Math 114/214: Introduction to Computational Stochastics Spring quarter 2025

Homework Assignment 3

Due: 3:00 pm, Monday, April 28, 2025

Instructions.

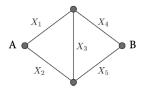
- Please submit your solution as a single PDF file to Gradescope.
- You are encouraged to type out your solution. If you write your solution, please write it neatly, and then scan it into a PDF file. Using cell phone cameras is discouraged due to low resolution.
- For each of the simulation problems, please include pseudocode or code of the simulation algorithm.
- 1. Let Z be a random variable with distribution F. Let $X_1, \ldots, X_N \sim F$ and $Y_1, \ldots, Y_N \sim F$ be such that $(X_1, Y_1), \ldots, (X_N, Y_N)$ are independent. Denote $A_N = (1/2N) \sum_{k=1}^N (X_k + Y_k)$. Show that

$$\mathbb{E}(A_N) = \mathbb{E}(Z)$$
 and $\operatorname{Var}(A_N) = \frac{1}{2N}\operatorname{Var}(Z) + \frac{1}{2N}\operatorname{Cov}(X_1, Y_1).$

2. The figure below depicts a bridge network. All X_1, \ldots, X_5 are random length that are exponentially distributed with means 1, 1, 0.5, 2, 1.5, respectively. (Recall that the mean of the exponential distribution Exp (λ) is $1/\lambda$.) The four allowable paths from A to B are $X_1 + X_4$, $X_2 + X_5$, $X_1 + X_3 + X_5$, and $X_2 + X_3 + X_4$. Estimate the expected length of the shortest path for the bridge network,

$$H(X_1,\ldots,X_5)=\min(X_1+X_4,X_2+X_5,X_1+X_3+X_5,X_2+X_3+X_4),$$

using both the Crude Monte Carlo estimator and the antithetic estimator, with the sample size of N=10,000 and N/2=5,000, respectively. (See Example 2 of Lecture 10.)



- 3. Let $g(x) = \sqrt{x}e^{-x}$ $(x \in [0,4])$. Estimate the integral $I = \int_0^4 g(x) dx$ with the following estimators:
 - (1) A Crude Monte Carlo estimator: $I_N = (1/N) \sum_{i=1}^N 4g(X_i)$, where $X_1, \ldots, X_N \sim \mathcal{U}[0, 4]$ iid;
 - (Note that the constant function f(x) = 1/4 is the probability density function for $\mathcal{U}[0,4]$ ind, (2) An importance sampling estimator: $J_N = (1/N) \sum_{i=1}^N g(Y_i)/\varphi(Y_i)$, where $\varphi(x) = e^{-x}/(1 e^{-4})$ is the importance function, and $Y_1, \ldots, Y_N \sim \varphi$ iid.

Output the values of I_N and J_N , and the corresponding sample variance for each of these estimators, for N = 100, 400, 900, 1600. Discuss your simulation results.

- 4. Stochastic algorithms for approximating the maximum value of a continuous function f on [0,1]. Fix a natural number N.
 - (1) Method A. Generate $U_1, \ldots, U_N \sim \mathcal{U}[0,1]$ iid. Set $M_A = \max\{f(U_i) : i = 1, \ldots, N\}$.
 - (2) Method B. Pick up a natural number k so that N/k is an integer. Divide [0,1] into [(i-1)/k,i/k] $(i=1,\ldots,k)$. For each i, general N/k iid numbers uniformly distributed on [(i-1)/k,i/k], and set m_i to be the maximum of f applied to these numbers. Finally, set $M_B = \max\{m_1, \dots, m_k\}$.

Both M_A and M_B approximate $\max_{x \in [0,1]} f(x)$. Find M_A and M_B for $f(x) = 1 - 4(x - 1/2)^2$ with N=1000 and k=10. Try some more N and k values to see if one method is better than the other.