22. The universal cover

Given $f: X \longrightarrow Y$ continuous the **fibre** over y is the set $f^{-1}(y)$.

Definition 22.1. Let $p: \tilde{X} \longrightarrow X$ be a covering space. Given a path $\gamma: x_0 \leadsto x_1$ and a point y_0 in the fibre over x_0 let

$$y_1 = y_0 \bullet \gamma$$

be the endpoint of a lift of γ starting at y_0 .

- (1) $y_0 \bullet \gamma$ only depends on the homotopy class of γ .
- $(2) \bullet respects concatenation.$

In particular there is a right action of $\pi_1(X, x_0)$ on the fibre $p^{-1}(x_0)$,

$$p^{-1}(x_0) \times \pi_1(X, x_0) \longrightarrow p^{-1}(x_0)$$
 given by $y_0 \bullet [\gamma] = [y_0 \bullet \gamma].$

Proof. (1) is proved in (21.5).

Suppose that $\gamma_i : x_i \leadsto x_{i+1}$ are two paths, i = 0, 1.

Pick y_0 in the fibre over x_0 . Let

$$y_1 = y_0 \bullet \gamma_0$$
 and let $y_2 = y_1 \bullet \gamma_1$.

Then y_1 is the endpoint of the lift $\tilde{\gamma}_0$ of γ_0 starting at y_0 and y_2 is the endpoint of the lift $\tilde{\gamma}_1$ of γ_1 starting at y_1 .

Note that (21.2) implies $\tilde{\gamma}_0 \cdot \tilde{\gamma}_1$ is the lift of $\gamma_0 \cdot \gamma_1$ starting at y_0 . Hence

$$y_2 = y_0 \bullet (\gamma_0 \cdot \gamma_1).$$

Theorem 22.2. Let $p: \tilde{X} \longrightarrow X$ be a covering space of a path connected space X and let $x_0 \in X$ be a point.

- (1) The action of $\pi_1(X, x_0)$ on the fibre over x_0 is transitive if and only if \tilde{X} is path connected.
- (2) The stabiliser of a point y_0 of the fibre over x_0 is the image of

$$p_* \colon \pi_1(\tilde{X}, y_0) \longrightarrow \pi_1(Y, x_0).$$

(3) If \tilde{X} is path connected then the fibre over x_0 is in bijection with the right cosets of $p_*(\pi_1(\tilde{X}, y_0))$ in $\pi_1(X, x_0)$.

Proof. We first prove (1). Suppose that \tilde{X} is path connected. Let y_0 and y_1 be two points in the fibre. Pick a path u from y_0 to y_1 and let γ be the image of u. Then γ is a loop based at x_0 and the lift $\tilde{\gamma}$ of γ starting at y_0 must be u. But then

$$y_1 = y_0 \bullet [\gamma]$$

and the action is transitive. Now suppose that the action is transitive. Let y_0 and y_1 be two points in a fibre. Pick a loop γ such that

$$y_1 = y_0 \bullet [\gamma].$$

Then the lift $\tilde{\gamma}$ of γ starting at y_0 is a path from y_0 to y_1 . Thus the whole fibre of p over x_0 lies in the same path component. Now suppose that y_0 and y_1 are two points of \tilde{X} and y_0 belongs to the fibre over x_0 . Let x_1 be the image of y_1 . Pick a path u from x_0 to x_1 . Lift u to a path v ending at y_1 . Then v starts at some point y_2 of the fibre. But then y_0 and y_1 must belong to the same path component. This is (1).

Suppose that $\gamma \in \pi_1(X, x_0)$ and

$$y_0 = y_0 \bullet [\gamma].$$

Let $\tilde{\gamma}$ be a lift of γ starting at y_0 . Then $\tilde{\gamma}$ ends at y_0 a and so $\tilde{\gamma}$ is a loop based at y_0 . As $\gamma = p \circ \tilde{\gamma}$, we have

$$[\gamma] = [p \circ \tilde{\gamma}]$$

= $p_*[\tilde{\gamma}] \in p_*(\pi_1(\tilde{X}, y_0)).$

Now suppose that $\delta \in \pi_1(\tilde{X}, y_0)$ and let $\gamma = p \circ \delta$. Then γ is a loop based at x_0 and δ is the lift starting at y_0 . Thus

$$y_0 = y_0 \bullet [\gamma]$$

so that $p_*\delta$ stabilises y_0 . This is (2).

(3) holds for any transitive action.

Definition 22.3. We say that a covering map $p: \tilde{X} \longrightarrow X$ is the universal cover if \tilde{X} is simply connected.

Corollary 22.4. Let $p: \tilde{X} \longrightarrow X$ be the universal cover. A point y_0 in the fibre determines a bijection between

$$l : \pi_1(X, x_0) \longrightarrow p^{-1}(x_0)$$
 given by $[\gamma] \longrightarrow y_0 \bullet [\gamma]$.

Proof. As \tilde{X} is path connected, (1) of (22.2) implies that l is surjective. As \tilde{X} has trivial fundamental group, (2) implies that l is injective. \square

We can use (22.4) to figure out the fundamental group. This is a little bit subtle, as the RHS of the bijection is a set, not a group. Let z_0 and z_1 be two points in the fibre. The induced group structure on the fibre determined by l is given by

$$y_1 = l(l^{-1}(z_0) \cdot l^{-1}(z_1)).$$

How do we compute this in practice?

- Pick a path $u: y_0 \leadsto z_1$.
- Let $\gamma = p \circ u$ be the corresponding loop based at x_0 .
- $\bullet \ y_1 = z_0 \bullet [\gamma].$