ %+.

We have now identified the “shape of random noise”: if the data points xj (the columns of
X) are all (centered) independent random vectors, with independent entries, then the histogram of
nonzero eigenvalues of the sample covariance matrix 1

N
XX> (which are the same as the nonzero

eigenvalues of W = 1
N

X>X) has a deterministic shape that depends only on the aspect ratio
% of the feature matrix X. In particular, the top end of the histogram of eigenvalues ends at
%+ = (1 +

√
%)2.

This suggests that, in a real-world data set (of dimension m greater than the number N of
sample points), when doing PCA, we should look only for eigenvalues of the sample covariance
matrix that are bigger than %+. We should be careful, however: the setup above does not necessarily
mean that a pure noise matrix cannot have eigenvalues larger than this, even as N →∞. After all,
what we have proved is the following: if a > %+, then

lim
N→∞

1

N
#{j : λ

(N)
j > a} =

∫ ∞
a

f%(x) dx = 0. (2.42)

So the proportion of eigenvalues that are larger than %+ is asymptotically 0. But that doesn’t
prevent the largest eigenvalue, or even the largest million eigenvalues from being larger in the
limit. Indeed, let L(N) = #{j : λ

(N)
j > %+}; then (2.42) tells us that

lim
N→∞

L(N)

N
= 0.

If L(N) = max{N, 106}, or even L(N) =
√
N , this is perfectly consistent with what we’ve proved.
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In practice, if you start doing simulations of the largest eigenvalue λ(N)
1 of a Wishart ensemble,

you will see the following stronger fact holds true.

THEOREM 2.48 (Bai, Yin, 1993). Under the same conditions as in Theorem 2.47, with the
additional assumption that the entries [X]ij of the (random noise) feature matrix have finite 4th
moments, we have

lim
N→∞

λ
(N)
1 = %+ and lim

N→∞
λ

(N)
N = %−

with probability 1. That is: the largest and smallest eigenvalues converge almost surely to the
edges of the support of the Marčenko–Pastur density.

This theorem was a major achievement, published in the Annals of Probability. The method
of proof is beyond the tools we have developed, although it is in the same ball-park. We saw in
Section 2.4 that, to understand the bulk density of eigenvalues, it sufficed to compute the large-N
limits of trN(Wk). A similar but more involved argument, invented by Bai and Yin, shows that
to understand the extreme (largest and smallest) eigenvalues, it suffices to understand the large-N
limits of trN(WkN ), where now the power k = kN must be allowed to grow as N grows (at least
logarithmically fast) toward ∞. The resulting proof thus delves even deeper into combinatorial
structures that arise from these expansions. We will not discuss this further at present, and will
satisfy ourselves with the truth of Theorem 2.48.

Let’s investigate the density f% further, particularly in the case that % < 1. After all, we have
been making the assumption that m ≥ N , but our analysis above didn’t seem to explicitly rely
on this assumption. As the next computation shows, something strange does happen as % falls
below 1. It is fairly evident that f% is a non-negative function for any % > 0; however, we have the
following.

PROPOSITION 2.49. Let f% be the function defined in (2.39), for any % > 0. Then∫
R
f%(x) dx =

∫ %+

%−

f%(x) dx =

{
1, % ≥ 1

%, % ∈ (0, 1).

PROOF. It turns out that the antiderivative of f% can be explicitly computed, with some clever
tricks. For any positive a < b, let us introduce the function r(x) = (x− a)(b− x). Then f%(x) is
a constant multiple of

√
r(x)/x with a = %− and b = %+. Now, notice the following:

r(x) = −x2 + (a+ b)x− ab
= x(−x+ (a+ b))− ab

while r′(x) = −2x+ (a+ b). By comparison,

2

x
(r(x) + ab) =

2

x
· x(−x+ (a+ b)) = −2x+ 2(a+ b).

Thus

r′(x) =
2

x
(r(x) + ab)− (a+ b)

which we can rearrange to give

r′(x)

2
=
r(x)

x
+
ab

x
− a+ b

2
.
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Now restricting to x ∈ (a, b) where r(x) > 0, we can divide through by
√
r(x) to yield

r′(x)

2
√
r(x)

=

√
r(x)

x
+

ab

x
√
r(x)

− a+ b

2
√
r(x)

.

