Homework due Friday, October 11, 11:59pm

- (1) An ordered ring is a (commutative) ring R with a total order \leq (total order just means any two elements can be compared) such that for all $a, b, c \in R$,
 - If $a \le b$, then $a + c \le b + c$
 - If $0 \le a$ and $0 \le b$, then $0 \le ab$.
 - (a) Show that if a < 0, then a is not a square. That is, there is no b such that $a = b^2$.
 - (b) Show that \mathbb{C} is *not* an ordered ring.
- (2) Show that if a and b are relatively prime, then $gcd(a b, a + b) \in \{1, 2\}$.
- (3) Prove or disprove the following implications:
 - (a) $gcd(a,b) = gcd(a,c) \implies gcd(a^2,b^2) = gcd(a^2,c^2)$
 - (b) $gcd(a,b) = gcd(a,c) \implies gcd(a,b) = gcd(a,b,c)$
 - (c) Let p be a prime. $(p \mid a^2 + b^2 \land p \mid b^2 + c^2) \implies p \mid a^2 + c^2$
- (4) Prove that a positive odd integer n has a unique representation $n = x^2 y^2$ if and only if n is prime.
- (5) Show that $(3+\sqrt{10})^n$ is a unit in $\mathbb{Z}[\sqrt{10}] := \{a+b\sqrt{10} : a,b \in \mathbb{Z}\}$ for all n.
- (6) Show that a Euclidean domain R is a principal ideal domain, that is every ideal I is of the form $I = (a) = \{ra : r \in R\}$.

Additional Problems not to be turned in: