Homework 7 due Friday, November 22, by 11:59 pm Pacific Time.

Rudin, Chapter 3 (page 78), problems # 6, 7, 8, 9, 10, 11(abc), 22, 23.

A. Let $\{x_n\}$ be a bounded sequence in \mathbb{R} . For every $N \in \mathbb{N}$ define

$$s_N = \sup\{x_n : n \ge N\}$$
 and $r_N = \inf\{x_n : n \ge N\}$.

Prove that

- (1) $\{s_N\}$ and $\{r_N\}$ are bounded.
- (2) $\{s_N\}$ is non-increasing, i.e., $s_1 \geq s_2 \geq \cdots$, and $\{r_N\}$ is nondecreasing, i.e., $r_1 \leq r_2 \leq \cdots$.
- (3) Let $s = \lim s_N = \inf\{s_N : N \in \mathbb{N}\}$, and $r = \lim r_N = \sup\{r_N : N \in \mathbb{N}\}$. Prove that $s = \lim \sup x_n$ and $r = \lim \inf x_n$.
- B. Evaluate the following limits
 - (1) $\lim_{n\to\infty} \sqrt[n]{n!}$.
 - (2) $\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n!}$. (You may use, without a proof: $\lim_{n\to\infty} (\frac{n+1}{n})^n = e$.)

(Hint: Theorem 3.37 maybe helpful.)

C. Let (X, d) be a compact metric space and let $f: X \to X$ be a function with the following property. There exists some 0 < c < 1 so that

$$d(f(x), f(y)) \le c d(x, y)$$
 for all $x, y \in X$.

Let $x \in X$ and consider the sequence

$$f(x), f(f(x)), f(f(f(x))) \dots$$

Prove that this sequence is Cauchy.

The following problems are for your practice, and will not be graded.

- (1) Rudin Chapter 3 (page 78), problems # 24, 25.
 - Interested students should look at 24 for an alternative way of constructing the real numbers without Dedekind cuts.
- (2) Let $\sum b_n$ be a convergent series of real numbers, and let $\{a_n\}$ be a sequence of real numbers which is bounded below. Assume further that

$$a_{n+1} \le a_n + b_n.$$

Prove that $\{a_n\}$ converges.