The left-hand-side is the derivative of
√
r(x), and so we find that√

r(x) =

∫ √
r(x)

x
dx+ ab

∫
dx

x
√
r(x)

− a+ b

2

∫
dx√
r(x)

or, rearranging, ∫ √
r(x)

x
dx =

√
r(x) +

a+ b

2

∫
dx√
r(x)

− ab
∫

dx

x
√
r(x)

. (2.43)

The two integrals on the right-hand-side of (2.43) can each be evaluated using standard trigono-
metric substitutions. ∫

dx√
r(x)

= arcsin

(
2x− (a+ b)

b− a

)
(2.44)∫

dx

x
√
r(x)

=
1√
ab

arcsin

(
(a+ b)x− 2ab

x(b− a)

)
. (2.45)

Combining (2.43) with (2.44) and (2.45) gives an explicit formula for the antiderivative of
√
r(x)/x.

We only care about the integral over the interval [a, b], so we can just evaluate. Note that r(a) =
r(b) = 0, so the first term in (2.43) doesn’t contribute; we therefore have∫ b

a

√
r(x)

x
dx =

a+ b

2

[
arcsin

(
2b− (a+ b)

b− a

)
− arcsin

(
2a− (a+ b)

b− a

)]
−
√
ab

[
arcsin

(
(a+ b)b− 2ab

b(b− a)

)
− arcsin

(
(a+ b)a− 2ab

a(b− a)

)]
.

The terms inside the arcsin’s are ±1, and so the differences becomes π
2
− (−π

2
) = π; thus∫ b

a

√
r(x)x dx = π

(
a+ b

2
−
√
ab

)
.

Finally, specializing the the Marčenko–Pastur density: we have a = %−, b = %+, and f%(x) =√
r(x)

2πx
; therefore ∫ %+

%−

f%(x) dx =
1

2π
· π(%− + %+ −

√
%−%+).

Since %± = (1±√%)2,

%− + %+ = (1 + 2
√
%+ %) + (1− 2

√
%+ %) = 2(1 + %)

and
%−%+ = [(1−√%)(1 +

√
%)]2 = (1− %)2. (2.46)

Therefore
√
ρ−ρ+ = |1− %|, and so∫ %+

%−

f%(x) dx =
1

2
(1 + %− |1− %|).

This establishes the result. �
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Thus, when % < 1, f% is not a probability density! This seems very problematic: how can it
describe the asymptotic density if eigenvalues if it is not a density? To understand what happened,
let’s return to the matrix W = Wm,N . When % < 1, this means that m

N
< 1 (for large m and N ).

Now, W = 1
N

X>X, and X is m × N . Thus W is N × N ; but since m ≤ N , the rank of X, and
therefore the rank of W, cannot exceed m. This means that all but at most m eigenvalues of W
must be 0. In other words:

When m ≤ N , the proportion of eigenvalues of W that are equal to 0 is at least 1− m
N

.

Since we are dealing with the scaling regime where m
N
→ %, this means that we expect to see

a spike in the histogram: there is a point mass of weight at least 1 − % at 0. In other words: there
is no density of eigenvalues; the distribution of eigenvalues is a probability distribution that is not
continuous. But it isn’t far off: it mostly has density f%, but it also has a spike at 0; so we might
(somewhat informally) write the “density” of eigenvalues as

(1− %)δ0 + f%. (2.47)

Here, δ0 stands for a unit mass at 0; in other words, it is the (discrete) distribution of a “random”
variable that takes value 0 with probability 1. So (2.47) is short hand for: the random variable
has probability (1 − %) of equaling 0, and is otherwise given by density % when % ∈ (0, 1). More
pedantically, if we let F% denote the cumulative distribution function, the statement is that

F%(t) =


0, t < 0

1− %, 0 ≤ t < %−
1− %+

∫ t
%−
f%(x) dx, t ≥ %−

for % < 1. (2.48)

By comparison,

F%(t) =

{
0, t < %−∫ t
%−
f%(x) dx, t ≥ %−

for % ≥ 1. (2.49)

The question is: why did we not see this come out of our analysis for the Stieltjes transform, in
Theorem 2.47? The answer is that we did see it, we were just a tiny bit careless. If you review the
proof again, in particular (2.40), you see that all of the limit statements required the assumption
x 6= 0 to really work. If we knew that the result would be a probability density, that didn’t matter,
since a probability density assigns 0 mass to any point. We now know that it was incorrect to
assume there would be a density, at least in the case % < 1. Looking again very carefully at (2.40)
and (2.41), in the case x = 0, we see that for y > 0,

− 1

π
ImG%(0 + iy) = (1− %)

y

2π(02 + y2)
+
−y · Re

(√
(0 + iy − %−)(0 + iy − %+)

)
2π(02 + y2)

.

