MATH 140A FOUNDATIONS OF REAL ANALYSIS FALL 2024

PRACTICE PROBLEMS FOR THE FINAL

- 1. Let $\mathbf{x}_n = (x_{1,n}, x_{2,n}, \dots, x_{d,n})$. Show that a sequence (\mathbf{x}_n) in \mathbb{R}^d converges to $\mathbf{x} = (x_1, x_2, \dots, x_d)$ if and only if each component $x_{i,n}$ converges to x_i in \mathbb{R} .
- 2. Show that the composition of continuous functions is continuous using an ϵ - δ argument.
- 3. (a) Prove that f is continuous if and only if the preimage of each open set is open.
 - (b) Show that $f^{-1}(F^c) = (f^{-1}(F))^c$ for any set F.
 - (c) Show that f is continuous if and only if the preimage of each closed set is closed.
- 4. Suppose $(x_n) \subset E$ is a sequence in a metric space. Show that if every subsequence x_{n_k} has a convergent subsequence $x_{n_{k_j}}$ that converges to ℓ , then $x_n \to \ell$.
- 5. Show that every bounded sequence in \mathbb{R} has a convergent subsequence.
- 6. Show that the set of subsequential limits of $[0,1] \cap \mathbb{Q}$ is all of [0,1].
- 7. Use the intermediate value theorem to show that m^{th} roots exists. That is, let y > 0 and $m \in \mathbb{N}$ with $m \geq 2$. Show there exists x > 0 so that $x^m = y$.
- 8. Let I be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ be an injective and continuous function. Prove that f is strictly monotone.
- 9. Let (X,d) be a compact metric space and let $f: X \to X$ be a function with the following property. There exists some 0 < c < 1 so that

$$d(f(x), f(y)) \le c d(x, y)$$
 for all $x, y \in X$.

- (a) Prove that f is continuous.
- (b) Let $x \in X$ and consider the sequence

$$f(x), f(f(x)), \dots$$

Prove that this sequence is Cauchy.

- (c) Use part (b) to conclude that there exists a unique $x_0 \in X$ so that $f(x_0) = x_0$.
- (d) Prove part (c) using a theorem nested sequence of compact sets by considering $X \supset f(X) \supset f(f(X)) \supset \cdots$.
- 10. (a) Suppose f is a continuous function on \mathbb{R} and assume that

$$\lim_{x \to \infty} f(x) = \infty = \lim_{x \to -\infty} f(x).$$

Prove that there exists some $y \in \mathbb{R}$ such that $f(y) \leq f(x)$ for all $x \in \mathbb{R}$.

(b) Let n be an even natural number and let

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$

be a polynomial of degree n. Prove that f has a minimum, i.e. there exists some $y \in \mathbb{R}$ such that $f(y) \leq f(x)$ for all $x \in \mathbb{R}$.

- 11. Let $p \in [0,1] \times [0,1]$, and let $C = [0,1] \times [0,1] \setminus \{p\}$.
 - (a) Let $x, y \in C$. Show that there exists a continuous function $f : [0,1] \to C$ so that f(0) = x and f(1) = y.
 - (b) Use part (a) and an argument similar to Rudin problem 21, page 44, to show that C is connected.
- 12. Call a mapping of X into Y open if f(V) is an open set in Y whenever V is an open set in X. Prove that every continuous open mapping of \mathbb{R} into \mathbb{R} is monotonic.
- 13. Suppose that α is irrational. Show that $(\{n\alpha\})_{n\in\mathbb{N}}$ is dense in [0,1) where $\{x\} := x \lfloor x \rfloor$.