17. Paths and Loops

Definition 17.1. Let X be a topological space.

A path γ from x_0 to x_1 , denoted $x_0 \rightsquigarrow x_1$, is a continuous function

$$\gamma\colon I\longrightarrow X$$

such that

$$\gamma(0) = x_0$$
 and $\gamma(1) = x_1$.

A loop is a path such that $x_1 = x_0$.

If γ_0 is a path from x_0 to x_1 and γ_1 is a path from x_1 to x_2 then we define the **concatenation** of γ_0 and γ_1 , denoted $\gamma_0 \cdot \gamma_1$, as the path

$$\gamma_0 \cdot \gamma_1 \colon I \longrightarrow X$$

given by

$$(\gamma_0 \cdot \gamma_1)(t) = \begin{cases} \gamma_0(t) & t \in [0, 1/2] \\ \gamma_1(t) & t \in [1/2, 1]. \end{cases}$$

If γ is a path from x_0 to x_1 then the **inverse** of γ , denoted γ^{-1} , is the path

$$\gamma^{-1} \colon I \longrightarrow X$$
 given by $\gamma^{-1}(t) = \gamma(1-t)$.

The constant path at x_0 , denoted c_{x_0} , is

$$c_{x_0}: I \longrightarrow X$$
 given by $c_{x_0}(t) = x_0$.

As in Math 190A, the relation \sim on X, given by

$$x \sim y$$
 there is a path from x to y

is an equivalence relation. The equivalence classes are the connected components.

Definition-Lemma 17.2. There is a functor π_0 from the category of topological spaces to the category of sets.

To every topological space X, $\pi_0(X)$ is the set of equivalence classes of the relation \sim . To every continuous function $f: X \longrightarrow Y$ we define the function

$$\pi_0(f) \colon \pi_0(X) \longrightarrow \pi_0(Y)$$
 by the rule $\pi_0(f)[x] = [f(x)].$

Moreover the function $\pi_0(f)$ only depends the homotopy class of f.

Proof. We first have to check that $\pi_0(f)$ is well-defined. But this follows from the fact that the image of a path-connected space is path-connected. It is very easy to see that π_0 is a functor.

Now suppose that $f \sim g$. Then there is a continuous function

$$F \colon X \times I \longrightarrow X$$

such that

$$F(x, 0) = f(x)$$
 and $F(x, 1) = g(x)$.

Define a path γ

$$\gamma \colon I \longrightarrow X$$
 by the rule $\gamma(t) = F(x,t)$.

Then γ is a path from f(x) to g(x). Thus

$$\pi_0(f)[x] = [f(x)]$$

= $[g(x)]$
= $\pi_0(g)[x]$.

It follows that $\pi_0(f) = \pi_0(g)$.

Definition 17.3. Let X and Y be two topological spaces and let $A \subset X$ be a subset of X. We say that two continuous functions f and $g \colon X \longrightarrow Y$ are **homotopic relative to** A, if the there is a homotopy F from f to g such that

$$F(a,t) = f(a)$$
 for every $a \in A$.

Note that if f and g are homotopic relative to A then $f|_A = g|_A$.

Definition 17.4. Let X be a topological space and let γ_0 and γ_1 be two paths from x_0 to x_1 .

Then γ_0 and γ_1 are **homotopic** as **paths** if there a homotopy F from γ_0 to γ_1 relative to $A = \{0, 1\} \subset I$.

Lemma 17.5. Let X be a topological space.

If $\alpha_0 \sim \alpha_1$ as paths from x_0 to x_1 and $\beta_0 \sim \beta_1$ as paths from x_1 to x_2 then $\gamma_0 = \alpha_0 \cdot \beta_0 \sim \alpha_1 \cdot \beta_1 = \gamma_1$ as paths from x_0 to x_2 .

Proof. Let A be a homotopy from α_0 to α_1 and let B be a homotopy from β_0 to β_1 .

Define a function

$$C: I^2 \longrightarrow X$$

by the rule

$$C(s,t) = \begin{cases} A(2s,t) & s \in [0,1/2] \\ B(2s-1,t) & s \in [1/2,1]. \end{cases}$$

Then C is continuous by the patching lemma and

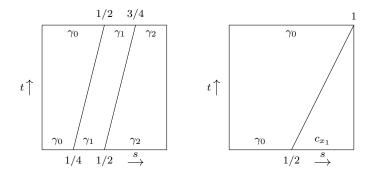
$$C(s,0) = \gamma_0(s)$$
 $C(s,1) = \gamma_1(s)$ $C(0,t) = x_0$ and $C(1,t) = x_2$.

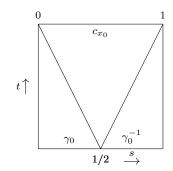
Thus C is a homotopy from γ_0 to γ_1 fixing x_0 and x_1 .

Lemma 17.6. If X is topological space and γ_i are three paths $x_i \rightsquigarrow x_{i+1}$, i = 0, 1 and 2, then

- (1) $(\gamma_0 \cdot \gamma_1) \cdot \gamma_2 \sim \gamma_0 \cdot (\gamma_1 \cdot \gamma_2)$, as paths from x_0 to x_3 ,
- (2) $c_{x_0} \cdot \gamma_0 \sim \gamma_0 \sim \gamma_0 \cdot c_{x_1}$ as paths from x_0 to x_1 , and (3) $\gamma_0 \cdot \gamma_0^{-1} \sim c_{x_0}$ as paths from x_0 to x_0 and $\gamma_0^{-1} \cdot \gamma_0 \sim c_{x_1}$ as paths from x_1 to x_1 .

Proof. The proofs of these results are built on the following three diagrams.





We first prove (i). Define a function

$$F: I^2 \longrightarrow X$$

by the rule

$$F(s,t) = \begin{cases} \gamma_0(\frac{4}{t+1}s) & 0 \le s \le \frac{t+1}{4} \\ \gamma_1(4s-1-t) & \frac{t+1}{4} \le s \le \frac{t+2}{4} \\ \gamma_2(1-\frac{4(1-s)}{2-t}) & \frac{t+2}{4} \le s \le 1. \end{cases}$$

Then F is continuous by the patching lemma as the pieces are continuous and they agree on overlaps. Looking at the picture F is a homotopy from $(\gamma_0 \cdot \gamma_1) \cdot \gamma_2$ to $\gamma_0 \cdot (\gamma_1 \cdot \gamma_2)$, as paths from x_0 to x_3 . Now we turn to (ii). Define a function

$$F: I^2 \longrightarrow X$$

by the rule

$$F(s,t) = \begin{cases} \gamma_0(\frac{2}{t+1}s) & 0 \le s \le \frac{t+1}{2} \\ x_1 & \frac{t+1}{2} \le s \le 1. \end{cases}$$

F is a homotopy from $\gamma_0 \cdot c_{x_1}$ to γ_0 as paths from x_0 to x_1 . For (iii) define a function

$$F\colon I^2 \longrightarrow X$$

by the rule

by the rule
$$F(s,t) = \begin{cases} \gamma_0(2s) & 0 \le s \le \frac{1-t}{2} \\ \gamma_0(1-t) & \frac{1-t}{2} \le s \le \frac{1+t}{2} \\ \gamma_0(2-2s) & \frac{1+t}{2} \le s \le 1. \end{cases}$$
F is a homotopy from $\gamma_0 \cdot \gamma_0^{-1}$ to c_{x_0} as paths from x_0 to x_0 .