Now, note that
lim
y↓0

√
(0 + iy − %−)(0 + iy − %+) =

√
%−%+ = |1− %|

from (2.46). Therefore (being a little fast and loose with limits here), we should expect that

− 1

π
lim
y↓0

ImG%(0 + iy) =
1

2π
(1− %− |1− %|) lim

y↓0

y

0 + y2
.

The coefficient should have come out to 1− % + |1− %|; there is a sign error somewhere and
I haven’t been able to find it. When % ≥ 1, 1− % + |1− %| = 0, and so the analysis in the proof
of Theorem 2.47 is completely correct (confirmed by the fact that f% really is a probability density
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in that case). But when % < 1, 1
2π

(1 − % − |1 − %|) = 1
π
(1 − %). This is where the additional

point-mass at x = 0 comes from in this case, from the Stieltjes transform analysis.

REMARK 2.50. Of course, limy↓0
y

0+y2
= limy↓0

1
y

does not actually exist; it diverges to +∞. It
is not literally true that− 1

π
G%(x+ iy) converges, as a function, to (1−%)δ0(x) + f%(x) as y ↓ 0. If

we were being very precise, we would be using the notion of “weak convergence”, which identifies
limits not directly but when integrated against “test functions”. If one performs that analysis, one
doesn’t literally have 1

π
y

0+y2
here but rather 1

π
y

s2+y2
for a new auxiliary integration variable s. Recall

that this is what we called the Cauchy density ϕy(s) in the proof of Theorem 2.40, and in that proof
we showed that

∫
ϕy(s)ψ(s) ds→ ψ(0) as y ↓ 0. That is the proper sense of convergence to δ0.

Let’s conclude this section, and chapter, but fully stating the Marčenko–Pastur result, both for
Wishart matrices W = 1

N
X>X and the corresponding sample covariance matrices C = 1

N
XX>.

THEOREM 2.51. Let % > 0, and let f% be the function defined in (2.39). Let (mN)∞N=1 be a
sequence of positive integers satisfying limN→∞

mN
N

= %. Let XN be an mN × N feature matrix
whose entries are all i.i.d. N (0, 1) random variables. Define

WN =
1

N
X>NXN and CN =

1

N
XNX>N .

Let a < b. As N →∞, the proportion of eigenvalues of WN in [a, b] converges to
∫ b

a

f%(x) dx, if % ≥ 1

(1− %)1[a,b](0) +

∫ b

a

f%(x) dx, if % ∈ (0, 1).

Also, as N →∞, the proportion of eigenvalues of CN in [a, b] converges to
∫ b

a

1

%
f%(x) dx, if % ∈ (0, 1)

(1− 1
%
)1[a,b](0) +

∫ b

a

1
%
f%(x) dx, if % ≥ 1.

PROOF. The statement for WN was fully justified in the discussion on the last two pages.
(The proportion in question can be written in terms of the cumulative distribution function F% as
F%(b) − F%(a). When the CDF has a jump, as this one does when % < 1, this gives a term of
the jump height when the jump point is in the interval, which we write as (1 − %)1[a,b](0).) For
CN , Corollary 2.33 shows that the moments trN(Wk

N) and trN(Ck
N) are off by a constant factor

of % (when k ≥ 1), which is what leads to the density being 1
%
f% in this case; and the structural

point-mass at x = 0 is now in the case % > 1 instead of % < 1, due to the matrix CN being m×m
rather than N ×N . The details are left to the reader. �





CHAPTER 3

The BBP Phase Transition

In the last chapter, we dealt with the baseline situation that our m × N feature matrix X is
completely random: all the columns xj ∈ Rm are independent from each other (representing the
usual model of random sampling), and each of theN random vectors xj is distributed as a standard
normal N (0, Im). We found a universal profile of the eigenvalues of the sample covariance matrix
1
N

XX> in this case, the Marčenko–Pastur distribution.
We now wish to consider a model of a more realistic situation: where there actually is some

structure/signal in the data. We have already considered the model (Problem 4 on the Midterm)
where xj = vj + Zj where vj are fixed (deterministic) vectors and Zj are independent Gaussian
noise (and we saw this model led to PCA as the MLE for estimating the subspace spanned by the
vj). However, this model doesn’t quite fit many data sets, where we expect that the data points are
all independent samples of the same distribution. If we wish to enforce that assumption with the
above model, this would require all the deterministic points vj to be equal to some fixed vector v.
The problem with this is that then the sample mean would be xN = v+ZN , and so we would have

x◦j = xj − xN = (vj + Zj)− (v + ZN) = Zj − ZN = Z◦j .

