23. The fundamental group of the circle

Theorem 23.1. The fundamental group of the circle is infinite cyclic.

Proof. We saw in Lecture 20 that

$$p: \mathbb{R} \longrightarrow S^1$$
 given by $p(t) = e^{2\pi i t}$

realises \mathbb{R} as a covering space of S^1 . \mathbb{R} is simply connected (for example, it is contractible).

The fibre over 1 is the set of integers. Thus the fundamental group is certainly countable. Pick two points $z_0 = a$ and $z_1 = b$ in the fibre over $x_0 = 1$. Then a and b are integers. Consider the path

$$u: I \longrightarrow \mathbb{R}$$
 given by $u(t) = tb$,

starting at $y_0 = 0$ and ending at b. Then

$$\gamma = p \circ u \colon I \longrightarrow S^1$$
 is given by $t \longrightarrow e^{2\pi i t b}$.

The lift of γ starting at a is

$$\tilde{\gamma} \colon I \longrightarrow \mathbb{R}$$
 given by $t \longrightarrow a + tb$.

This ends at a + b. Thus we get the integers under addition. \square

Theorem 23.2. The disc $D^2 \subset \mathbb{R}^2$ does not retract to $S^1 \subset D^2$.

Proof. Suppose not, suppose there is a continuous function

$$r \colon D^2 \longrightarrow S^1$$

such that $r \circ i = \mathrm{id}_{S^1}$, where $i \colon S^1 \longrightarrow D^2$ is the natural inclusion.

Then there are three maps

$$i_*: \pi_1(S^1, 1) \longrightarrow \pi_1(D, 1) \quad r_*: \pi_1(D, 1) \longrightarrow \pi_1(S^1, 1) \quad (\mathrm{id}_{S^1})_*: \pi_1(S^1, 1) \longrightarrow \pi_1(S^1, 1).$$

Note that $\pi_1(D,1) = 0$, as D is contractible. Thus the first map is zero. Similarly the second map is zero. Consider the composition

$$0 = r_* \circ i_*$$
= $(r \circ i)_*$
= $(id_{S^1})_*$
= id_* .

This is not possible, as the fundamental group of the circle is non-trivial. \Box

Corollary 23.3 (Brouwer fixed point theorem). Every continuous function $f: D \longrightarrow D$ has a fixed point.

Proof. Suppose not. Note that the function

$$l: D \times D \setminus \Delta \longrightarrow D$$

which sends (x, y) to the point where the line from y to $x \neq y$ meets S^1 , is continuous.

Let r be the composition of

$$D \longrightarrow D \times D \setminus \Delta$$
 given by $x \longrightarrow (x, f(x))$

and l. Then r is continuous and $r \circ i$ is the identity. Thus r is a retraction, which is impossible, by (23.2).

Therefore f has a fixed point.

Theorem 23.4 (Fundamental Theorem of Algebra). Every polynomial of degree n with complex coefficients has n roots, counted with multiplicity.

Proof. Let

$$p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0 \in \mathbb{C}[z]$$

be a monic polynomial with no roots. We have to show n = 0. Let

$$r = \max(|a_{n-1}| + |a_{n-2}| + \dots + |a_0|, 1).$$

On the circle |z| = r of radius r we have the following estimates

$$|z^{n}| = |z|^{n-1} \cdot r$$

$$\geq |z|^{n-1} (|a_{n-1}| + |a_{n-2}| + \dots + |a_{0}|)$$

$$\geq |a_{n-1}z^{n-1} + \dots + a_{0}|.$$

Thus the polynomial

$$p_t(z) = z^n + t(a_{n-1}z^{n-1} + \dots + a_0)$$

has no roots on the circle |z| = r for any $t \in [0, 1]$.

Consider the function

$$F: I^2 \longrightarrow S^1$$
 given by $F(s,t) = \frac{w}{|w|}$

where

$$w = \frac{p_t(r \cdot e^{2\pi i s})}{p_t(r)}.$$

F is continuous, as w is never zero. Thus F is a homotopy from the loop γ

$$F(s,0) = e^{2\pi i n s}$$
 to the loop $F(s,1) = f_r(s) = \frac{w}{|w|}$

where

$$w = \frac{p(r \cdot e^{2\pi i s})}{p(r)}.$$

Thus

$$[f_r] = [\gamma] = n.$$

On the other hand, f_r is homotopic to f_0 , the constant function 1, as we are assuming that p(z) has no roots. Thus n=0.