Math 114/214: Introduction to Computational Stochastics Spring quarter 2025

Homework Assignment 1

Due: 3:00 pm, Wednesday, April 9, 2025

Instructions. Please submit your solution as a single PDF file to Gradescope. You are encouraged to type out your solution. If you write your solution, please write it neatly, and then scan it into a PDF file. Using cell phone cameras is discouraged due to low resolution.

- 1. Write a code to generate points (x_i, y_i) (i = 1, ..., N) uniformly and independently on [-1, 1], count the total number $\tau(N)$ of points falling into the unit circle (i.e., those points (x_i, y_i) such that $x_i^2 + y_i^2 \le 1$), and calculate $\pi_N = 4\tau(N)/N$ and $e_N := |\pi_N \pi|$ for N = 100, 1,000, 10,000, and 100,000. For the case N = 100, plot the unit circle and the square (bound by $x = \pm 1$ and $y = \pm 1$), and continue to plot those points inside the unit circle using one color and those points outside the unit circle using a different color. Your solution should include a code, a table showing N, π_N , and e_N , and a plot.
- 2. Use the Monte Carlo method to calculate approximate values of the integral $I = \int_{[0,1]^d} g(x) dx$, where d = 4 and $g(x) = \prod_{i=1}^4 x_i e^{-x_i^2/2}$.
 - (1) Evaluate the value I of the integral directly.
 - (2) Write a code to generate independent sample points $X_1, X_2, ... X_N$ that are uniformly distributed in $[0,1]^4$, and calculate $I_N = (1/N) \sum_{k=1}^N g(X_k)$ and $e_N := |I_N I|$ for $N = 10^2, 10^3, 10^4, 10^5, 10^6$.
 - (3) Create a table to show N, I_N , and e_N , and plot e_N vs. N in the log-log scale.
 - (4) Discuss your results.

Your solution should include a code, a table showing N, I_N , and e_N , and a plot.

- 3. Let $\lambda > 0$. Recall that the cumulative distribution function for a random variable X that is exponentially distributed with the parameter $\lambda > 0$ is given by F(x) = 0 if x < 0 and $F(x) = 1 e^{-\lambda x}$ if $x \ge 0$. Derive a formula for sampling the random variable X using U[0, 1].
- 4. The Box–Muller method for sampling the two-dimensional random variables from the Gaussian distribution

$$g(x,y) = \frac{1}{2\pi}e^{-(x^2+y^2)/2},$$

using the transformation $x = r \cos \theta$ and $y = r \sin \theta$. The distribution for r is then given by $\alpha(r) = re^{-r^2/2}$ for r > 0 and $\alpha(r) = 0$ if $r \le 0$, and that for θ is θ is uniform on $[0, 2\pi]$. To sample $(X_1, Y_1), \ldots, (X_N, Y_N)$ from g, one can first sample R_1, \ldots, R_N from α using the inversion method and sample $\Theta_1, \ldots, \Theta_N$ from the uniform distribution on $[0, 2\pi]$. Then, one can obtain the samples (X_i, Y_i) by the relations $X_i = R_i \cos \Theta_i$ and $Y_i = R_i \sin \Theta_i$.

Sample $(X_1, Y_1), \ldots, (X_N, Y_N)$ from g with N = 100, 200, 300, 400, 500. For each of these N-values, calculate the sample mean and the sample covariance matrix, and compare them with the mean and covariance of a g-distributed random variable. Your solution should include a pseudo code and the sample means and covariance matrices but not all the sample values.