That is: after centering, there is no dependence on v, and so the sample covariance matrix is the
same as the pure noise case: the eigenvalues will follow the Marčenko–Pastur distribution, with
the largest and smallest eigenvalues sticking to the edge as in Theorem 2.48.

3.1. Spiked Covariance Models

How can we model structure/signal in independent samples? The idea is to allow the signal to
be a little noisy as well. After all, there are probably several sources of noise: environmental, mea-
surement error, and perhaps some inherent randomness in the underlying signal itself. Therefore,
we more accurately model the data as

xj = Gj + Zj

where the Zj are i.i.d. standard normal random vectors N (0, Im) (the environmental noise), and
Gj is another Gaussian random vector, independent from Zj , this time with a possibly non-trivial
mean µ and covariance C:

Gj ∼ N (µ, C), 1 ≤ j ≤ N.

We can immediately dispense with µ: as in the simpler model in the last paragraph, it will wash
out after centering to form the sample covariance matrix. So we model Gj ∼ N (0, C) for some
non-identity covariance C. This is an m × m matrix; we are expecting the data to “live in” a
lower-dimensional affine subspace, and this will be reflected in C being a low-rank matrix. (I.e.
the signal / structure is encoded in C.)

To begin analyzing this model, we should note what is the true covariance of the random
vector x1 (which is the same as for all the other xj). Denoting the components of the vector x1 as

61
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[x1
1, . . . , x

m
1 ]> (and similarly with Gi

1 and Zi
1), we have

Cov(xi1, x
j
1) = Cov(Gi

1 + Zi
1, G

j
1 + Zj

1) = Cov(Gi
1, G

j
1) + Cov(Zi

1, Z
j
1)

where the cross-terms are 0 because G1 and Z1 are independent. By definition, this means

Cov(x1) = Cov(G1) + Cov(Z1) = C + Im.

Hence, our model is that the (true) covariance of each data point is a perturbation of the identity:
I + C where (hopefully) C is a low rank matrix. Let’s formalize this.

DEFINITION 3.1. Fix a positive integer r. A spiked covariance model of rank r is a random
matrix X ∈ Mm×N , where the columns of X are i.i.d. Gaussian random vectors with covariance
Im + Cr, where Cr is a positive semi-definite matrix of rank r.

We would now like to study the sample covariance matrix (or corresponding Wishart matrix)
of the given feature matrix XN . Before doing so, we note that a simplification comes quickly from
Definition 3.1. The matrix Cr is symmetric, and so it can be diagonalized: Cr = QDrQ

> where
the eigenvector matrix Q is in O(m), and Dr has the form

Dr =


γ1

γ2

. . .
γr

0m−r

 (3.1)

with non-zero eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γr > 0. The matrix Im + Cr and the matrix Im + Dr

are similar. Indeed:
Im + Cr = Im +QDrQ

> = Q(Im +Dr)Q
>.

This observation basically allows us to discard Cr and replace it with Dr.

LEMMA 3.2. If X is a spiked covariance model, with covariance Im + Cr, and (Q,Dr) are
defined as above, let A = QΛQ> where Λ is the diagonal matrix with [Λ]jj = (1 + γj)

−1/2 for
j ≤ r and [Λ]jj = 1 for j ≥ r. Then Z = AX has i.i.d. N (0, Im) columns.

The matrix A has been designed so that A2(Im + Cr) = Im; i.e. A = (Im + Cr)
−1/2. That is

what is needed to make this lemma work.

PROOF. The jth column Zj of Z is AXj; since the Xj are i.i.d., so are the Zj . It is a standard
multivariate calculus exercise that any linear transformation of a (centered) Gaussian random vec-
tor is a (centered) Gaussian random vector, so Zj is Gaussian with mean 0. It just behooves us to
calculate its covariance matrix. This is a standard calculation. It suffices to work with Z1. For any
i, j ∈ [m],

Cov([Z1]i, [Z1]j) = Cov([AX1]i, [AX1]j).

By definition

[AX1]i =
m∑
a=1

[A]ia[X1]a.

Therefore

Cov([Z1]i, [Z1]j) = Cov

(
m∑
a=1

[A]ia[X1]a,
m∑
b=1

[A]jb[X1]b

)
.
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Since Cov is a bilinear form (i.e. linear in each of the two variable separately),

Cov([Z1]i, [Z1]j) =
m∑

a,b=1

[A]ia[A]jbCov([X1]a, [X1]b).

