14. The pushforward

Our goal is to prove (13.4) so that we can define the pushforward.

Proof of (13.4). Given $\sigma \in \mathcal{K}$, we let $\mathcal{K}(\sigma)$ be the subcomplex defined by σ . We already know the reduced homology is zero. Let $\mathcal{L}(\sigma)$ be the subcomplex of \mathcal{L} with support σ . Note that if σ_0 is a face of σ then

$$C_{\bullet}(\mathcal{K}(\sigma_0)) \subset C_{\bullet}(\mathcal{K}(\sigma))$$
 and $C_{\bullet}(\mathcal{L}(\sigma_0)) \subset C_{\bullet}(\mathcal{L}(\sigma))$.

Given a simplex $\tau \in \mathcal{L}$ we let σ_{τ} be the smallest simplex in \mathcal{K} containing τ . Note that if τ_0 is a face of τ then σ_{τ_0} is a face of σ_{τ} . Thus

$$C_{\bullet}(\mathcal{L}(\sigma_{\tau_0})) \subset C_{\bullet}(\mathcal{L}(\sigma_{\tau})).$$

Step I We prove this result under the assumption that the reduced homology of $\mathcal{L}(\sigma)$ is zero.

Let λ be the chain map defined by the condition that

$$\lambda(\sigma) \in C_{\bullet}(\mathcal{L}(\sigma)),$$

(13.5). Note that

$$(i_* \circ \lambda)(\sigma) \in C_{\bullet}(K(\sigma)).$$

The same is true of the identity map. Thus (13.5) implies that $i_* \circ \lambda$ is chain homotopic to the identity.

Note that

$$i_*(\tau) \in C_{\bullet}(\mathcal{K}(\sigma_{\tau})).$$

It follows that

$$(\lambda \circ i_*)(\tau) \in C_{\bullet}(\mathcal{L}(\sigma_{\tau})).$$

The same is true of the identity map. Thus (13.5) implies that $\lambda \circ i_*$ is chain homotopic to the identity.

It follows that i_* is an isomorphism on homology and that λ_* is the inverse of i_* .

From now on we may assume that \mathcal{K} is simply the complex given by a simplex σ and all its faces and using Step I all we need to show is the any subdvision \mathcal{L} of \mathcal{K} has reduced homology zero.

Step II We show that the result holds if \mathcal{L} is the rth Barycentric subdvision of \mathcal{K} .

By induction we may assume that r=1. In this case the simplices of \mathcal{L} are cones over the faces of simplices in the boundary of σ . But then the reduced homology of \mathcal{L} is zero and we may use Step I.

Step III Note that i is a simplicial approximation of the identity. Pick r so that the identity has a simplicial approximation from $\mathcal{L}^{(r)}$ to \mathcal{K} . Similarly pick s so that the identity has a simplicial approximation g from $\mathcal{K}^{(s)}$ to $\mathcal{L}^{(r)}$.

Then $i \circ f$ is a simplicial approximation of the identity, so that $i_* \circ f_*$ is the identity on homology. Thus f_* is injective on homology. On the other hand $f \circ g$ is a simplicial approximation of the identity, so that $f_* \circ g_*$ is the identity on homology. Thus f_* is surjective on homology.

It follows that f_* is an isomorphism. But then i_* is an isomorphism. But then the reduced homology is zero.

Definition-Theorem 14.1. Let

$$h: |\mathcal{K}| \longrightarrow |\mathcal{L}|$$

be a continuous map of simplicial complexes.

Then there is a **pushforward** h_* on homology,

$$h_*: H_m(\mathcal{K}) \longrightarrow H_m(\mathcal{L}),$$

that is natural in the following sense. If h is the identity then h_* is the identity and if we are given three simplicial complexes \mathcal{K} , \mathcal{L} and \mathcal{M} and two continuous maps

$$f: |\mathcal{K}| \longrightarrow |\mathcal{L}|$$
 and $g: |\mathcal{L}| \longrightarrow |\mathcal{M}|$

then

$$(g \circ f)_* = g_* \circ f_*.$$

Proof. Suppose that we are given a subdvision \mathcal{M} of \mathcal{K} and a simplicial approximation f of h. We can then define

$$h_* = f_* \circ \lambda_* \colon H_m(\mathcal{K}) \longrightarrow H_m(\mathcal{L}).$$

Note that by (12.3) we can always take $\mathcal{M} = \mathcal{K}^{(r)}$, for some r > 0.

Now we have to check that h_* does not depend on any choices.

Suppose that we are given two subdvisions \mathcal{M}_1 and \mathcal{M}_2 of \mathcal{K} and two simplicial approximations f_1 and f_2 of h. Pick a third simplicial simplicial approximation \mathcal{M}_3 such that the identity map has two simplicial approximations g_1 and g_2 , from \mathcal{M}_3 to \mathcal{M}_1 and from \mathcal{M}_3 to \mathcal{M}_2 .

There are now two obvious ways to pushforward using f_1 , directly as

$$f_{1*} \circ \lambda_*$$

or indirectly using

$$(f_1 \circ g_1)_* \circ (g_1^{-1})_* \circ \lambda_* = f_{1*} \circ (g_{1*} \circ g_{1*}^{-1}) \circ \lambda_*$$

= $f_{1*} \circ \lambda_*$.

Here used the fact that subdvision operator from \mathcal{M}_3 to \mathcal{M}_2 is simply the inverse of g_{1*} .

Since these come out the same, using \mathcal{M}_1 is the same as using \mathcal{M}_3 , to define the pushforward. By the same token using \mathcal{M}_2 is the same

as using \mathcal{M}_3 , to define the pushforward. Thus using \mathcal{M}_1 is the same as using \mathcal{M}_2 , to define the pushforward.

The two properties of the pushforward are now clear. \Box

Now suppose that X is a triangulable topological space. Recall that this means are given a pair (\mathcal{K}, f) of a simplicial complex and a homeomorphism

$$f: |\mathcal{K}| \longrightarrow X$$

Using this we can define the homology of X as the homology of K,

$$H_m(X) = H_m(\mathcal{K}).$$

This hides one unfortunate subtlety. It is true that the homology of \mathcal{K} is well-defined and we have a well-defined pushforward.

However if we choose a different triangulation then we don't get the same homology groups. We do get isomorphic homology groups. Put differently there is a pushforward on the homology of X buts this is only well-defined up to choice of triangulations.

There is one place where we do get a well-defined pushforward, that does not involve any choices. Suppose that we are given an endomorphism of X, a continuous map

$$h: X \longrightarrow X$$
.

Then we can choose the same triangulation for both the domain and the range. This does give us a well-defined pushforward.

This might make more sense in a concrete example. Take $X = S^1$. There are two types of isomorphism $f: S^1 \longrightarrow S^1$. Indeed, let \mathcal{K} be the 1-skeleton of a 2-simplex. Then $|\mathcal{K}|$ is homeomorphic to S^1 . But there are two types of simplicial maps from \mathcal{K} to \mathcal{K} . Ones that preserve orientation and those that don't.