Questions of this homework will ONLY be graded for completion. You may wish to read chapters 6.1-6.3 of the textbook for Q3 and Q4.

Q1. (2 pts) Find matrices C_1 and C_2 containing independent columns of A_1 and A_2 , respectively:

$$A_1 = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ 2 & 6 & -4 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

- Q2. (2 pts) Read Theorem 1.10 in the textbook, and prove that the following three statements are equivalent. (b)=>(a)
 - b = Catake $b = e_{i}, \exists x_{i}, s.t. \ Ax_{i} = e_{i} \ AB = I$ (a) A is invertible.
 - (b) For every $b \in \mathbb{R}^m$, there exists exactly one $x \in \mathbb{R}^m$ with Ax = b.
 - (c) The only $x \in \mathbb{R}^m$ with Ax = 0 is x = 0. Equivalently, the null space $N(A) = \{0\}$.
- Q3. (3 pts) Write a MATLAB function with inputs
- Fank (null space) = 0

 Rank (column space) = m $\Rightarrow \forall b, \exists x, Ax = b$ (note that the size of this
 - a vector x of size $n \times 1$,

• a matrix A of size $m \times n$,

and which outputs the product vector Ax (note that the size of this vector should be $m \times 1$).

To get the dimensions of the matrix A, you can use

$$[m,n] = size(A);$$

similarly to how we got the length of the vector u as

Here the semicolon supresses output.

Your code should check that the sizes of the inputs are right and then do the multiplication using two nested "for" loops.

- a) Run your code on A = rand(7) and x = rand(7, 1) (the command "rand" produces a random matrix). Compare the output of your function to the result when you type A * x into MATLAB (the results should be the same!).
- b) How many floating point operations (additions and multiplications) does the code use? Find a **formula** in terms of m and n. (Similar to how we found that a vectorvector multiplication takes 2n (or 2n-1, depending on how you count) operations, where n is the vector length.)

Q4. (3 pts)

Write a MATLAB function with inputs

- a matrix A of size $m \times n$,
- a matrix B of size $n \times p$,

and which outputs the product matrix $A \times B$ (note that the size of this matrix should be $m \times p$). Your code should check that the sizes are right and then do the multiplication using three nested "for" loops.

- a) Run your code on A = rand(8,5) and B = rand(5,3) (the command "rand" produces a random matrix). Compare the output of your function to the result when you type A * B into MATLAB (the results should be the same!).
- b) How many floating point operations (additions and multiplications) does the code use? Find a formula in terms of m, n, and p.