Homework due Sunday, December 1st, by 11:59 pm Pacific Time.

Rudin, Chapter 4 (page 98), problems # 1, 2, 3, 4, 5 (first part only), 6 (Use the metric $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$), 8, 9, 14.

A. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. For every $x\in[a,b]$ define the function $J_{f,x}:(0,\infty)\to\mathbb{R}$ by

$$J_{f,x}(r) = \operatorname{diam}\Big(f\Big((x-r,x+r)\cap[a,b]\Big)\Big).$$

- (1) Prove that $\lim_{r\to 0^+} J_{f,x}(r)$ exists for every $x\in [a,b]$. Denote this limit by $J_f(x)$.
- (2) Prove that f is continuous at x if and only if $J_f(x) = 0$.
- (3) Show that for every $\varepsilon > 0$ the set

$$\{x \in [a,b] : J_f(x) \ge \varepsilon\}$$

is a closed set.

The following problems are for your practice, and will not be graded.

- (1) Negate the definition of " $\lim_{x\to p} f(x)$ ".
- (2) Negate the definition of "f is continuous at p".
- (3) Let the notation be as in problem A.
 - (a) Show that the set of discontinuities of f is a union of (at most) countably many closed sets.
 - (b) Construct (with justification) a function on \mathbb{R} which is discontinuous on \mathbb{Q} and continuous on \mathbb{Q}^c . (Hint: recall that \mathbb{Q} is countable.)
 - (c) Does there exist any function on \mathbb{R} which is discontinuous on \mathbb{Q}^c and continuous on \mathbb{Q} ?