The covariance matrix of X1 is I + Cr, and so we can write this as

Cov([Z1]i, [Z1]j) =
m∑

a,b=1

[A]ia[A]jb[Im +Cr]ab =
m∑

a,b=1

[A]ia[Im +Cr]ab[A
>]bj = [A(Im +Cr)A

>]ij.

Now, employing the spectral decomposition of A = A> and Im + Cr, we have

A(Im + Cr)A
> = (QΛQ>)(Q(Im +Dr)Q

>)(QΛQ>) = QΛ(Im +Dr)ΛQ
>.

Diagonal matrices commute, so this is equal to QΛ2(Im +Dr)Q
>. The matrix Λ was designed so

that Λ2(Im +Dr) = Im, and so the whole matrix is just equal to QQ> = Im. Thus, the covariance
matrix of Z1 is Im; so Z1 ∼ Zj ∼ N (0, Im) as claimed. �

The upshot here is that, since Z = AX, we can express X = A−1Z; the matrix A in the lemma
is evidently invertible with A−1 = QΛ−1Q> and [Λ−1]jj = (1 + λj)

1/2 for j ≤ r and [Λ−1]jj = 1
for j > r. That is, any spiked covariance model can be expressed in the form A−1Z, where Z
has i.i.d. N (0, Im) columns: in other words, it is just a linear transformation composed with the
underlying feature matrix of the Wishart ensembles of the last chapter.

Now, let’s consider the corresponding Wishart matrices: W = 1
N

X>X. (Again, we ignore the
subtraction of the sample mean from the columns, since we assume N is large and since all the
vectors are centered normal, by the Laws of Large Numbers the sample mean will be close to 0.)
We simply observe that

X>X = (A−1Z)>(A−1Z) = Z>(A−1)>A−1Z.

Since A is symmetric, so is A−1, and so

X>X = Z>A−2Z.

But, by design, A−2 = Im + Cr; and so we have

X>X = Z>(Im + Cr)Z. (3.2)

This is an easy way to construct any spiked covariance model. Moreover, together with the spectral
decomposition, it gives us the following.

COROLLARY 3.3. Let X be a spiked covariance model, with covariance Im + Cr, and let
Cr = QDrQ

>, as in (3.1). Let X′ be a spiked covariance model, with covariance Im + Dr. Then
the random matrices X>X and (X′)>X′ have the same distribution.

PROOF. We simply continue the computation from above:

X>X = Z>(Im + Cr)Z = Z>Q(Im +Dr)Q
>Z = (Q>Z)>(Im +Dr)(Q

>Z).

Hence, to complete the proof, it suffices to show that the matrix Q>Z has the same distribution as
Z; i.e. it is an m×N matrix whose columns are i.i.d. N (0, Im) random vectors. To that end, note
that the columns of Q>Z are just Q>Zj (i.e. Q> times the columns of Z); since the columns of Z
are i.i.d. therefore so are the columns of Q>Z. Thus, it suffices to work with just the first column
Z1: we must show that if Z1 is a standard Gaussian random vector in Rm and Q ∈ O(m), then
Q>Z1 is also a standard random vector. For this we may appeal to the proof of Lemma 3.2: Q>Z1
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is another centered Gaussian random vector, whose covariance matrix is Q>(Q>)> = Q>Q = Im,
concluding the proof. �

Thus, when considering spiked covariance models, we need never consider anything more
general than a diagonal covariance: from the perspective of the corresponding Wishart matrix
1
N

X>X, the spiked covariance Im + Cr and the diagonal spiked covariance Im + Dr yield the
same distribution, and hence will have eigenvectors and eigenvalues of the same distributions.
Therefore, from this point forward, we restrict our attention to spiked covariance models with
diagonal covariance perturbation of the form (3.1).

REMARK 3.4. This seems quite remarkable. After all, having diagonal covariance means that
the data points, the columns of X, still have all independent entries. So we have not really in-
troduced any correlations at all – just rescaled the variances of the first r entries. How can this
yield all the information in our signal? The answer is: it doesn’t, but that’s because we’re look-
ing at the Wishart ensemble W = 1

N
X>X. Our original goal, performing PCA, requires finding

the eigenvectors of the sample covariance matrix C = 1
N

XX>. While W and C have the same
nonzero eigenvalues, their eigenvectors are quite different. The discussion above shows that the
(random) eigenvectors of W′ = 1

N
(X′)>X′ are the same, in distribution, as those of W = 1

N
X>X.

