Homework due Monday, December 2, 11:59pm

This assignment requires some computer use. You may use whatever software you are familiar with, but the computational parts of this assignment can be done with Sage online here: https://sagecell.sagemath.org/. All you will need is to write a for loop and perform modular arithmetic operations. If you are unsure about or stuck on any part of the programming, please send me an email.

- (1) Use the Euclidean algorithm to compute $e^{-1} \pmod{m}$ (by hand) for each e and m.
 - (a) e = 22, m = 101
 - (b) e = 31, m = 253
 - (c) e = 413, m = 619
- (2) Suppose Alice and Bob are doing Diffie-Helman key exchange with the public p=104729, g=12. Alice sends Bob $A=g^a=97951$ and Bob sends Alice $B=g^b=11884$. Show that the prime p is too small to be secure: use a computer to determine their shared secret $s=g^{ab}$.
- (3) The Carmichael totient function $\lambda(n)$ is the smallest m such that $a^m \equiv 1 \pmod{n}$ for all $a \in \mathbb{Z}_n^{\times}$. We can compute this using the Chinese Remainder Theorem and our knowledge of the structure of \mathbb{Z}_n^{\times} . For example,

$$\mathbb{Z}_{105}^{\times} \cong \mathbb{Z}_{3}^{\times} \times \mathbb{Z}_{5}^{\times} \times \mathbb{Z}_{7}^{\times}$$
$$\cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$$

Then $\lambda(105) = \text{lcm}(2, 4, 6) = 12$.

- (a) Determine $\lambda(77)$, $\lambda(162)$ and $\lambda(210)$.
- (b) Show that $\lambda(n) \mid \phi(n)$ for all n. You may need the fact that

$$\mathbb{Z}_{2^{\ell}}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{\ell-2}},$$

and you may assume this freely.

- (c) Suppose Alice has public key (n, e) where n = pq and Alice receives the $c = m^e \pmod{n}$. Show that Alice can recover m by computing $d = e^{-1} \pmod{\lambda(n)}$ instead of $e^{-1} \pmod{\phi(n)}$.
- (4) A *semiprime* is the product of two primes. In RSA, we must choose a large semiprime, but we need to be careful about how we choose the prime factors.
 - (a) Show that if n = pq is odd, then n is the difference of two perfect squares. That is, $n = x^2 y^2$. Recall homework 1, problem 4.
 - (b) Fermat factorization is a factoring method relying on the above. We guess a value of x, then compute $x^2 n$. If the result is a perfect square, then we can solve for y and factor n. What is the smallest value of x that is possible? That is, what is the first value of x we should check?

(c) Given the semiprime n=1940050770913277826811085782601227945929717660407062879, find its two prime factors using Fermat factorization (use a computer for the calculation). WolframAlpha cannot factor this! (You do not have to prove n is semiprime, only factor it)