But the two matrices C′ = 1
N

X′(X′)> and C = 1
N

XX> can have very different eigenvectors. In-
deed, recalling that X = A−1Z with A symmetric,

NC = XX> = A−1Z(A−1Z)> = A−1ZZ>A−1 = QΛ−1Q>ZZ>QΛ−1Q>. (3.3)

On the other hand, X′ can be constructed in the form A−1Z, where A2(Im + Dr) = Im; this is
precisely the Λ above. Hence

NC′ = X′(X′)> = Λ−1ZZ>Λ−1.

As noted above, Z ∼ Q>Z, and so

NC′ ∼ Λ−1(Q>Z)(Q>Z)>Λ−1 = Λ−1Q>ZZ>Q>Λ−1.

Comparing this to (3.3), we see that C and C′ do not agree in distribution, although they are related
by a similarity transform. Hence, their eigenvalues are the same, but their eigenvectors will not
agree. It is the eigenvectors of C that are of interest to us: they are the principal components.
The tl;dr is that the reduction to only diagonal spiked covariances is fine when looking only at
the eigenvalues; when information about the actual principal components is needed at the end, the
original full (not necessarily diagonal) spiked covariance is needed.

3.2. Bulk Eigenvalue Distribution of Spiked Covariance Models

The last chapter was devoted to understanding the behavior of the (random) eigenvalues of
a Wigner matrix X>X where X ∈ Mm×N has i.i.d. entries (with mean 0 and variance 1) and
m,N → ∞ such that m/N → % > 0. Following Corollary 3.3 and the preceding discussion, we
now return to denoting by X an m × N feature matrix that is pure noise (with all i.i.d. entires of
mean 0 and variance 1); i.e. we dispense with Z (in the Gaussian case) and again call it X. We
want to understand more general “Wishart” matrices corresponding to spiked covariance models,
of the form

WC =
1

N
X>CX

where C = Im + Dr is a low-rank diagonal perturbation of the identity matrix, cf. (3.1). As in
Section 2.4, to understand the bulk behavior of the eigenvalues, it will suffice to compute their
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sample moments (asymptotically), and therefore, as before, we wish to compute the (expected)
matrix moments

trN [Wk
C ], k ∈ N.

As a warm-up, we begin with the case k = 1. Note that

trN(WC) =
1

N2

N∑
i=1

[X>CX]ii =
1

N2

N∑
i=1

m∑
a,b=1

[X>]ia[C]ab[X]bi. (3.4)

Fortunately, C is a diagonal matrix, so [C]ab = 0 if a 6= b. Thus

trN(WC) =
1

N2

m∑
a=1

[C]aa

N∑
i=1

[X>]ia[X]ai =
1

N2

m∑
a=1

[C]aa

N∑
i=1

[X]2ai.

This is close to the expression we found for the trace of the first moment of a Wishart matrix, in
Example 2.18. Indeed, let’s compare (denoting the standard Wishart matrix as WI since it is the
“spiked” Wishart matrix with covariance C = I):

trN(WC)− trN(WI) =
1

N2

m∑
a=1

[C]aa

N∑
i=1

[X]2ai −
1

N2

m∑
a=1

N∑
i=1

[X]2ai

=
1

N2

m∑
a=1

[C − Im]aa

N∑
i=1

[X]2ai.

Now, C = Im +Dr, and so [C − Im]aa = [Dr]aa; this is 0 whenever a > r. We have

trN(WC)− trN(WI) =
1

N2

r∑
a=1

γa

N∑
i=1

[X]2ai.

To understand the asymptotic behavior of this random variable, we begin with its expectation:

E [ trN(WC)− trN(WI)] =
1

N2

r∑
a=1

γa

N∑
i=1

E
(
[X]2ai

)
=

1

N

r∑
a=1

γa

since E ([X]2ai) = 1 for all (a, i). Since r is fixed, not varying withN ,
∑r

a=1 γa is just some positive
constant, and so E [ trN(WC)− trN(WI)] → 0 as N → ∞ (regardless of the behavior of m, in
fact). Actually, not just the expected value, but the actual random variable trN(WC)− trN(WI)
converges to 0 as N →∞; this can be seen by computing the variance. Indeed, all of the random
variables γa[X]2ai are independent (over all choices of (a, i)), and therefore

Var ( trN(WC)− trN(WI)) =
1

N4

r∑
a=1

N∑
i=1

Var(γa[X]2ai).

The 1
N4 comes from the relation Var(aY ) = a2Var(Y ). For the same reason, Var(γa[X]2ai) =

γ2
aVar([X]2ai). As the [X]ai are all identically distributed, Var([X]2ai) = Var([X]211) is constant (in

the usual model we’re employing where these are N (0, 1) random variables, the constant is 3).
Thus

Var ( trN(WC)− trN(WI)) =
Var([X]211)

N4

r∑
a=1

N∑
i=1

γ2
a =

Var([X]211)

N3

r∑
a=1

γ2
a.
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Again, since r is fixed, independent of N , this tends to 0 as N →∞. Thus

lim
N→∞

[ trN(WC)− trN(WI)] = 0.

(The limit is in probability; however, since the variance is actuallyO(1/N3), by the Borel–Cantelli
lemma, it is also almost sure.) As we showed in Example 2.18, trN(WI) converges to % = lim m

N
,

and so we conclude that also trN(WC)→ % in this scaling regime.

REMARK 3.5. We didn’t even have to assume r is fixed for this calculation to work. In fact,
we could perfectly well have r = m, with a full-rank perturbation, provided that the two sums

m∑
a=1

γa,

m∑
a=1

γ2
a

are both uniformly bounded as m grows. As we proceed in the sequel, we would need higher
powers and more complicated sums for this to work, so we will stick to the low-rank situation
where r does not grow with N and m.

Following this line of reasoning, we can approach the higher moments similarly.

THEOREM 3.6. Let k ∈ N, and let m,N →∞ such that m/N → % > 0. Let C = Im +Dr be
a low-rank diagonal perturbation of the identity covariance. Then

lim
N→∞

[ trN(Wk
C)− trN(Wk

I )] = 0.

PROOF. We begin by expanding trN [Wk
C ] exactly as in (2.19):

trN [Wk
C ] =

1

N

N∑
i1,...,ik=1

[WC ]i1i2 [WC ]i2i3 · · · [WC ]ik−1ik [WC ]iki1 .

Now, WC = 1
N

X>CX where C is diagonal, and so following the inside sum in (3.4), we have

[WC ]ij =
1

N

N∑
a=1

[X]ai[C]aa[X]aj.

Hence

trN [Wk
C ] =

1

Nk+1

N∑
i1,...,ik=1

m∑
a1,...,ak=1

[X]a1i1 [C]a1a1 [X]a1i2 · · · [X]akik [C]ikik [X]aki1

=
1

Nk+1

m∑
a1,...,ak=1

[C]a1a1 · · · [C]akak

N∑
i1,...,ik=1

[X]a1i1 [X]a1i2 · · · [X]akik [X]aki1 .

Comparing this to (2.20),

trN(Wk
I ) =

1

Nk+1

N∑
i1,...,ik=1

m∑
a1,a2,...,ak=1

[X]a1i1 [X]a1i2 [X]a2i2 [X]a2i3 · · · [X]akik [X]aki1

we see that the sums are closely aligned. Subtracting them, we have

trN [Wk
C ]− trN [Wk

I ]

=
1

Nk+1

m∑
a1,...,ak=1

([C]a1a1 · · · [C]akak − 1)
N∑

i1,...,ik=1

[X]a1i1 [X]a1i2 · · · [X]akik [X]aki1 .
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Now, C = Im +Dr, and so [C]aa = 1 when a > r. Hence, in the sum over a1, . . . , ak, when all of
the aj > r, the product [C]a1a1 · · · [C]akak is equal to 1. This means the sum only goes up to r. We
can also substitute in the values [C]aa = 1 + γa for a ≤ r:

trN [Wk
C ]− trN [Wk

I ]

=
1

Nk+1

r∑
a1,...,ak=1

((1 + γa1) · · · (1 + γak)− 1)
N∑

i1,...,ik=1

[X]a1i1 [X]a1i2 · · · [X]akik [X]aki1 .

Taking expected values,

E
(

trN [Wk
C ]− trN [Wk

I ]
)

=
1

Nk+1

r∑
a1,...,ak=1

((1 + γa1) · · · (1 + γak)− 1)
N∑

i1,...,ik=1

E ([X]a1i1 [X]a1i2 · · · [X]akik [X]aki1) .

The expected value of the product factors as a product of moments of the i.i.d. entries. The story of
exactly which factorizations correspond to which indices involves partitions and gets complicated
as we know; however, for our purposes, we only need an estimate. To simplify matters slightly,
we make one assumption here: the the density of the entries [X]ai is symmetric. (If we stick with
the N (0, 1) assumption, this holds true.) That means that all odd moments are 0, while the even
moments (being expected values of an even power) are non-negative. Consequently, all the terms in
the above sum are non-negative. Additionally, since each γa > 0, the terms (1+γa1) · · · (1+γak)−1
are all positive as well. There are a fixed, finite number of such terms, and so they have a global
maximum

M = max{(1 + γa1) · · · (1 + γak)− 1: 1 ≤ a1, . . . , ak ≤ r}.

Thus, we can make the estimate

E
(

trN [Wk
C ]− trN [Wk

I ]
)
≤M · 1

Nk+1

r∑
a1,...,ak=1

N∑
i1,...,ik=1

E ([X]a1i1 [X]a1i2 · · · [X]akik [X]aki1) .

Compare the expression on the right-hand-side with (2.20); it is exactly equal to the kth moment
of the Wishart ensemble, except now the dimension is r instead of m. We can now appeal to the
result of Theorem 2.32: this moment converges to a certain degree-k polynomial in %, where % is
the asymptotic ratio of the dimension (in this case r) to the number of samples N . But now we are
holding r fixed as N → ∞, so % = r/N → 0. Note that the kth moment polynomial in % has no
%0 term; hence, the whole things goes to 0 as N →∞.

This shows convergence in expectation; the full convergence in probability (or almost surely) is
then completed by showing the variance goes to 0. The argument here is similar to the one needed
for the variance of trN(Wk

I ), which we omitted in Section 2.4, and we also omit here. �

REMARK 3.7. The assumption of symmetric distribution for the entries of X is not actually
needed for Theorem 3.6; it was just a convenient way to make the proof slick at the end, comparing
to a Wishart ensemble based on a feature matrix of size r × N . A more general argument can be
applied using Hölder’s inequality, which says that for any product of k random variables,

|E(Y1Y2 · · ·Yk)| ≤
(
E(|Y1|k) · · ·E(|Yk|k)

)1/k
.
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This can be applied to the terms above to factor out a constant no bigger than E(|[X]11|k), showing
that |E

(
trN [Wk

C ]− trN [Wk
I ]
)
| is

≤ E(|[X]11|k) ·
1

Nk+1

r∑
a1,...,ak=1

((1 + γa1) · · · (1 + γak)− 1) ·Nk = O( 1
N

).

Furthermore, from this argument, we see that we don’t actually need r to be fixes as N,m → ∞;
in fact, we can allow r = m if we like, provided the γa decay as a grows fast enough that the above
sums are uniformly bounded as m grows.

Theorem 3.6 shows that, for any spiked covariance model with covariance C, the spiked
Wishart matrix WC has the same asymptotic matrix moments as a standard Wishart matrix WI .
Since the asymptotic matrix moments determine the asymptotic density of eigenvalues, we now
conclude from Theorem 2.47 that all spiked covariance models have bulk eigenvalue distribution
given by the Marčenko–Pastur distribution.

COROLLARY 3.8. Let % > 0, and let (mN)N∈N be a sequence of positive integers satisfying
limN→∞

mN
N

= %. Let r ∈ N be a fixed rank, let C = Im + Dr be a rank-r diagonal perturbation
of the identity. Let X ∈ MmN×N be an i.i.d. feature matrix with entries of mean 0 and variance 1,
and let WC = 1

N
X>CX be the corresponding spiked Wishart matrix, with eigenvalue ensemble

(λ(N)). Then for any a < b,

lim
N→∞

h[a,b](λ
(N)) =

1

N
#{j : λ

(N)
j ∈ [a, b]} =


∫ b

a

f%(x) dx, if % ≥ 1

(1− %)1[a,b](0) +

∫ b

a

f%(x) dx, if % ∈ (0, 1)

where f% is the Marčenko–Pastur density (2.39).

That is: as far as the limit histogram of eigenvalues is concerned, spiked models made no
difference. This might appear quite disappointing, and suggest there is something wrong with our
model. But don’t fret. Recall the discussion surrounding (2.42) and Bai–Yin’s Theorem 2.48.
The limit of the proportion of eigenvalues in a given interval tells us nothing about the extreme
eigenvalues. Bai and Yin proved that, in the non-spiked case (C = I), the largest eigenvalue sticks
to the edge of the Marčenko–Pastur density. As we will see next, this fails for spiked covariance
models: they have outlier eigenvalues.
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